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ABSTRACT

A shadow of a numerical solution to a chaotic system is anexactsolution to the equations of motion that
remains close to the numerical solution for a long time. In a collisionlessn-body system, we know that particle
motion is governed by the global potential rather than by interparticle interactions. As a result, the trajectory of
each individual particle in the system is independently shadowable. It is thus meaningful to measure thenumber
of particles that have shadowable trajectories as a function of time. We find that the number of shadowable
particles decays exponentially with time as and that for (in units of the local mean interparticle�mte e � [∼ 0.2, 1]
separation ), there is an explicit relationship among the decay constantm, the time steph of the leapfrogn̄
integrator, the softeninge, and the number of particlesN in the simulation. Thus, givenN and e, it is possible
to precompute the time steph necessary to achieve a desired fraction of shadowable particles after a given length
of simulation time. We demonstrate that a large fraction of particles remain shadowable over∼100 crossing times
even if particles travel up to about of the softening length per time step. However, a sharp decrease in the1

3

number of shadowable particles occurs if the time step increases to allow particles to travel farther than the1
3

softening length in 1 time step or if the softening is decreased below∼ .̄0.2n
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1. INTRODUCTION

Numerical simulations of the softened gravitationaln-body
problem are used to gain insight into the formation, evolution,
and structure of gravitational systems ranging from galaxies
and clusters of galaxies to the large-scale structure of the uni-
verse (Clarke & West 1997; Bertschinger 1998). Since such
simulations have been used to invalidate theories (Bertschinger
1998), establishing their trustworthiness is critical. These sim-
ulations have several sources of error, including the use of
several (sometimes many) orders of magnitude fewer particles
than the system being modeled, or discreteness noise; the use
of approximate force-computation methods (the latter two er-
rors are compared in Hernquist, Hut, & Makino 1993); the use
of a softened potential; the use of finite time step numerical
integration to evolve the system of ordinary differential equa-
tions; and machine round-off error. These errors are aggravated
by the fact that gravitationaln-body systems are chaotic and
display sensitive dependence on initial conditions: two solu-
tions with nearby initial conditions diverge exponentially away
from each other on about a crossing timescale (Goodman, Heg-
gie, & Hut 1993), so thatany error results in the numerical
trajectory diverging exponentially away from the exact solution
with the same initial conditions. The phenomenon has been
described (e.g., Goodman et al. 1993) as the “exponential mag-
nification of small errors,” implying the possibility that trajec-
tories of such simulations are the result of nothing but mag-
nified noise.

Fortunately, the purpose of a softenedn-body simulation is
not to follow the evolution of a particular choice of initial
conditions but instead tosamplethe evolution of large systems
whose initial conditions are drawn from a random distribution.
As such, we would likely be more than satisfied if our numerical
solution closely followed the evolution of a nearby set of initial
conditions. The study of shadowing provides just such a prop-
erty: a shadow of a numerical, or noisy, solution is an exact
solution whose initial conditions and subsequent evolution re-
main nearby, in phase space, to the numerical solution. Thus,
a numerical solution that has a shadow is essentially an ex-

perimental observation of that shadow, which is an exact tra-
jectory of the mathematical system being modeled. Although
this observation does not alleviate errors introduced between
the physical system and the mathematical model (such as dis-
creteness noise and force softening), itdoessay that the nu-
merical simulation is faithfully solving the mathematical model.
Quinlan & Tremaine (1992) showed that a single particle mov-
ing among 99 fixed particles is shadowable for several tens of
crossing times and that glitches (the point beyond which a
shadow cannot be found) tend to occur near close encounters.
Hayes (2003) demonstrated that if particles move in aM 1 1
softened system with fixed particles, then very few100� M
particles encounter glitches within the first few tens of crossing
times. However, both of these studies used highly accurate in-
tegrators to generate the “noisy” trajectories. Although high ac-
curacy is commonly used for simulations of unsoftened systems,
softened simulations most often use the second-order symplectic
and time-symmetric leapfrog integrator.

In this Letter, we use the leapfrog integrator to generate noisy
trajectories of systems that haveM particles moving and in-
teracting in a softened potential among a background ofN �

fixed particles (Quinlan & Tremaine 1992; Hayes 1995,M
2003). We use normalized units (Heggie & Mathieu 1986) in
which each particle has mass 1/N and the system diameter,
crossing time, and average velocity all have order unity. We
then lead the reader through the following observations. First,
we observe that glitches in the trajectory of a single particle
occur as a Poisson process (Fig. 1). Next, we demonstrate that
asM increases, shadow durations scale roughly as . (The0.81/M
physical significance of 0.8 is unclear and may be dependent
on other parameters such asN, the softeninge, and the time
steph.) More importantly, this scaling can be experimentally
reproduced by superimposing trajectories ofM single moving
particle systems and taking theshortestshadow of thoseM
systems. In other words, particles appear to encounter glitches
independently of one another (Fig. 2). Now, the glitching and
subsequent errant behavior of just one particle (the first to
undergo a glitch) in a large simulation is unlikely to have a
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Fig. 1.—Histogram of shadow durations of 1000 systems in which one particle
moves in the potential of 99 fixed particles with softening or of the1e p 0.054 4

mean interparticle spacing. Noisy trajectories were generated using a leapfrog
integrator with time step . After an initial transient, the distri-h p 0.011p e/5
bution fits an exponential curve with a mean shadow duration of 280 crossing
times, indicating that the moving particle encounters glitches as a Poisson process
with a glitch probability of 0.36% per crossing time.

Fig. 2.—How the average shadow duration scales as the number of moving
particlesM is increased. Each system is identical to that described in Fig. 1,
except nowM takes on the values 1, 3, 5, 7, 10, 15, 20, 25, and 35. The dots
represent sample shadow durations, 40 samples for eachM, while the “sample
average” is plotted with sample error bars of full width 1j. The “predicted
average” is artificially constructed for each by superimposingM p 1, … , 35
M samples chosen at random from Fig. 1 and taking the minimum shadow
duration of those samples. This demonstrates that the average shadow duration
of an M moving particle system is well predicted using anM single moving
particle system and suggests that particles encounter glitches independently of
one another; is plotted for comparison, although the physical signif-0.8280/M
icance of 0.8 is unclear.

large effect on the reliability of that simulation; in fact, as long
as only a small fraction of particles have glitched, then the
reliability of the simulation probably remains high. Then, as-
suming that particles encounter glitches independently of one
another, we can use the distribution of shadow durations of

systems to predict the fraction of shadowable particlesM p 1
as a function of time. We find that this fraction is a decaying
exponential with some exponentm (Figs. 3 and 4). Finally, we
demonstrate an explicit relationship betweenm, N, e, andh that
holds as long ase is in the range∼[0.2, 1] times the mean
interparticle separation and (Fig. 5). This means thath � (e/3)
given N, e, and the expected duration of the simulation, one
can precomputethe time steph necessary to have a desired
fraction of shadowable particles remain at the end of the
simulation.

2. METHODS

Initial positions for all particles and velocities for moving
particles were chosen uniformly at random from the unit cube.
Although not corresponding to any real astrophysical system,
we join the good company of Goodman et al. (1993) in be-
lieving that the detailed initial conditions do not affect the
chaotic nature of the problem, which is what we focus on in
this Letter. Furthermore, we repeated a small set of these ex-
periments with several spherically symmetric distributions,
with virtually no changes to our results.

Newtonian gravitational forces were summed directly, with
softening implemented by addinge2 to the denominator of New-
ton’s equations. Shadow computations are described in detail
elsewhere (Quinlan & Tremaine 1992; Hayes 1995). Essen-
tially, a highly accurate integrator is used to directly measure
the error made by leapfrog across each step, and then Newton’s
method is applied in an effort to force these errors to zero. The
duration of the longest shadow is estimated by running
Newton’s method on longer and longer segments of the noisy
orbit until it fails.

3. RESULTS

Figure 1 introduces a histogram of shadow durations for
1000 softened systems with . After an initialN p 100,M p 1
transient (explained in the discussion of Fig. 3 in Hayes 2003),
the distribution fits an exponential curve, suggesting that
glitches occur as a Poisson process.

Figure 2 introduces how the average shadow duration scales
as the number of moving particles is increased. For various values
of M, we perform 40 experiments in whichM particles move

and interact among fixed particles and plot the mean100� M
and standard deviation of the shadow durations. For , theM 1 1
shadow formally ends whenanyparticle encounters a glitch, and
this is the duration plotted in Figure 2. We make the following
observations: (1) a glitch in the local six-dimensional phase-
space trajectory of any one particle will cause a glitch in the full
6 M-dimensional phase-space trajectory of theM moving particle
system; and (2) in a large collisionless system, the gravitational
potential is governed more by the global potential than by
interparticle interactions (Binney & Tremaine 1987), and so it
is reasonable to expect that particles encounter glitches inde-
pendently of each other. So, perhaps the mean shadow duration
of an M moving particle system can be predicted by the mean
shadow duration of a system withM completely uncoupled one
moving particle systems (Hayes 2003). We test this hypothesis
with the “predicted average” of Figure 2 by takingM samples
at random from Figure 1 and taking theshortestshadow du-
ration. We see that the predicted curve is well within the error
bars of the “real”M moving particle system. Formally, this
suggests that the average duration before the occurrence of the
first glitch in the system is statistically independent of whether
particles interact or not.

Once one particle in the system encounters a glitch, its tra-
jectory after that point is incorrect, and it will presumably start
to “infect” the motion of other particles. However, by obser-
vation (2) above, we can hope that in a large collisionless
system, one errant particle will, for a time, have a negligible
effect on the trajectories of other particles. In fact, we can guess
that, for a time, any small fraction of errant particles will have
little effect on the global behavior of system. The goal would
then be to minimize, at reasonable cost, the number of particles
that have glitched by the end of a given simulation.

We now take as a working assumption that particles en-
counter glitches independently of one another and that the first
small fraction of particles that encounter glitches have a neg-
ligible effect on the others. That is, we reinterpret Figure 1 to
represent the distribution of shadow durations forall the in-
dividual particles in asinglemany–moving particle system. Of
course, the figure is likely to be valid only for a duration much
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Fig. 3.—Estimated fraction of particles that would be shadowed as a function
of time, in a system similar to that described in Fig. 1, except withall particles
moving. This is computed simply by taking the cumulative distribution function

of Fig. 1, where represents the fraction of particles that have undergoneF(t) F(t)
a glitch, and then plotting .1 � F(t)

Fig. 4.—Curves suggesting that (1) eq. (1) preserves simulation reliability
from a shadowing standpoint, (2) reliability increases ash decreases, and (3) the
scaling breaks down ife is too small. Each line represents a curve similar to
that in Fig. 3, derived from a 200 sample set of simulations similar to Fig. 1 but
with different N ande. There are six clusters of four lines each. The four lines
in each cluster come from four sets of simulations using all four combinations
of and . Each system was integrated using leapfrog1 1 �1/3N p 100,1000 e p { , } N2 4

with time steph scaled according to eq. (1). Each cluster represents a particular
choice of constantk in the scaling, namely, , for the displayed2 2 2 1/3h p k e (N/100)
values ofk. Decreasingk increases accuracy, giving longer shadows. Embedded
in each cluster is a dotted line representing , discussed later. Finally, the�m tke
diamond and plus sign curves have , respectively, and suggest1 1 �1/3e p { , } N8 16

that shadows are much shorter if the softening is too small, even though they
use the smallest time step factor .1k p 8

shorter than 800 crossing times, as the earlier glitched particles
“infect” the motion of the remainder, but let us assume that it
is a reasonable approximation for some shorter period. This
allows us, as a first approximation, to estimate the fraction of
glitched particles in a real simulation at a given time by com-
puting the fraction of one moving particle systems that have
glitched by that time. Figure 3 plots the opposite—the fraction
of nonglitched (i.e., shadowed) particles as a function of
time—derived from Figure 1 by taking its cumulative distribution
function and “flipping” it to . As expected from theF(t) 1 � F(t)
Poisson process in Figure 1, the fraction of shadowable particles
decays exponentially with a rate corresponding to a 0.36% glitch
probability per particle per crossing time.

Figure 3 is interesting but of little use, because it does not
tell us how the shape of this curve varies with the total number
of particlesN, the softeninge, or the time steph. However, for
reasons that we discuss later, we have found that if the time
steph is scaled as

2 2 1/3h ∝ e N , (1)

then each of Figures 1, 2, and 3 are preserved ife is not too
small. That is, ifN and� are changed in a given simulation but
the initial conditions are drawn from the same distribution, then
using equation (1) to scale the time step will preserve the same
degree of simulation reliability from the standpoint of shadowing.
Intuitively, the scaling of is not surprising and is a com-h ∝ e
monly used time step criterion. TheN1/3 is more surprising, telling
us that we canincreasethe time step asN increases at a fixed
softening; intuitively, this is because the gravitational potential
becomes smoother with increasingN.

To demonstrate this scaling, we have performed many ex-
periments with various values ofh, N, ande. Figure 4 summarizes
the results. Each line represents the fraction of shadowable par-
ticles as a function of time for some (N, e) pair. Each closely
clustered set of four lines represents sets of runs with various
(N, e) and the time steph scaled using equation (1) to give the
same “shadowing reliability.” Finally, decreasing the time step
(via decreasingk) increases reliability by decreasing the decay
rate of the fraction of shadowed particles. We also performed
similar experiments with all combinations of parametersN p

and . The scaling with1 1 1 12 3 4 �1/310 , 10 , 10 e p {2, 1, , , , }N2 4 8 16

N works well up to and presumably beyond. All curves4N p 10
are very similar for . However, as seen in the figure,1 �1/3e ≥ N4

shadows are significantly shorter for , even if1 1 �1/3e p { , } N8 16

the smallest time step is used. This is consistent with the ob-

servations of Quinlan & Tremaine (1992) and may be related to
unphysical results obtained with a too-small softening (Splinter
et al. 1998).

Finally, we come to the crux. Armed with the scaling equa-
tion (1) and the knowledge that the fraction of shadowable
particles decays exponentially as , we would like to find�m tke
a relationship between the time step proportionality constantk
of Figure 4 andmk. An eyeball fit of exponential curves to each
of the clusters in Figure 4 gives values of the decay constant
mk for each cluster. These values, along with the curvemk versus
k, are plotted in Figure 5. As can be seen, there is evidence
that for , the curve settles to a power law of approximately1k � 3

1.75�0.25m p (0.047� 0.015)k . (2)k

However, the shape of the curve is also consistent with a slowly
decreasing slope ask decreases.

4. DISCUSSION

The relations described above offer an a priori algorithm for
choosing a time step for a softenedn-body simulation, viz., given
N, e, the expected simulation durationT in crossing times, and
a desired fractionF of shadowable particles remaining at time
T, solve form in , and then solve fork using equation�mTF p e
(2). Of course, these relationships will need to be scaled to
appropriate units for the simulation. The job should be easiest
for a simulation of one galaxy; for simulations of clusters of
galaxies or a cosmological simulation, we would scale to the
smallest subsystems that we expect to accurately integrate. We
are unsure of the effects of dynamically changing the softening
based on the local mean particle density but suspect that some
reasonable interpretation may be possible whereby a softening
and time step (modulo the discussion of the next paragraph) are
chosen based upon local mean particle density.

The fact that constant time step leapfrog is symplectic is
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Fig. 5.—For and of Fig. 4, the values of1 1 1 1 1 1 �1/3k p 1, , , , , and e ≥ N2 3 4 5 8 4

mk were fitted by eye and are, respectively, 0.024, 0.0071, 0.0040,m p 0.33,
0.0027, and 0.0013. These are plotted and, for , fit the curve1k � m p3

.1.75�0.25(0.047� 0.015)k

probably significant to these results. We experimented briefly
with a dynamically changing time step but found that shadows
were virtually destroyed if the time step changes “too often.”
However, we found that if the time step was decreased as a
particle entered a high-density region but never increased the
time step again, these results were preserved. This may be a
reasonable choice for simulations of clusters if most particles
that enter a high-density region remain there for the remainder
of the simulation. Alternatively, perhaps a particle’s time step
could be reincreased only after the dynamic time step criterion
says the particle’s time step should besignificantlyincreased,
say, by an order of magnitude. This will ensure that the particle
has left the high-density region far behind and preserve the
internal reliability of high-density regions. Quinn et al. (1997)
discuss time steps in great detail.

More detailed arguments deriving equation (1) show that the
forward global error of a softenedn-body simulation scales as

, where the forward global error is defined as the2 �2 �1/3h e N
total error accumulated over a fixed duration of simulation time
(i.e., if the time step is halved, then the number of time steps
must be doubled to fix the duration). Theh2 scaling is due to
leapfrog being a globally second-order integrator,1 the N�1/3

scaling has been seen before (Goodman et al. 1993), and the
e�2 is new and can be easily verified by plotting the forward
global error as a function ofe for fixed N andh, for the values
of e used in this Letter. Thus, equation (1) simply holds the
forward global error constant; to our knowledge, this Letter is
the first to demonstrate that holding the forward global error
constant results in a constant distribution of shadow lengths,
although this may be related to a shadowing concept known
as brittleness (Dawson et al. 1994).

Since the scaling ofh with N1/3 is so weak, and we usually
increaseN in order to increase reliability, it certainly will not
hurt to ignore the scaling withN and simply scale . Theh ∝ e
remaining questions are what value ofe to use and what fraction
of � should a particle be allowed to travel in 1 time step. The
first question is answered by the fact that shadows do not appear
to exist for very long if ; concerning the second1 �1/3e � N8

question, we believe that Figures 4 and 5 suggest that the
particle should be allowed to travelat most in 1 time step,1e3

and possibly much less, if a shadow duration of 100 crossing
times encompassing most particles is desired.

We thank A. Melott and D. Weinberg for many helpful pre-
sentation suggestions.

1 Note that leapfrog is per step, but if the duration is fixed and the3O(h )
time step is halved, then twice as many steps are required, making the forward
global error .2O(h )
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