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Abstract

This paper proposes a fundamental answer to a fre-
quently asked question in multimedia evaluation and data
set creation: Do artifacts from perceptual compression con-
tribute to error in the machine learning process and if so,
how much? Our approach to the problem is an informa-
tion reinterpretation of the Helmholtz free energy formula
to explain the relationship between content and noise when
using sensors (such as cameras or microphones) to cap-
ture multimedia data. The reinterpretation guides a bit-
measurement of the noise contained in images, audio, and
video by combining a classifier with perceptual compres-
sion, such as JPEG or MP3. Our experiments on CIFAR-
10, ImageNet, and CSAIL Places as well as Fraunhofer’s
IDMT-SMT-Audio-Effects dataset indicate that, at the right
quality level, perceptual compression is actually not harm-
ful but contributes to a significant reduction of complexity
of the machine learning process. That is, our noise quan-
tification method can be used to speed up the training of
deep learning classifiers significantly while maintaining, or
sometimes even improving, overall classification accuracy.

1 Introduction

As datasets for multimedia [17] grow larger and larger
and become more difficult to handle, performing machine
learning on perceptually compressed data has become in-
creasingly mainstream [11]. In the past practice of feature
extraction, however, many signal processing communities
had established a firm rule that features should be extracted
on uncompressed input only. Today, deep learning systems
have replaced many feature-based systems for computer vi-
sion and audition tasks. Still, the preference is often to de-
velop deep learning systems on high-quality image and au-
dio – even if it might result in a more complex machine
learning task. This is, due to the lack of a clear under-

standing of the relationship between lossy compression and
deep learning, researchers understandably choose to “play
it safe”. In this article, we hope to contribute to this under-
standing.

In fact, the interaction of perceptual compression and
machine learning is not at all very well studied. Dodge
et al. [4] demonstrate that the performance of deep neural
networks is “surprisingly” robust to artifacts introduced by
perceptual compression as apposed to other types of image
distortions such as blurring and random noise. As a note,
perceptual compression has also proved useful for improv-
ing models’ robustness against adversarial example-signals
that are intentionally made close to natural multimedia sig-
nals but misclassified by models [3].

In this article, we present a physical model that describes
the interaction of sensor data with machine learning along
with empirical evidence to verify the theoretical hypotheses.
We show how, using the methodology employed in this pa-
per, it is possible to estimate the amount of noise versus the
amount of content in sensor data by deriving the expected
shape of the measurement results in Figure 2.

2 Physical Model

In thermodynamics, the Helmholtz free energy is a ther-
modynamic potential that measures the “useful” work ob-
tainable from a closed thermodynamic system at a constant
temperature and volume. The Helmholtz free energy is de-
fined as

A ≡ U − TS, (1)

where A is the Helmholtz free energy, U is the internal en-
ergy of the system, T is the absolute temperature of the sur-
roundings in Kelvin, and S is the Boltzmann entropy of the
system. The Boltzmann entropy is given as S = −k logP
where k is a constant and P is the probability of observing a
micro state. This assumes each state is equiprobable. While
unproven, since it’s original publication in 1882 [18], it has
been found many times that this formula is generally useful
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Figure 1: Our interpretation of the Helmholtz free energy
equation A ≡ U − TS applied to camera sensors. Potential
energy of the battery (U ) is converted into kinetic energy A
(electron flow) in response to light hitting the photo sensor.
The free energy A is therefore the maximum electron flow
observable in the circuit controlled by the photo sensor in
response to the energy loss due to the collision of a sunbeam
with a reflecting object. Assuming a constant sampling rate,
the measured signal strength Ractual corresponds to A di-
vided by the sampling period length. Rmax corresponds to
U in the same way. We reinterpret the energy loss TS in
the same time period as NH (read: noise times information
content).

to describe the influence of an externality on a thermody-
namically closed system (a system that exchanges energy
but not matter with its surroundings). Most importantly,
the Helmholtz formula is often used to define fundamen-
tal equations of physical state from which key variables are
interpreted as probability distributions. Inspired by this no-
tion, we reinterpret the formula for the purpose of sensor
measurements as they frequently occur in the field of Mul-
timedia Computing.

We apply the formula as illustrated in Figure 1. Potential
energy of the battery (U ) is converted into kinetic energy A
(electron flow) in response to light hitting the photo sensor.
The solar energy, however, is reduced by hitting objects it
reflects from, changing both frequency (chrominance) and
amplitude (luminance) of the light wave. While modern
cameras have 3 channels, this is three different photo sen-
sors, to distinguish the different energy losses conforming
to human vision, for simplicity we only assume one channel
here. The free energy A is therefore the maximum electron
flow observable in the circuit controlled by the photo sen-
sor. A pixel is usually treated as a signal which is, phys-
ically speaking, a power while energy is power multiplied
by time. Treating measurements as signals is convenient
for computation but in reality, any sensor requires activation
energy, which is, a signal through time. To resolve this im-
preciseness, we assume that the measurement interval (of-
ten referred to as frame rate, capture time, or sampling rate)
is constant. This is usually true for multimedia capturing
devices such as photo and video cameras, or digital micro-
phones. The assumption is convenient as it makes the signal

treatable as an energy divided by a constant. We assume this
constant to be 1. We denote the measured pixel as Ractual

and it therefore corresponds to A divided by 1. The refer-
ence white Rmax corresponds to U in the same way and is
the maximum value that can be measured. If the photo ele-
ment was directly pointed at the sun, then Ractual = Rmax.
We denote the energy loss TS as NH . This energy loss is
the result of the photo sensor being influenced by an ex-
ternality: As the sunlight is reflected from the surface of a
certain chemical composition, it loses energy. According
to Helmholtz, this loss is the comprised of two factors: 1)
An entropy term S (unknown a-priori to the photo sensor
circuit), which we call H and 2) temperature T , which we
generalize as the noise constant N . N is an unknown scalar
that characterizes the noise effects in the measurement pro-
cess (for example, for image sensors this includes every-
thing from camera lens aberration to dead pixels but also
actual thermodynamic variation), and H is the information
captured by the sensing process. We replace S, which as-
sumes equi-distribution of states, with H , the Hartley en-
tropy [13].

This is, we re-purpose the Helmholtz formula as follows:

Ractual = Rmax −NH, (2)

where Ractual is the information content of the actual sen-
sor reading (for example, 4 bits), Rmax is the information
content of the maximum sensor reading (for example 8 bits),
NH is the signal loss characterized by the expected mini-
mum description length of that loss H times a noise scalar
N . Note that since we don’t use Boltzmann’s constant k
anymore, we cannot measure N in Kelvin.

In the case of audio, Rmax captures the information con-
tent of the maximum signal strength that the microphone
can record to generate one sample. H is the information
contained of the sample in bits and N is noise. Similar
analogies can be made for other sensors.

3 Perceptual Compression

Most media distributed for typical multimedia analysis
benchmark sets are compressible using JPEG or MPEG.
The degree of compression can usually be adjusted, allow-
ing one to control the trade off between storage size and
media quality. Compression fits our physical model as fol-
lows: The information content of a pixel value Ractual in
each Y, U, or V dimension is represented as described in
Equation 2. Since Rmax is constant (usually 8 bit), we dis-
regard Rmax as well as the sign before the term NH and
observe that the a pixel is composed of information content
measured as H multiplied by a noise factor N .

We can therefore obtain an estimate of the noise factor
via the following equation:

NH

Napprox
= Happrox, (3)



where Napprox is the approximated noise factor. Happrox

is then the approximated information content of the pixel
and can therefore be compressed using lossless compres-
sion. The working hypothesis for our article, and as indi-
cated by related work, is that data quantized to information
content Happrox can be modelled better using any encoder,
including a neural network (we assume the neural network
as encoder model suggested by [9]).

3.1 Measuring Napprox

In order to get an estimate of the content portion relevant
for classification, we train a classifier with identical input
images, except different quality levels of JPEG. We then
expect the typical training error of the classification to drop
steeply at the point where the quantization gets too high.
That is, at the point where the chosen JPEG quality level q
implies Napprox > N . Choosing an optimal q, however,
should lead to overall less training time because the num-
ber of parameters for the machine learner can be reduced
as most of the complexity induced by noise does not have
to be modeled. Since we do not know the underlying dis-
tribution that underlies the measures H and Happrox and
we also do not know how the distribution that the encoded
weights have at a given stopping point of training, we are
forced to assume the worst case, this is H and Happrox be-
ing uniformly distributed. This is, we reduce the complexity
of the sensor signal uniformly, erasing both noise and con-
tent at the same time. This makes the expected accuracy
proportional to our estimation of the information content
NH = − log2 P , where P is the probability of a concrete
sensor reading (e.g., P = 1

28 for 8 bit sensors). As a con-
sequence, the probability of modeling a sensor reading cor-
rectly for a large amount of samples (law of large numbers)
equals the average accuracy. This allows us to draw the
curve in Figure 2. It is generated as Accuracy = c ∗ log(q)
where c is a scaling constant and q is quality in percent.
log2(q) is of course proportional to the upper bound on
the information content of a compressed image (see also:
Fano’s inequality [2]). The point where the curve increases
drastically would be Napprox. If Napprox > N , the quanti-
zation will, intuitively speaking, “cut into the content” and
destroy information contained in H . Note that this upper-
limit argument is still valid for noise from perceptual com-
pression that is not independent random noise or images
whose pixel values are not uniformly distributed. Depen-
dent noise and patterns in the image will only give us better
results as machine learning can exploit the patterns created
by the dependency on noise or by recognizing patterns. In
other words, the curve should become less smooth and the
point Napprox more clearly visible.

Acoustic perceptual compression works conceptually
similar to visual compression [6]. However, the ear
is in general more sensitive to noise distortion than the
eye. Therefore, a more accurate version of the DCT, the

Accuracy

Quality

Napprox

Figure 2: Hypothesized accuracy/quality curve as per the
model derived from the Helmholtz Free Energy equation 2.
The Y-axis shows a hypothesized accuracy and the X-axis
shows a decreasing quantization factor. The sharp drop
should occur at the point where the quantization approxi-
mates the noise most exactly. Note: The theory only pre-
dicts the upper-limit slope and the axis scaling is arbitrarily
chosen.

mDCT [8], is usually applied and the quantization matrices
are not linear but tuned to the human auditory system using
empirical measurements. That is, our theory remains un-
changed for acoustic signals but we expect our hypothesized
curve to be less accurate due to the non-linear quantization
(compare also Figure 5a).

4 Experimental Results

Our experiments had two goals. First, we want to con-
firm the shape of the curve predicted in Figure 2 and, as
a result, being able to confirm the possibility of measur-
ing Napprox. Second, we wanted to see if the knowledge
of Napprox contributes to a reduction of complexity of ma-
chine learning models. Note that, due to space constraints,
this article only presents a subset of all our experiments.
Therefore, as outlined in Section 5, the full set of experi-
ments is available online for reproducibility.

4.1 Image Classification Accuracy

For our image experiments, we separately reproduced
the theoretic results on four different image datasets,
namely CIFAR-10 [7], ImageNet [12], Places [19] and
COWC [10]. We apply different levels of JPEG compres-
sion to correlate the compression ratio with the classifica-
tion accuracy for each of the respective tasks. The results
are demonstrated in Figure 3.

4.2 Image Classification Complexity

Our experiments were designed to reduce the complex-
ity of networks while maintaining high performance. For
CIFAR-10, we explored six model architectures (A to F)
with different number of parameters (0.7M to 1.69M), cov-
ering several classic architectures of deep neural networks.
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Figure 3: Classification accuracy as a function of the JPEG compression quality q on (a) CIFAR-10 averaged using 6 different
classification architectures, b) on ImageNet using two CaffeNet and ResCeption, and (c) on Places and COWC using AlexNet.
The dots indicate actual results and the line is the curve as theorized.

The models are able to handle data of different complexity
based on the number of parameters used. They are:

• A: Architecture similar to All Convolutional Net [15],
where no fully connected layers are employed, but re-
place first three convolutional layers with VGG [14]
setting (channels 32, 64, 128). Size of parameters:
0.70M. (Blue dots in Figure 3a)

• B: Multiple fully connected layers following convolu-
tional layers are added based on A. Size of parameters:
1.08M

• C: Extra convolutional group (three 128 channel con-
volutional layers) is extended based on A. Size of pa-
rameters: 1.14M

• D: Both convolutional group and multiple fully con-
nected layers are added based on A. Size of parameters
1.28M

• E: Multiple fully connected layers with larger units are
adopted compared to B. Size of parameters: 1.62M

• F: More fully connected layers are extended compared
to E. Size of parameters: 1.69M (Green dots in Fig-
ure 3a)

Figure 4 visualizes different effects of parameter reduc-
tion methods, and based on the comparison, we used A to
demonstrate the compression effects under different ratios.
A similar trend can be observed for different parameter re-
duction methods.

All image results, small scale and large scale, are consis-
tent with Figure 2 and suggest that a significant cut down
on bits only has marginal impact on accuracy until a certain
threshold is reached. Since our approach is not image spe-
cific and therefore suggests cross-modal validity, we also
performed experiments on audio data. These are outlined
as follows.
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Figure 4: Left: Classification accuracy on CIFAR-10 as
a function of number of parameters for different levels of
JPEG compression (q value).

4.3 Audio Classification

For the audio experiments, we leveraged the Fraunhofer
IDMT-SMT-Audio-Effects dataset [16], which is a large
database for automatic detection of audio effects in record-
ings of electric guitar and bass and related signal process-
ing 1. This dataset contains 55044 uncompressed WAV files
(44.1 kHz, 16 bit, mono) with single recorded notes. In our
experiments, we explored a subset of 12 classes of differ-
ent audio effects and 20592 monophonic guitar samples in
total, with 75% for training and 25% for testing.

We perform compression on the input WAV files us-
ing the open-source MPEG-Audio Layer 3 implementation
LAME 2. In contrast to JPEG, LAME is not parameterized
using a quality level q but using a target bitrate. We then
generated mel-spectrograms of all audio files and the num-
ber of mel coefficients used in spectrograms is set to 96.

1www.idmt.fraunhofer.de/en/business units/m2d/smt/audio effects.html
2lame.sourceforge.net



Similar to the image experiments, we explored six model
architectures (A to F) with different numbers of parame-
ters (0.10M to 3.72M) for the audio classification task. Our
performance is comparable to the baseline reported in [16]
where a Support Vector Machine is trained. We defined two
loops: 1) convolutional layer loop (Conv-loop) that is com-
posed of a convolutional layer, an ELU [1] nonlinear activa-
tion layer, a max-pooling layer and a dropout layer; 2) fully
connected layer loop (FC-loop) that is composed of a fully
connected layer with 128 units and a dropout regularization
layer. For better performance, the dropout rates were set to
0.5 and 0.6 in two loops, respectively.

• A: Conv-loop ×3 and no FC-loop. Size of parameters:
0.10M (Blue dots in Figure 5a)

• B: Conv-loop ×4 and FC-loop (128). Size of parame-
ters: 0.17M

• C: Conv-loop ×3 and FC-loop (64-128). Size of pa-
rameters: 0.43M (Green dots in Figure 5a)

• D: Conv-loop ×3 and FC-loop (128). Size of parame-
ters: 0.81M

• E: Conv-loop ×3 and FC-loop (128-128). Size of pa-
rameters: 0.82M

• F: Conv-loop ×2 and FC-loop (128). Size of parame-
ters: 3.72M

5 Conclusion and Future Work

As can be observed from Figures 3a and 5a, both image
and audio experiments follow the trend predicted in Fig-
ure 2. That is:

1. The classification accuracy on real data under differ-
ent compression ratios exactly follows the trend of the
hypothesized accuracy curve derived from Equation 2.
As a consequence, the empirically measured Napprox

matches the theoretically calculated Napprox well for
both image and audio datasets.

2. As predicted, if the quantization level is smaller than
Napprox, perceptual compression does not seem to af-
fect the classification accuracy significantly. For im-
ages, the sweet spot seems to be at q = 20 which is the
equivalent of 1.4 bits per pixel. Audio shows similar
behavior, however, it seems harder to find a concrete
sweet spot.

3. Due to the reduction of complexity of the input, neural
networks are able to achieve similar classification ac-
curacy using fewer parameters. A smaller number of
parameters implies a higher probability to have train-
ing converge to a better accuracy faster. As a conse-
quence, our models with a small number of parameters

(blue dots) can even achieve a higher classification ac-
curacy than those with a larger number of parameters
(green dots).

In conclusion, our empirical results indicate that a quan-
tification and subsequent quantization of the noise content
as outlined in this article is useful to reduce the complex-
ity of machine learning: By controlling the level of percep-
tual compression, we are able to both achieve high learning
utility and reduce training complexity. On the other hand,
passing pixels unfiltered into a deep learning mechanism
therefore means that, before the machine learner can rec-
ognize patterns of pixels, one needs to reduce most of the
noise before one can get to the significant information per
pixel.

In general, it is easy to take pixels or audio samples for
granted and not ask where they come from. However, there
is a chain of production that creates the content we are us-
ing to investigate machine learning algorithms on multime-
dia data. In order to understand that chain we sometimes
need to go back to the physical fundamentals. Here, apply-
ing what is known from physics to our standard methods in
machine learning and multimedia computing allowed us to
measure the signal to noise ratio of the sensor reading which
we used to optimize our machine learning process.

Future work in this fundamental area could use measure-
ment tools like ours to explore cross media boundaries. For
example, to quantify the average number of bits needed
to distinguish a dog from a cat in images vs in audio vs
text. We also speculate that measuring the noise content of
images can help explain and identify adversarial examples
such as described in [5]. Overall, we hope that our paper
contributes to the fundamentals of our field and encourages
other researchers to favor measurements over tuning hyper
parameters.

All our experiments are available for reproduction at:
https://github.com/wangjksjtu/Helmholtz-DL
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Figure 5: Classification accuracy (a) on the audio classification task as a function of the MP3 compression ratio (relative
bitrate). The results of classifier setup A and C are blue and green dots, respectively. The shadow curves represent the
properly scaled version of the theoretical curve from Figure 2. (b) shows the classification accuracy at different bitrates under
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