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Tremendous Success in DL/ML

Explosive development (data and works)!
= 2D: ImageNet, COCO, etc.

= EfficentNet achieves 84.4% top-1 and 97.1% top-5 accuracy on ImageNet 8.4x
smaller and 6.1x faster).

= 3D: KITTI, Cityscapes, BDD100K, Oxford, etc.
= F-PointNet (Rank 1 -> 40 in one year)

= Self-Driving: Uber, Google, Tesla, etc.

= Robotics, NLP, Speech, SysML, Finance, Healthcare ...

Security, Privacy and Interpretability of ML/DL

are becoming increasingly important!




The Physical World Is Messy ...

= Taking self-driving as an example:

= Temporary unrecognized traffic signs

Extreme weather conditions

Obscured, broken, incomplete (even wrong) instructions

Unexpected emergency (e.g., collision, violation of traffic rules)

Malicious adversaries may exist!

= Safety is always the first!




However, DNNs Are not Robust ...

= Perils of Stationary Assumption
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= Noisy data: outliers, crowdsourcing, system error, subjectivity ...

= Adversaries: evasion attack, data poisoning, privacy leak ...



What should we do?

= More Accurate Sensors + More Robust Algorithms!

(Safety) (Security)

* What I did in last 1.5 years:
= Self-Driving:
= Policy learning: 2D + LiDAR (cheaper but still very expensive)

= Tackling with Noisy Data:

= Reinforcement Learning with Perturbed Reward

= Attack & Defend our ML/DL Systems:
= Arms Race in Adversarial Machine Learning (AML)

= More reliable, interpretable DL training scheme (Information Bottleneck,
IB)

= Min-Max Optimization in AML (across domains)



What should we do?

= More Accurate Sensors + More Robust Algorithms!

(Safety) (Security)

* What I did in last 1.5 years:
= Self-Driving:
= Policy learning: 2D + LiDAR (cheaper but still very expensive)



DBNet (A Large-scale Driving Behavior Dataset)

= End-to-end Learning for Self-Driving

((DZ NVIDIA.

* Pioneer to apply end-to-end learning
techniques to solve autonomous driving
problems.

* Learning from 8.5h driving videos.

Problems:

e Limited scale of data

Predict

—

wheel angle

* Lack of high-quality 3D LiDAR point

Datasets

Video/Image

Behaviors

clouds

Solution: DBl\\l E—r —>

KITTI
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Comma.ai
BDDV
DBNet (ours)
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[1] Bojarski et al. End to end learning for self-driving cars. 2016.




DBNet (A Large-scale Driving Behavior Dataset)

= Driving Behavior (2D + 3D)

First driving behavior dataset W 10*
that incorporates 2D and 3D.
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DBNet (Results)

prediction accuracy of steering angle and vehicle speed

DNN Architecture Metric DNN only DNN-LSTM
10 PM PN I0 PM PN

R angle 63.0% 67.1% 71.1%  77.9% 835% 81.6%
speed 701% 692% 66.1%  709% 713.8% 76.8%

Resnet-152 angle 65.3% 70.8% 68.6% 784% 84.2%  82.7%
speed 71.4% 72.6% 69.4% 71.9% 743% 78.3%

e s o o angle 705% 71.1% 732%  783% 83.7% 84.8%
s speed 68.5% 703% 693%  703% 764% 71.3%

IO: 1mages only

PM: images + feature maps (PCM)

PN: 1mages + PointNet

Results:

1. Depth information benefits policy learning a lot
2. PM and PN show good performance
3. Sequential information is critical



DBNet (Demo)

= Video + LiDAR Point Clouds => Angle + Speed
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What should we do?

= More Accurate Sensors + More Robust Algorithms!

(Safety) (Security)

* What I did in last 1.5 years:

= Tackling with Noisy Data:

= Reinforcement Learning with Perturbed Reward



Reinforcement Learning (RL)

= |labeled data
= direct feedback
= predict outcome

internal state “Nreward

X

environment

b

Supervised

=

Learning

learning rate a
inverse temperature 3
discount rate y

Unsupervised ;
P observation
= no labels data = decision process
= no feed back = reward system

= find hidden structure = learn series of actions



Breakthrough in Deep RL
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Motivation & RIL Weaknesses

= Reward Design * Robustness of Algorithms

s o

L
1 p—

- Tendency RL
—— Reverse Curriculum Generation RL
- Neither Tendency Reward nor History Phases

40000 60000 80000 100000
Trainning Iterations

RL in Noisy Environments !




Related Works

mmm Robust Reinforcement Learning

e Adversarial manipulations in RL policy

* Robust policy capable of withstanding perturbed
observations or transferring to unseen environments

« RL algorithms with uncertainty in models (states)

Learning from noisy data (supervised Learning)

» Define unbiased surrogate loss functions
» Recover the true loss using the knowledge of the noise

mam RL with a Corrupted Reward Channel (DeepMind, 2017)

* No Free Lunch Theorem: without any assumption about
what the reward corruption is, all agents can be essentially
lost




"Perturbed" Reward

“No Free Lunch” Theorem [Everitt et. al., 2017]:
Without any assumption about what the reward corruption is, all

agents can be essentially lost.

internal state “Nreward

l environment
O N R
> u [

learning rate a.
inverse temperature p
discount rate y

observation

true reward noisy reward

o [08 ©2)
02 03 \
r1 could be|corrupted into

r2 with a prpbability of 0.2
and so does r2.




Perturbed Reward in RL

- MDP with perturbed reward M = (S, A, R,C,P,~)

» Instead of observing r; € R at each time t directly, our RL agent
only observes a perturbed version of r,, denoting as 7, € R.

= The generation of  follows a certain function C:S X R - R

= Noise Rate

r: true reward 7: noisy reward 7. surrogate reward C: confusion matrix




Unbiased Estimator of True Reward

true reward surrogate reward
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Unbiased Estimator of True Reward

« Lemma 1. Let r be bounded. Then, if we define, [binary reward R = {r_, 7 }|

(l—e_)ry—ey-r_

2 l—eyr —e_
(S B SELT) = | e i
g Uiy {(1 6)1+—)e7_|_—e€_ "4 (T(St,at,8t+1)

we have for any r(st, @y, s+1). Enpo[F(st, a1, 501)] = (51, ar, 5041).

(F(5e, 0z, 8ee1) =74 )
—r

-)

Define R := [#(7 = Ry),#(7 = Ry), ..., #(# = Rar—1)], where #(7# = R,,,) denotes the value of the
surrogate reward when the observed reward is R;. Let R = [Ry; Ry;--- ; Ry;_1] be the bounded
reward matrix with M values. We have the following results:

« Lemma 2. Suppose Cyr s is invertible. With defining:

~ R=C 'R
we have for any 1(S¢, at, St+1), E'ﬂ?’ [T(Sta at St+1)] — P8 05 S L)

|multi-0utcome settingl

r: true reward 7: noisy reward 7. surrogate reward C: confusion matrix



Unbiased Estimator of True Reward

Algorithm 1 Reward Robust RL (sketch)

Input: M, a, 3, R(s,a)
Output: Q(s), 7(s,t)
Initialize value function ()(s, a) arbitrarily
while () is not converged do
Initialize state s € S
while s is not terminal do

7(s,a) = argmax #[7(s,a) = Ry,
R,eR

B Z(S,Q)GSX_A # [7:(87 CL) — Rj‘f(sa CL) — R’L]
- D (s,a)esxa #T(s,a) = Ri]

Choose a from s using policy derived from @)
Take action a, observe s” and noisy reward 7

(@ if collecting enough 7 for every S x A pair then
Get predicted true reward 7 using majority voting

Estimate confusion matrix C based on 7 and 7 (Egn. 4)

@ estimate
confusion matrices

@ Obtain surrogate reward 7 (R = (1
Update () using surrogate reward

(@) calculate
surrogate rewards

—-7n)-R+n-C'R)

535
return )(s) and 7(s)

r: true reward 7: noisy reward

7. surrogate reward C: confusion matrix




Theorems (Q-Learning)

1. Convergence

Theorem 1. Given a finite MDP, denoting as M = (S, A, R, P,~), the Q-learning algorithm with
surrogate rewards, given by the update rule,

Qi+1(st,at) = (1 — ar)Q(st,at) + o |7t + ’Yrgleaj}liQ(Stjtl, b)|, (3)

converges w.p.1 to the optimal Q-function as long as ), oy = oo and ), a? < oo.

2. Sample complexity

Theorem 2. (Upper Bound) Let v € [0, Ryax| be bounded reward, C be an invertible reward

confusion matrix with det(C) denoting its determinant. For an appropriate choice of m, the Phased

Q-Learning algorithm calls the generative model G(M) O (62 (1_"?)'2’4;1'3;(0)2 lo %) times in

Vi(8) —V*(3)| £ € e> 0, wp:

T epochs, and returns a policy such that for all state s € S,
>1—-6,0<d<1.

3. Variance

Theorem 3. Let r € [0, Ryax| be bounded reward and confusion matrix C is invertible. Then, the

. A . A 2 ¢
variance of surrogate reward 1 is bounded as follows: Var(r) < Var(r) < de?([C)Q -




Experiments (OpenAl Gym)

1. Classic Control Game

2. Atari-2600 Game

000000
SECTIR D1




Experiments (OpenAl Gym)

RL Algorithms
RL Algorithm Abbreviation
Q-Learning Q-Learn
Cross Entropy Method CEM
Deep
CartPole State-Action-Reward-State-A SARSA
ction
Deep Q Network DQN
Dueling Deep Q Network Dueling-DQN
Deep. Deterministic Policy DDPG
Pendulum Gradient
Continuous DQN NAF
Atari-2600 Proximal Policy Optimization PPO
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w = 0.1

reward per episode
1
N

w=03

Results (Pendulum)

" Continuous States & Rewards => Discretization
* Symmetric & Asymmetric noise
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w=0.7

w=0.9

Results (Pendulum)

" Continuous States & Rewards => Discretization
* Symmetric & Asymmetric noise
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Results (CartPole + Pendulum)

Table 5: Complete average scores of various RL algorithms on CartPole and Pendulum with noisy
rewards (") and surrogate rewards under known (7) or estimated (7°) confusion matrices.

Noise Rate | Reward | Q-Learn CEM SARSA DQN DDQN | DDPG NAF
r 170.0 98.1 165.2 187.2 187.8 -1.03 -4.48
w = 0.1 P 165.8 108.9 173.6  200.0 1814 -0.87 -0.89
I 181.9 99.3 171.5  200.0 185.6 -0.90 -1.13
F 134.9 28.8 144.4 173.4  168.6 -1.23 -4.52
w=0.3 P 149.3 85.9 152.4 175.3  198.7 -1.03 -1.15
. 161.1 81.8 159.6 186.7 200.0 -1.05 -1.36
r 56.6 19.2 12.6 172 11.8 -8.76 -7.35
w =07 P 177.6 87.1 151.4 185.8  195.2 -1.09 -2.26
r 1721 83.0 1744 189.3 191.3 - -




Results (Estimation of Confusion Matrices)
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game. The upper figures are the convergence curves of estimated error rates (from 0.1 to 0.9)




Results (Atari)

Table 6: Complete average scores of PPO on five selected Atari games with noisy rewards (7)) and
surrogate rewards under known (7) or estimated () noise rates.

Noise Rate Reward Lift (T) Mean Alien  Carnival Phoenix MsPacman Seaquest

r - 2048.3 1835.1 12393  4609.0 1709.1 849.2
w=0.1 P 70.4%7T 3489.6 1737.0 3966.8  7586.4 2547.3 1610.6
i 84.69%7T 3781.3 2844.1 5515.0  5668.8 2294.5 2333.9
F - 11153 538.2 919.9 2600.3 1109.6 408.7
w=0.3 P 119.8%7T 2451.7 1668.6 4220.1 4171.6 1470.3 727.8
I 80.8%T 2016.0 15429 40943  2589.1 1591.2 2624
F - 2987 4952 380.3 126.5 491.6 0.0
w=0.7 P 757.4%7T 2561.1 1805.9 40889 49704 1447.8 492.5
r 648.9%7T 22369 1618.0 4529.2  2792.1 1916.7 328.5
F - 619.8  557.8 6.3 1410.9 5354 588.8
=109 2 508.7%7T 3772.8 1958.7 5664.2  6758.7 2515.1 1707.2
r 450.2%7T 34099 1865.2 5515.0  5388.1 2492.6 1788.6




Results (Variance Reduction)

Theorem 3. Let r € [0, Ryax| be bounded reward and confusion matrix C is invertible. Then, the

: P4 8 , s 2 M? 2
variance of surrogate reward 1 is bounded as follows: Var(r) < Var(r) < ToH( O B .

a
)

(1 = L:'f:,a): *(’P=<A.»)

true reward surrogate reward
. 4R? :
Var(r) < Var(f) < =243 unbiased proxy but

larger variance!
e_ +er — 1

A

1. Linear Combination R,.,,, = 7R + (1 — n)R

2. Variance Reduction (unbiased noise)
 Why not VRT + our unbiased surrogate rewards?




Results (Variance Reduction)
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Summary (RL with Perturbed Reward)

= An unbiased reward estimator aided robust RL
framework (biased noise)

- Theoretical analysis of proposed method
= Proof of unbiasedness

= Convergence (Q-Learning)
- Sample Complexity (Phased Q-Learning)
= Variance of reward proxy

= Estimation of confusion matrices

= Simple but efficient
= Adaptive to continuous setting (rewards or states)

= Validations on OpenAl Gym (quantitative & qualitative)




Future direction & Limitedness

= Continuous states or rewards (involve more assumptions)

= State-dependent case

= We maintain confusion matrices for each state, which is costly

= Adversarial noise (not learnable ...)



What should we do?

= More Accurate Sensors + More Robust Algorithms!

(Safety) (Security)

* What I did in last 1.5 years:

= Attack & Defend our ML/DL Systems:
= Arms Race in Adversarial Machine Learning (AML)



What 1s Adv-ML (AML)?

= Unfortunately, ML/DL models are highly vulnerable to slight adversarial
perturbations in various applications!

= An arms race between adversarial attacks and defenses.

+ .007 x =
. T +
esign(VgJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure: A demonstration of adversarial example applied to GoogleNet using fast
gradient sign method (Goodfellow et al., 2014). § = sign (VxJ(0,x,y))

Goodfellow et al. “Explaining and harnessing adversarial examples.” ICLR 2015.
s



Challenges: Adversarial Examples are everywhere!

= Adversarial examples are easy and cheap to craft!
= FGSM, JSMA, DeepFool, C&W, BIM, PGD, ...
= 2D, 3D, RL, Speech, Text, ...

= Adversarial examples can be realistic!
= white-box, black-box (transferability) ...

= robust physical attack, real-world messy data

B classified as turtle

B classified as rifle || classified as other

Athalye, et al. “Synthesizing Robust Adversarial Examples.” ICML 2018.




Formulation - Adversarial Examples

Adversarial Examples

A e-bounded adversarial example x’of x for a neural network f fulfills:

(1) f(x") # o(x), where o(+) is the oracle;
(2) x'" is created by an attack algorithm A4 which maps x to x';

(3) [|lx —x"|| < €, where || - || is anorm on X and € > 0.

= Threat models

= white-box, black-box (adaptive or non-adaptive)

= gradient-based, score-based, decision-based ...
= Intriguing properties
= transferability across domains (e.g., datasets, models, transformations)

= universality (e.g., images, models)

Wang et al. “One Bit Matters: Understanding Adversarial Examples as the Abuse of Redundancy”. 2018



Threat Models

= Threat models
= white-box, black-box (adaptive, non-adaptive, strict)

= gradient-based, transfer-based, score-based, decision-based

-
less information
(difficulty’)
HiddenlLayers Output Layer
1

|

0.1

0l
— (Cat

' Decision-based -

1
1
1
1
1
:
|
«—— Score-based ————

White-box >

Chen et al. “HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.” 2019
s



Threat Models

= Threat models
= white-box, black-box (adaptive, non-adaptive, strict)
= gradient-based, transfer-based, score-based, decision-based

= untargeted & targeted
= untargeted — mislead the classifier to predict any labels other than the ground truth

= targeted — mislead the classifier to predict a target label for an image

Gradient-based Transfer-based Score-based Decision-based
Model M Training Data T Detailed Model Prediction Y Final Model Prediction Y,
(e.g. probabilities or logits)  (e.g. max class label)

>
>

less information

Untargeted

Flip to any FGSM, DeepFool FGSM Transfer Local Search w

e this work
Targeted |L-BFGS-B, Houdini, JSMA, (Boundary Attack)
Flip to Carlini & Wagner, Iterative ~ Ensemble Transfer 700 ) ¢

target label Gradient Descent
\}

Wieland et al. “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models” ICLR 2018.




Fast Gradient Method (FGM)

Fast Gradient Sign Method (FGSM)

= Untargeted:

Xady = X + € - sign(Vxlys (X, y))
= Targeted:
Xady = X — € - 8ign(Vx s (x,T))

[terative FGM (BIM, PGD)

= Untargeted:
XH_1 — H?—L (ngv +a- Sign(vxﬁdvgfs (ngw y)))

adv

= Targeted:
t+1 H’H( Xadv — O Slgn(v 2 gfs( advaT)))

adv

Goodfellow et al. “Explaining and harnessing adversarial examples.” ICLR 2015.
Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks” ICLR 2018.




Carlin1 & Wagner (C&W)

Optimization problem:

minimize D(z,z + §) minimize ||d|, +c- f(x + 0)
such that C'(x +6) =1t such that = + 6 € [0, 1]"
x4+ 90 € [0,1]"

= Projected gradient descent 1
D = —(tanh(wz-) + 1) — iy
= Clip gradient descent 2
, —1 <tanh(w;) <1 z+46¢€l0,1]"
» Change of variables

1 1
= L2-attack:  minimize ||§(tanh(w) +1)—z||5+c: f(§(tanh(w) + 1)

= C&W loss: f(z") = max(max{Z(z'); : 1 £t} — Z(z')s, —K)

Carlini et al. “Towards Evaluating the Robustness of Neural Networks” IEEE S&P 2017
s



Z00 (score-based)

Objective function:
f(x) = max{log| F(x)]s, — maxlog|F(x)];, —x}
L+1p

exp([Z(x)]x)
Nics exp((Z(x)]:)

= Zeroth order optimization on the loss function

s ¥ ke {Lssaa K}

[FX)]k =

Algorithm 1 Stochastic Coordinate Descent

= Z00-Adam .
0f(x) f(x+hei)— f(x— he;) 1: while not con\.ferged do | |
9i = g oh 2. Randomly pick a coordinate i € {1,...,p}
l 3:  Compute an update 6* by approximately minimizing
= Z0OO-Newton .
argmin f(x + de;)
- sz(x) N f(x+ he;) —2f(x) + f(x — he;) 5
PToax2 2

i +  Update x; « x; + 6"
5: end while

Chen et al. “Z00: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training
Substitute Models”



Boundary Attack (BA & BA++)

Basic Intuition Single step Hyperparameters
o #1. random orthogonal step Adjusting step-size of #1
starting 1mage #2. step towards original image
e——— - _——<=———>
t steps of the algorithm ~50% of orthogonal perturbations
2 #1 should be within adversarial region
-—
; x
g i #2 Adjusting step-size of #2
5 %
= original image - -
classified correctly &
classified incorrectly
(adversarial) Success rate of total perturbation should
Input Dimension 2 be higher then threshold (e.g. 25%).
= | - | L ™ F ™
X Xt Xt X
t & ® o't
\ Xth1
Xt Xt Xt Xt
X
+ o2 +.a + 22 +od
" B H = - N >

[1] Wieland Brendel, Jonas Rauber, Matthias Bethge. “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine
Learning Models” ICLR 2018.
[2] Jianbo Chen, Michael I. Jordan, Martin J. Wainwright. “HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.” arXiv 1904.02144.




Boundary Attack (BA & BA++)

= Only binary feedback on the boundary

0 calls 613 calls 2449 calls 4039 calls 5455 calls 13301 calls 15981 calls
B |
v s

18184 calls

[1] Wieland Brendel, Jonas Rauber, Matthias Bethge. “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine

Learning Models” ICLR 2018.

[2] Jianbo Chen, Michael I. Jordan, Martin J. Wainwright. “HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.” arXiv 1904.02144.
B



Robust Physical Attacks

Point cloud

AV perception

Adversarial point cloud AV perception

l] Not
—s
| § detected

[1] Eykholt et al. “Physical Adversarial Examples for Object Detectors” USENIX WOOT 2018.
[2] Cao et al. “Adversarial Objects Against LiDAR-Based Autonomous Driving Systems” 2019




Defenses

= Adversarial Training (AT) (SOTA, min-max opt)

= augment perturbed data (inserting adv. examples while training)

= modified objective function:
J(0.x,y) = aJ(0.x,y) + (1 — )] (6, x + esign(V,J (6, x, 1)), 1)
= Issue:
= low transferability (multiple norms, attack-sensitive)
mm) going to address!

= efficiency of ensemble adversarial training

= the training cost is huge!

= Gradient Masking
= gradient-based attacks (non-differentiable models)

= Issue:
= obfuscated gradients give a false sense of security (ICML best paper, 2018)
= gradient estimation works very well in breaking this kind of defense (EOT)

[1] Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks” ICLR 2018.
[2] Athalye et al. “Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples” ICML 2018.



Defenses

= Defensive Distillation

= training two neural networks aicd
: L L Fi(X) =
= second is the target network with higher T (X Z|Y| ezl-<TX>
i=1

= label smoothing
= Issue:

= expensive (two step training scheme)

- does not work for stronger attack such as PGD, C&W

= Feature Squeezing
= reduce the color depth (input complexity)
- use of a smoothing filter over the images

= Issue:
- only applicable to small scale datasets such as MNIST, CIFAR-10
= do harm to the benign accuracy (detection may be a better choice)

[1] Papernot et al. “Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks” IEEE S&P 2016.
[2] Xu et al. “Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks” NDSS 2018.



What should we do?

= More Accurate Sensors + More Robust Algorithms!

(Safety) (Security)

* What I did in last 1.5 years:

= Attack & Defend our ML/DL Systems:

= More reliable, interpretable DL training scheme (Information
Bottleneck, IB)



A Necessary Condition for the Existence of Adv. Examples

Minimal Sufficient Statistic (MSS)

Suppose that X is a sample from a distribution indexed by ground truth Y. A
function T (X) is said to be a minimal sufficient statistics (MSS) if

T(X) € argmin I(X; S(X))
S
s.t. 1(Y;S(X)) = max I(Y; T' (X))

1.e., 1t 1s a statistic that has smallest MI with X while having largest MI with Y./

Theorem 1 (MSS i1s necessary for Adv.)

Suppose that Assumption 1 holds and there exist adversarial examples for the
neural network f () = g(T()) Then, T (X) is not a MSS.



Feature Redundancy

= Does our latent representations are sufficient?

Dataset Examples H(MLE) HJVHW) Original Size  Compressed Size
Benign 1.741 1.887 988.89 B 431.40 B
MNIST FGSM (2015) 2.488 2.601 1690.36 B 503.54 B
DeepFool (2015) 4.844 5.088 1654.99 B 510.41 B
CW (L2) (2017a) 4.094 4.301 1159.01 B 437.27 B
Benign 9.595 7.104 1845.98 B 741.36 B
CIFAR-10 FGSM (2015) 9.937 7.710 27171.01LB 872.40 B
DeepFool (2015) 9.675 7.147 1880.41 B 743.02 B
CW (L2) (2017a) 9.621 TLi13 1850.54 B 741.56 B
Dataset Examples Mean Bits H (BW) H ((bW) Compressed Size
Benign 4.556 0.569  0.99775 2.235B
IMDB FGSM (2015) 4.671 0.584 0.99926 3.027B
FGVM (2015) 4.701 0.588 0.99944 3481 B
DeepFool (2015) 4.632 0.580 0.99953 3.156 B
Benign 4.946 0.618 0.99457 1.934 B
s FGSM (2015) 5.032 0.629 0.99712 3.181 B
FGVM (2015) 5.035 0.629 0.99754 3.237B
DeepFool (2015) 5.202 0.650 0.99545 3301 B




Feature Redundancy

= Adv. examples are more redundant!

= larger model capacity to memorize

MNIST (Capacity Estimation of Non-Linear Models) MNIST (Capacity Estimation of Linear Models)
—=&— benign examples 4000 1
30000 —+— adversarial examples (FGSM) — \\\
@ — adversarial examples (DeepFool) -
E) —e— adversarial examples (CWL2) E 3000
£ 25000 £
© © 2500 A
= - m—:
u— 4= 2000 1
© 20000 e
38 3 1500+
:E, ;E; —&— benign examples
< 15000 Z 10007 .~ adversarial examples (FGSM)
500 H adversarial examples (DeepFool)
—e— adversarial examples (CWL2)
10000 T T . : - 01— : - : . . : .
0.06 0.08 0.10 0.12 0.14 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73
Epsilon Epsilon
MNIST (train) MNIST (test) CIFAR-10 (train) CIFAR-10 (test)
1.00 ) 0.98
g ;:;%'E'
a {2? 0.96 1
3 0.954
® 0.94 1
]
9 0.92 1
@ 0.90
S 0.90
5 :
S 0.851
= 0.88 1
©
O 0.86 1
“0.80
y y 0.84 ; - " y - ; y
0 20 40 0 20 40 0 20 40 0 20 40
Epoch Epoch Epoch Epoch

—=— Benign —+— FGSM —=— DeepFool —eo— CWL2




AT for Reducing Feature Redundancy

Complexity Estimation (MNIST Complexity Estimation (MNIST i i i
1.000 P y ( )5.10 1.00 P y ( )5.10 0.995CompleX|ty ESHmEnan (MNIST)S.ZO
5 .-_-f_-_.g{dv accuracy - Eygate adv accuracy o -—+- adv accuracy
©'0.9951 -=- entrepy (JYHW) 4.82 £ 0.991 =< _entropy (JVHW) 4.82 @ 0.9941 -=- _entropy (JVHW) #1490
‘5 --x- entropy (MEE)\-_____.____* é ‘5 -k 'ém:qpy_(l\ilj}"'\\______. é S ",‘/", eh'ﬁCQP}’_(MLE) /-‘~A': 2
9 0.990 1 +——14.538 Y 0.98 =+14532 § 09921« e 14 60 £
< el E < R e < c
c S v c vl v c i o
G 0.985 1 e & 425¢ & 0.971 +4.25 ¢ S 0.9901 g 4.30 g
® s Sy T B . T ® e ©
& 0.980 1+ ey 1397E 2096 et 1397 E & 0.989 A +——=a14.00E
o «- w » n » ¥t " ]
© | “ 8005 368 0988 370"
B 0.975 3.68 G o & sha :
0.970 ; " T 3.40 0.94 T T 3.40 0.986 J y 3.40
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Adversarial training ratio (FGSM) Adversarial training ratio (DeepFool) Adversarial training ratio CW(L;)
Complexity Estimation (CIFAR Complexity Estimation (CIFAR Complexity Estimation (CIFAR
0.60 P y ( ) 2.00 0.82 P y ( )4.10 0.85 P y ( )4.30
- -—+- adv accuracy
2 0.55- «11.77  To.78{"w ~" 1390  T0.821 -==%entropy (VHW) 4.05
Rl la— g 1177 §0. > 90 8o “entropy #14.05
5 i 5 e i & 3 3 y g 3 -+~ entropy (MLE) g
v J NN —_— o O i ASEEE SR Al - o A = S o
£ 050 e 1535 §075 e - o 3'70*5 £ 080 e 3.80§
. SO [} o Sl [} 'S N b
50451 X N 1309 6 071K 350y o 0.771 P A —355g
‘(B’ /” s ::\"_’_’_’__ R\ *fE E // ™ R s a4 ' JS ‘(B’ /'v‘ N B \\\ ©
£ 0.401 U 1107E o671/ e 1330 & 0.751 ST 1330 £
» -—+- adv accuracy-; ] vz -—+- adv accuracy h @B A ™ 0
0 wl v P wl ("2} e & w
0 0.351 -—=- entropy (JVHW; +0.83 5 0.64 1 -=- entropy (JVHW) 310 -U‘E 0.721 *»13.05
& --«- entropy (MLE) = --«- entropy (MLE) "
0.30 " ' 0.60 0.60 2.90 0.70 ; Y g 2.80
0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
Adversarial training ratio (FGSM) Adversarial training ratio (DeepFool) Adversarial training ratio CW(L;)

(a) FGSM (b) DeepFool (c) CW(L>2)



Information Bottleneck

Theorem 1 (MSS is necessary for Adv.)

Suppose that Assumption 1 holds and there exist adversarial examples for the
neural network f(-) = g(T(-)). Then, T(X) is not a MSS.

4

» Information Bottleneck (IB): max [(Y;T) — BI(X;T)
0

Minimize the I(X;T) . MNIST: FGSM (¢=0.35)

N
o

- T —e— acc (benign) -~
—#— acc (adv)

c

. o o )

« The gap between benlgn tralplng 508" P =

accuracy and adversarial testing 5 . IX: T') S

. o V.0~ " O

accuracy decreaseswith I(X; T) % 10°=

.. 0.4~ ©

= sufficiency 0 .5 3

o —— 5

= minimality 0.2- 0 =
—4 -2 0 2

Alemi et al. “Deep Variational Information Bottleneck” ICLR 2017.
s



Adversarial Robustness Bound

Theorem 2 (Oblivious Vulnerability)

Suppose that p(t|x) is a L-lipschitz function of x for any given t. Then
15 T) I T)| < [T U Tabb(Le) + max{ G/ III(X T))? +Cal T2 <X;T>>%

CsVITal(I(X';T") % + Ca| Tal 3 (I(X; T')) 4}
where Cy, C,, C5 and C, are some constants dependmg only on p(x) and the

attack algorithm 1s the bound on the magnitude of the perturbation exerted by
the attack algorithm.

* I(Y;T) represents the utility of 7" in predicting Y
- I(Y:T)=H(Y)-H(Y|T) => accuracy of benign data
- I(Y;T’) => accuracy of adversarial data
= oblivious vulnerability is controlled by I(X;T) and I(X';T")
- IB explicitly minimizes [(X;T)
= IB + Adversarial Training (better defense)
= Lipschitz constant L and perturbation magnitude e
= smoother encoder & smaller perturbation



Adversarial Robustness Bound

Theorem 2 (Oblivious Vulnerability)

I(Y;T) — I(Y;T")| < |T5 U Talt(Le) + max{C /| T5| (I( XT>2+02|71.| (I(X;T))
CsV|Tal(I(X';T'))2 + Co| Ta | 3(I(X";T")) %}

[ Ll

MNIST: FGSM (g€ = 0.2) Table 1: Comparison of adversarial robustness and
- I(X";T") between vanilla IB and IB combined
4 . . . .
= 0.8 with adversarial training. Acc,qy denotes the test
'rfc ' accuracy on adversarial examples.
Q
£ 06 Setting (¢ = 0.3) FGSM BIM PGD
= 0.
5= 8 — 1o-2 IB 11.41 2124 1794
o —— B=0.0001 RUE=E IB +adv. | 1046 1396 13.73
204 — B=0001 I(X5T) | 4_r2| 1B 1331 29.64 29.99
= o p=0e IB+adv. | 13.14 1995 19.68
o] _ —{6
O 0.2 £ ;g IB 3091 96.59 75.78
g = le IB +adv. | 25.59 50.55 50.68
0 50 100 150 200 - YR ra—
. o B P, J. JL 04.20
I(X;T) f=1le IB+adv. | 92.12 77.04 77.93
Asvaie | mmoon IB 80.91 63.09 63.20
* Why IB works ? B=5"" | g yadv. | 91.86 7635 77.22
; IB 73.96  59.59 54.94
R — 1,—3
* Why IB + AT works better ? B=1¢"" | 1By adv. | 90.24 7646 7645




Adversarial Robustness Bound

Theorem 3 (Estimation of Lipschitz Constant)

Lipschitz constant of a stochastic encoder can be controlled by its mean and
variance networks

=

(Y3 T) — I(Y;T")| < [To U Talt(Le) + max{C1/|To|(I(X; 1)) % + Cao| To| 5 (I(X;T))
Csv/|Tal(I(X';T")) % + Ca|Ta| 2 (I(X'; T")) 3 }

MNIST: FGSM (e =0.2) MNIST: FGSM (¢ =0.2)
> > A
= g
o 0.8 o 0.8 =i
© ©
z :
| &
3 0.6 = 0.6
> >
2 —— B =0.0001 ] — B=0.0001
3 0.4 B 3 0.4 -
= —— B=0.001 S —— =0.001
I — S — B=0.01
'8 0.2 B 0.01 o) 0.2 B
0 50 100 150 200 0 50 100
I(X;T) Lipschitz Constant (x103°)

= Why controlling the Lipschitz constant works?

Finlay et al. “Improved robustness to adversarial examples using Lipschitz regularization of the loss”. 2018.
s



IB + AT: better transferability & robustness

Transferability (FGSM € = 0.3, 8 = 0.001) attack-sensitive

= MNIST
St Benign FGSM DeepFool CW (L») BIM PGD
- e=01 &=08 e=05 | m=I10° g=01 |e=02 e=0.2
IB 98.64 85.88 62.94 40.63 34.53 53.30 58.41 51.79
CE 98.63 63.39 1.38 1.04 1.79 18.33 2.18 2.12
IB +adv. | 98.53 92.13 90.43 55.27 43.08 49.69 58.97 56.65
CE +adv. | 97.94 78.95 89.73 50.33 2.54 16.81 21.82 21.36
= CIFAR-10
Serting Benign FGSM DeepFool CW (L2) BIM PGD
- e=01 e=08 =05 | m=10? ¢=01 |[e=02 =02
IB 67.06 34.92 20.15 14.73 23.47 21.37 19.06 20.04
CE 65.39 17.33 12.23 10.35 18.5 11.63 18.67 18.19
IB +adv. | 63.14 44.48 58.64 56.28 26.64 13.20 21.52 22.86
CE +adv. | 61.67 294 57.04 48.44 21.79 1.1.65 19.69 19.78




Summary (Adv. information theory)

= Feature redundancy (necessary condition)

= How to reduce feature redundancy
= Information Bottleneck (IB) max I(Y;T)—pBI(X;T)
= Adversarial training as an implicit regularizer

= other possible dimension reduction techniques ...

= [B + Adversarial Training

= better adversarial robustness

= stronger transferability (defense)

= Theoretical Analysis

= Oblivious vulnerability

= Transferability for stochastic networks




What should we do?

= More Accurate Sensors + More Robust Algorithms!

(Safety) (Security)

* What I did in last 1.5 years:

= Attack & Defend our ML/DL Systems:

= Min-Max Optimization in AML (across domains)



Adversarial Training (min-max)
= Natural Training: mein ]E(m,y)ND Lz, y,0)]
= Adversarial Training (AT):

minp(6), where  p(0) = E(zy)~p [rgleag L0,z + 6,y)

5 80
g 4 60
> 3 40
8 2 20
il
i 0
0O 25 50 75 100 O 25 50 75 100 0O 25 50 75 100 0 25 50 75 100
Iterations Iterations Iterations Iterations
(a) MNIST (b) MNIST (c) CIFARI10 (d) CIFARI10
Natural training  Adversarial training  Natural training Adversarial training

= Issue (AT):
= Jow transferability (multiple norms, attack-sensitive)

= Jow efficiency in ensemble adversarial training



Revisiting the Power of Min-Max Opt.

= General idea: Robust learning over multiple domains

* Formulation: Consider K loss functions {F; (v)} (each of which is defined on a
learning domain), the problem of robust learning over K domains can be formulated:

minimize maximize ) ._; w;F;(Vv)
vey weP -

where v and w are optimization variables, V is a constraint set, and P denotes the
probability simplex P = {w [1Tw = 1, w; € [0,1], Vi}.

e Worst-case: equivalentto  minimize maximize F;(Vv)
vev 1€[K]

where [K] denotes the integer set {1, 2,..., K}.
* one-hot coding reduces the generalizability to other domains
* induces instability in training

* Regularized problem formulation:
minimize maximize Zfil (v) — 2w —1/K]||3

vey weP
domain weights




Robust Adversarial Attacks

¢ Ensemble attack over multiple models

- Consider K ML/DL models {M;}X , the goal is to find robust adversarial
examples that can fool all K models simultaneously

mlguen)?ze mavyélelr%lze Zi:l ’wz'f(‘S; X0, ZJO,Mz‘) - %”W - 1/K||%

= w encodes the difficulty level of attacking each model

= Why ensemble?

= Attacker: more transferable black-box adv. examples
= Defender: AT + Ensemble (more powerful defense)

= Existing Approach (equal-weight, 5% in CAAD 2018)

= Our solution:

= Focus on those models which are difficult to attacks!

= Guarantee the worst-case performance!



Robust Adversarial Attacks

= Universal perturbation over multiple examples

- Consider K natural examples {(x;,v;)}X, and a single model M, the goal is
to find the universal perturbation § so that all the corrupted K examples can

fool M
o 5 @ 3 5 K
minimize maximize S wif (0%, yi, M) — 2w —1/K||3

= w encodes the difficulty level of attacking each example
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Robust Adversarial Attacks

= Robust attack over data transformations

- Consider K categories of data transformation {p;} e.g., rotation, lightening,
and translation. The goal to find the adversarial attack that is robust to data
transformations

migirgize maxir%ize Zfil wiE¢~p, [f(t(x0 + 0); Y0, M)] — L||lw — 1/K]||3
= wE
= w encodes the difficulty level of attacking each type of transformed example

= Eiop, [f(t(x0+9);y0, M)] denotes the attack loss under the distribution of data
transformation p;

I classified as other

B classified as turtle [l classified as rifle




Alternating one-step PGD (APGD)

Algorithm 1 APGD to solve problem (4)

1: Input: given w(%) and & 0), - efficient as PGD
2. fort=1,2,...,T do
3: outer min.: fixing w = w(=1 call PGD  * Wworst-case guarantee
(13) to update o 2 = higher attack success rate
4: inner max.: fixing 6 = 6", update w®) (ASR)
via (14)
5. end for

Outer minimization Considering w = w(*~1 and F(8) := Y_iv, w)' ") F;(d) in (4), we per-
form one-step PGD to update 9 at iteration ¢,

5% = proj. (5“—1) - aVaF(é(t_l))) | (13)

T . . . K
Inner maximization By fixing § = §') and letting ¢(w) := ] w; Fy(6®) — Ilw—1/K|)3
in problem (4), we then perform one-step PGD (w.r.t. —)) to update w,

w(t) = prij(W(t_l) + BVwip(wl 1) )Z (b—pl),, (14)

"

b




Results — Attacking Model Ensembles

) 1.0 ‘,ﬁf:i B-amb 2t = T b SU I S S0 BT e O o 1:0 __:\:_z,xi___i__f:_f:
4(6' "],f’ -aé =l =il =l =
o 0.8 :,:/ o 0.
©0.6 L A: MLP
= P S - B: All-CNNs
; 0.4 o ; 0. - C: LeNet
© 0.2 S 0. - D: LeNetV2
E E = Success (all)
0.0 0.0
0 10 20 30 0 10 20 30
Number of iterations Number of iterations
(a) average case (b) min max
Box constraint |  Opt. | Accy Accp | Accc  Accp | ASRy;;  Lift (1)
0y (€ = 30) avg. 7.03 1.51 | 11.27 248 84.03 -
0= minmax | 3.65 2.36 | 4.99 3.11 91.97 9.45 %
01 (e = 20) avg. 20.79 0.15 | 2148 6.70 69.31 -
L Lokl minmax | 6.12  2.53 8.43 5.11 89.16 28.64%
05 (e = 3.0) avg. 6.88  0.03 | 26.28 14.50 | 69.12 -
B minmax | 1.51 0.89 3.50 2.06 95.31 37.89%
(o (e =0.2) avg. 1.05 0.07 | 41.10 35.03 | 48.17 -
g S minmax | 247  0.37 7.39 5.81 90.16 87.17%




Results — Attacking Model Ensembles

1.0
— A —C
08 — B — D
We = Wq > Wy = W
0.6
] $
0.4 i H -
f Acco > Accp > Accy > Accp
o R
oM i b e
1 E 5 7
Number of iterations
% —:— avg. %0.8
30.6
Lo
go,z s minmax
0.0 0.1 0.2 0.3 0.02 0.04 0.06 0.08 0.10
E &

(a) MNIST {A, B, C, D} (b) CIFAR-10 {A, B, C, D}




Results — Devising Universal Perturbations

Table 2: Comparison of average and minmax optimization on universal perturbation over multiple input
examples. The adversarial examples are generated by /.,-APGD with a = 6, 5 = 50 and v = 4.

Setting K=2 K=4 K=5 K =10
Dataset | Model | Opt. |ASR,,q ASRy, Lift (1)|ASR,,g ASRy, Lift (1) |ASR,,g ASRy, Lift (1) |ASR,,g ASR,, Lift (1)

MLP avg. 97.19 94.48 - 85.13 56.64 - 79.11 38.05 - 60.53 3.50 -
minmax| 98.15 96.96 2.62% | 83.76 72.32 27.68% | 72.28 53.70 41.13%| 30.10 6.70 91.43%
All-CNNs | @v9- 9176 95.52 5519 5192 80.02 31.25 65.79 2.10

MNIST minmax| 99.69 99.38 4.0;1% 90.11 75.64 45.(;9% 80.21 53.50 71.20% | 43.54 4.30 104.8%

avg. 94.78 89.96 - 62.12 28.72 - 51.84 19.15 - 30.29  4.30 -
minmax| 96.60 94.58 5.14% | 55.50 36.72 27.86% | 42.79 25.80 34.73% | 2248 7.20 67.44%

LeNetV?2 avg. 94.72  90.04 - 61.59 26.60 - 50.42 17.05 - 26.49 4.80 -
ek minmax| 9733 95.68 6.26% | 55.38 35.52 33.53% | 40.22 21.05 23.46%| 19.73 7.10 47.92%

avg. 91.09 83.08 - 85.66 54.72 - 82.76  40.20 - 71.22 4.50 -
minmax| 92.22 8598 3.49% | 87.63 65.80 20.25% | 85.02 55.74 38.66% | 65.64 11.80 162.2%

LeNetV?2 avg. 93.26 86.90 - 90.04 66.12 - 88.28 55.00 - 72.02 8.90 -
i minmax| 93.34 87.08 0.21% | 9191 71.64 835% | 91.21 63.55 15.55% | 82.85 25.10 182.0%

VGG16 avg. 90.76  82.56 - 89.36 63.92 - 88.74 55.20 - 85.86 22.40 -
minmax| 9240 85.92 4.07% | 90.04 70.40 10.14% | 88.97 63.30 14.67% | 79.07 30.80 37.50%

avg. 85.02 72.48 - 7520 32.68 - 71.82 19.60 - 59.01 040 -
minmax| 87.08 77.82 7.37% | 77.05 46.20 41.37% | 71.20 33.70 71.94% | 4546 2.40 600.0%

LeNet

All-CNNs

CIFAR-10

GoogLeNet




Results — Devising Universal Perturbations

Table A8: Interpretability of domain weight w for universal perturbation to multiple inputs on MNIST (Digit
0 to 4). Domain weight w for different images under £,-norm (p = 0, 1,2, c0) and two metrics measuring
the difficulty of attacking single image are recorded, where dist. (¢2) denotes the the minimum distortion of
successfully attacking images using C&W (£2) attack; emin (Yoo ) denotes the minimum perturbation magnitude
for /~-PGD attack.

a2l 010l 0jojololo1D]0

Yo 1.000 | 0.248 0.655 0.097

Weight ly O. 0. O. O. 1.000 | 0.07 0.922 0. O. O.
ly 0. 0. 0. 0. 1.000 | 0.441 0.248 0.156 0.155 0.
bz 0. 0. 0. 0. 1.000 | 0.479 0.208 0.145 0.168 0

dist.(C&W /¢5) | 1.839 1.954 1347 1.698 3.041 | 1.545 1982 2.178 2.349 1.050

Metric | = " 7y | 0113 0.167 0073 0121 0199 | 0.167 0.157 0.113 0.114 0.093
% 0.613 0.180 0.206 0223 0440 0.337

e ) 0. o. 0298 0.376 0.327 o. 0. 0.397 0433 0.169
g 0 0. 0. 0387 0367 0246 | 0. 0242 0310 0.195 0.253

6 0.087 0.142 0277 0247 0246 | 0. 0342 0.001 0.144 0514

Metric | dist(C&W £5)| 1.090 1182 1.327 1458 0943 | 0.113 1113 1357 1474 1.197
CC i (U) | 0075 0.068 0.091 0.105 0.096 | 0.015 0.090 0.076 0.095 0.106




Results — Robust Adv. over Data Transformations

= Deterministic avg. = EOT (SOTA)
Model | Opt. | Accors | Accyin | Acesiy AcCryi AcCgam | AcCersp I\ ASR,,ys ASRy, | Lift (1)

& avg. 10.80 2193 14.75 11.52 10.66 20.03 85.05 55.88 -
minmax | 12.14 18.05 13.61 1552 11.99 16.78 85.65 60.03 7.43%

B avg. 5.49 11.56 9.51 5.43 375 15.89 91.06 72.21 -
min max 6.22 8.61 9.74 6.35 6.42 11.99 91.78 77.43 7.23%

C avg. 7.66 21.88 15.50 8.15 7.87 15.36 87.26 56.51 -
min max 8.51 14.75 13.88 9.16 8.58 13.35 88.63 63.58 | 12.51%

D avg. 8.00 20.47 13.46 s 8.52 15.90 87.65 61.13 -
min max 9.19 13.18 12502 8.79 9.18 13.11 88.97 67.49 | 10.40%

= Stochastic

Model | Opt. | Accor; | Accpin | Accpry  AcCyri | AcCerop || ASRawg  ASRg, | Lift (1)

A avg. 11.55 21.60 13.64 12.30 22.37 83.71 55.97 -
minmax | 13.06 18.90 13.43 13.90 20.27 84.09 59.17 | 5.72%

B avg. 6.74 11.55 10.33 6.59 18.21 89.32 69.52 -
min max 8.19 1113 10.31 8.31 16.29 89.15 71.18 | 2.39%

C avg. 8.23 17.47 1393 8.54 18.83 86.60 58.85 -
min max 9.68 13.45 13.41 9.95 18.23 87.06 61.63 | 4.72%

D avg. 8.67 19.75 11.60 8.46 19.35 86.43 60.96 -
minmax | 10.43 16.41 12.14 10.15 17.64 86.65 63.64 | 4.40%




Generalized Adversarial Training (GAT)

= Vanilla Adversarial Training:

miniemize E(x,y)eD ma)fimize (8, 05%,9/)
’ 16]|oc <e

= transferability between attacks under multiple norms is low!

= Generalized Adversarial Training:

1

K
sum: Mminimize E p Maximize —Z tr(0,0;;X
0 ey Ki_lfr( 9 %,y)

max:  minimize Ey y)cp maximize F;(0)
2] ’ 1€[K]|

1 K
minimize K yyep maximize Zwif(é’,(si;x, Y)

0 weP,{6;,€X;} i1

= better overall robustness against multiple attacks

= faster convergence (min-max)




Alternating multi-step PGD (AMPGD)

Algorithm 2 AMPGD to solve problem (15)

1: Input: given 0(0>, W(O), 5(0) and K > (. = better overall robustness
2: fort=1,2,...,T do = good interpretability
3: given w1 and 6~V perform SGD to
update o) [4]
4: given o), perform R-step PGD to update
w(® and §(*)
5. end for

K
ek . 4 2
E X 07 ’ 51 = 7 0757,7 ’ Y — D
TS evjein TS, ¥(0,w,{di}) ;le f(0,0:x,y) — Sllw —1/K]2

W'E‘t) = Projp W7(~t—)1 g5 5vw¢(9(t)>wf~t—)17 {5§?~—1 )] . ¥r € [R],
+BVsp(0D, w189 1)), vr e [R],Vi € |K]

t i t
55,3:PTOJX1~ 5(') s We 15194 r—1

1, 7—1




Results — Generalized AT
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W | ' == adv (minmax)
i A T——
0.00 = & : 0.0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 05 1.0 15 2.0 25 3.0 05 10 15 20 25 3.0
£(£2) £(£>) (L)
. max avg
(a) weight {w; } (b) Acc, s (c) Acc_ g,

Table 4: Adversarial training of MNIST models on single attacks (¢~ and
/2) and multiple attacks (avg. and min max). The perturbation magnitude ¢
for /- and /5 attacks are 0.2 and 2.0, respectively. Top 2 test accuracy on
each metric are highlighted. Complete table for LeNet and varied € is given in
Table A7 (Appendix D.2).

Model Opt. Acc.  Acc-lo, Acc-ly | Acc™*  Acclys

adv adv

| natural | 98.30 2.70 13.86 | 0.85 8.28

o 98.08 77.70 69.17 66.34 73.43

MLP 12 08.72 70.03 81.74 69.14 75.88

avg. 98.62  75.09 79.00 72.23 77.05
minmax | 98.59  75.96 79.15 73.43 77.55




Results — Generalized AT
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Summary (Min-Max Opt. in Adv.)

= A general min-max framework applicable to both adversarial
attack and defense settings

= Reformulating many problem setups in our framework
= Attacking model ensembles
= Devising universal perturbation against multiple input images
= Generating robust adv. examples over data transformations

= Generalized AT under mixed type of attacks

= Significant improvements on four attack and defense tasks (more
efficient)

= Providing a holistic tool for self-risk assessment by learning

domain weights
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