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Tremendous Success in DL/ML 

▪ 2D: ImageNet, COCO, etc.
▪ EfficentNet achieves 84.4% top-1 and 97.1% top-5 accuracy on ImageNet 8.4x 

smaller and 6.1x faster).

▪ 3D: KITTI, Cityscapes, BDD100K, Oxford, etc.
▪ F-PointNet (Rank 1 -> 40 in one year)

▪ Self-Driving: Uber, Google, Tesla, etc.

▪ Robotics, NLP, Speech, SysML, Finance, Healthcare ... 

▪ …

Explosive development (data and works)!

Security, Privacy and Interpretability of ML/DL 
are becoming increasingly important!



The Physical World Is Messy …

▪ Taking self-driving as an example:
▪ Temporary unrecognized traffic signs

▪ Extreme weather conditions

▪ Obscured, broken, incomplete (even wrong) instructions

▪ Unexpected emergency (e.g., collision, violation of traffic rules)

▪ Malicious adversaries may exist!

▪ Safety is always the first!



▪ Perils of Stationary Assumption 

▪ Noisy data: outliers, crowdsourcing, system error, subjectivity …

▪ Adversaries: evasion attack, data poisoning, privacy leak …

However, DNNs Are not Robust ...

Training data Testing data≈



▪ Self-Driving:
▪ Policy learning: 2D + LiDAR (cheaper but still very expensive) 

▪ Tackling with Noisy Data:
▪ Reinforcement Learning with Perturbed Reward

▪ Attack & Defend our ML/DL Systems:
▪ Arms Race in Adversarial Machine Learning (AML)

▪ More reliable, interpretable DL training scheme (Information Bottleneck, 
IB)

▪ Min-Max Optimization in AML (across domains)

What should we do?

 (Safety)                            (Security)
▪ More Accurate Sensors + More Robust Algorithms!

▪ What I did in last 1.5 years: 
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DBNet (A Large-scale Driving Behavior Dataset) 

▪ End-to-end Learning for Self-Driving 

• Limited scale of data
• Lack of high-quality 3D LiDAR point 

clouds 

• Pioneer to apply end-to-end learning 
techniques to solve autonomous driving 
problems.

• Learning from 8.5h driving videos.

Problems:

Solution:

[1] Bojarski et al. End to end learning for self-driving cars. 2016.



DBNet (A Large-scale Driving Behavior Dataset) 

▪ Driving Behavior (2D + 3D)

Open-source: 
http://www.dbehavior.net   (official website)
https://github.com/driving-behavior/DBNet  
(code, 130+ stars)

• Large-Scale:
• 10 times larger than KITTI

• Diversity: 
• Different types of roads/weathers 

• Quality: 
• High-precision LiDAR point clouds 

(> 10 million points / 100m)
• 1920x1080 videos
• Sensor-collected driving behaviors

First driving behavior dataset  
that incorporates 2D and 3D. 



DBNet (Results) 

1. Depth information benefits policy learning a lot 
2. PM and PN show good performance 
3. Sequential information is critical

Results:

IO:   images only 
PM: images + feature maps (PCM)
PN:  images + PointNet 



DBNet (Demo)

▪ Video + LiDAR Point Clouds => Angle + Speed
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Supervised

Unsupervised Reinforcement

Learning

▪ labeled data
▪ direct feedback
▪ predict outcome

▪ no labels data
▪ no feed back
▪ find hidden structure

▪ decision process
▪ reward system
▪ learn series of actions

Reinforcement Learning (RL)



Breakthrough in Deep RL



Motivation & RL Weaknesses
▪ Reward Design ▪ Robustness of Algorithms

RL in Noisy Environments !



Related Works

• Adversarial manipulations in RL policy
• Robust policy capable of withstanding perturbed 

observations or transferring to unseen environments
• RL algorithms with uncertainty in models (states)

Robust Reinforcement Learning

• Define unbiased surrogate loss functions
• Recover the true loss using the knowledge of the noise

Learning from noisy data (supervised Learning)

• No Free Lunch Theorem: without any assumption about 
what the reward corruption is, all agents can be essentially 
lost

RL with a Corrupted Reward Channel (DeepMind, 2017)



"Perturbed" Reward

r1 could be corrupted into 
r2 with a probability of 0.2 
and so does r2.

true reward noisy reward

“No Free Lunch” Theorem [Everitt et. al., 2017]: 
Without any assumption about what the reward corruption is, all 
agents can be essentially lost.



Perturbed Reward in RL

 

▪ Noise Rate

▪  

▪  

▪  



Unbiased Estimator of True Reward

 

noisy reward surrogate reward

surrogate rewardtrue reward



Unbiased Estimator of True Reward

▪  

▪  



Unbiased Estimator of True Reward

①

②

① estimate 
confusion matrices 

② calculate 
surrogate rewards



 

 1. Convergence

2. Sample complexity

3. Variance



Experiments (OpenAI Gym)

1. Classic Control Game

2. Atari-2600 Game



Experiments (OpenAI Gym)

RL Algorithms
Environment RL Algorithm Abbreviation 

CartPole

Q-Learning Q-Learn

Cross Entropy Method CEM

Deep 
State-Action-Reward-State-A
ction

SARSA

Deep Q Network DQN

Dueling Deep Q Network Dueling-DQN

Pendulum
Deep Deterministic Policy 
Gradient DDPG

Continuous DQN NAF

Atari-2600 Proximal Policy Optimization PPO



Results (CartPole)

true reward noisy reward surrogate reward



Results (Pendulum)

true reward surrogate rewardnoisy reward

Continuous States & Rewards => Discretization▪  

Symmetric & Asymmetric noise ▪  
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Results (CartPole + Pendulum)



Results (Estimation of Confusion Matrices)



Results (Atari)



Results (Variance Reduction)

unbiased proxy but 
larger variance!

2. Variance Reduction（unbiased noise）
• Why not VRT + our unbiased surrogate rewards?

1. Linear Combination

 

surrogate rewardtrue reward



Results (Variance Reduction)

true reward noisy reward surrogate reward VRT ours + VRT



Summary (RL with Perturbed Reward)

 



Future direction & Limitedness

▪ Continuous states or rewards (involve more assumptions)

▪ State-dependent case 
▪ We maintain confusion matrices for each state, which is costly 

▪ Adversarial noise (not learnable …)
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What is Adv-ML (AML)?
▪ Unfortunately, ML/DL models are highly vulnerable to slight adversarial 

perturbations in various applications!

▪ An arms race between adversarial attacks and defenses.

Goodfellow et al. “Explaining and harnessing adversarial examples.” ICLR 2015.



Challenges: Adversarial Examples are everywhere!

▪ Adversarial examples are easy and cheap to craft!
▪ FGSM, JSMA, DeepFool, C&W, BIM, PGD, ...

▪ 2D, 3D, RL, Speech, Text, ...

▪ Adversarial examples can be realistic!
▪ white-box, black-box (transferability) ...

▪ robust physical attack, real-world messy data

Athalye, et al. “Synthesizing Robust Adversarial Examples.” ICML 2018.



Formulation - Adversarial Examples

▪  

Wang et al. “One Bit Matters: Understanding Adversarial Examples as the Abuse of Redundancy”. 2018

Adversarial Examples

▪ Threat models
▪ white-box, black-box (adaptive or non-adaptive)

▪ gradient-based, score-based, decision-based ...

▪ Intriguing properties
▪ transferability across domains (e.g., datasets, models, transformations)

▪ universality (e.g., images, models)



Threat Models

▪ Threat models
▪ white-box, black-box (adaptive, non-adaptive, strict)

▪ gradient-based, transfer-based, score-based, decision-based

 Chen et al. “HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.” 2019

less information
( difficulty )



Threat Models

▪ Threat models
▪ white-box, black-box (adaptive, non-adaptive, strict)

▪ gradient-based, transfer-based, score-based, decision-based

▪ untargeted & targeted
▪ untargeted – mislead the classifier to predict any labels other than the ground truth

▪ targeted – mislead the classifier to predict a target label for an image

Wieland et al. “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models” ICLR 2018.



Fast Gradient Method (FGM) 

Goodfellow et al. “Explaining and harnessing adversarial examples.” ICLR 2015.
Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks” ICLR 2018.

▪ Untargeted:

▪ Targeted:

Fast Gradient Sign Method (FGSM)

▪ Untargeted:

▪ Targeted:

Iterative FGM (BIM, PGD)



Carlini & Wagner (C&W)  

Carlini et al. “Towards Evaluating the Robustness of Neural Networks” IEEE S&P 2017 

Optimization problem:

▪ L2-attack:

▪ C&W loss:

▪ Projected gradient descent

▪ Clip gradient descent

▪ Change of variables 



ZOO (score-based)

 Chen et al. “ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training 
Substitute Models”

Objective function:

▪ Zeroth order optimization on the loss function

▪ ZOO-Adam

▪ ZOO-Newton



Boundary Attack (BA & BA++)

[1] Wieland Brendel, Jonas Rauber, Matthias Bethge. “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine 
Learning Models” ICLR 2018.
[2] Jianbo Chen, Michael I. Jordan, Martin J. Wainwright. “HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.” arXiv 1904.02144.



Boundary Attack (BA & BA++)

[1] Wieland Brendel, Jonas Rauber, Matthias Bethge. “Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine 
Learning Models” ICLR 2018.
[2] Jianbo Chen, Michael I. Jordan, Martin J. Wainwright. “HopSkipJumpAttack: A Query-Efficient Decision-Based Attack.” arXiv 1904.02144.

▪ Only binary feedback on the boundary



Robust Physical Attacks

[1] Eykholt et al. “Physical Adversarial Examples for Object Detectors” USENIX WOOT 2018.
[2] Cao et al. “Adversarial Objects Against LiDAR-Based Autonomous Driving Systems” 2019



Defenses

[1] Madry et al. “Towards Deep Learning Models Resistant to Adversarial Attacks” ICLR 2018.
[2] Athalye et al. “Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples” ICML 2018.

▪ Adversarial Training (AT) (SOTA, min-max opt)
▪ augment perturbed data (inserting adv. examples while training)

▪ modified objective function:

▪ Issue:
▪ low transferability (multiple norms, attack-sensitive) 

▪ efficiency of ensemble adversarial training 

▪ the training cost is huge!

▪ Gradient Masking 
▪ gradient-based attacks (non-differentiable models)

▪ Issue:
▪ obfuscated gradients give a false sense of security (ICML best paper, 2018)

▪ gradient estimation works very well in breaking this kind of defense (EOT)

going to address!



Defenses

[1] Papernot et al. “Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks” IEEE S&P 2016.
[2] Xu et al. “Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks” NDSS 2018.
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A Necessary Condition for the Existence of Adv. Examples

▪  
Minimal Sufficient Statistic (MSS)

 
Theorem 1 (MSS is necessary for Adv.)



Feature Redundancy

▪ Does our latent representations are sufficient?



Feature Redundancy
▪ Adv. examples are more redundant!

▪ larger model capacity to memorize 



AT for Reducing Feature Redundancy



Information Bottleneck

 
Theorem 1 (MSS is necessary for Adv.)

 

▪ Information Bottleneck (IB):

Alemi et al. “Deep Variational Information Bottleneck” ICLR 2017.

 



Adversarial Robustness Bound

 

Theorem 2 (Oblivious Vulnerability)

 



Adversarial Robustness Bound

▪ Why IB works ?

▪ Why IB + AT works better ? 

Theorem 2 (Oblivious Vulnerability)



Adversarial Robustness Bound

▪ Why controlling the Lipschitz constant works? 

Finlay et al. “Improved robustness to adversarial examples using Lipschitz regularization of the loss”. 2018.

Theorem 3 (Estimation of Lipschitz Constant)

Lipschitz constant of a stochastic encoder can be controlled by its mean and 
variance networks



IB + AT: better transferability & robustness
 

▪ MNIST

▪ CIFAR-10



Summary (Adv. information theory)

▪ Feature redundancy (necessary condition)

▪ How to reduce feature redundancy
▪ Information Bottleneck (IB)

▪ Adversarial training as an implicit regularizer

▪ other possible dimension reduction techniques …

▪ IB + Adversarial Training
▪ better adversarial robustness

▪ stronger transferability (defense)

▪ Theoretical Analysis 
▪ Oblivious vulnerability

▪ Transferability for stochastic networks
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Adversarial Training (min-max)

▪ Natural Training: 

▪ Issue (AT):
▪ low transferability (multiple norms, attack-sensitive)

▪ low efficiency in ensemble adversarial training 

▪ Adversarial Training (AT): 



Revisiting the Power of Min-Max Opt.
▪  General idea: Robust learning over multiple domains

 

 

• Worst-case:  equivalent to 

 

• Regularized problem formulation:

domain weights 

• one-hot coding reduces the generalizability to other domains 
• induces instability in training  



Robust Adversarial Attacks
▪  

▪ Why ensemble?
▪ Attacker: more transferable black-box adv. examples

▪ Defender: AT + Ensemble (more powerful defense)

▪ Existing Approach (equal-weight, 5th in CAAD 2018)

▪ Our solution: 
▪ Focus on those models which are difficult to attacks!

▪ Guarantee the worst-case performance!



Robust Adversarial Attacks
 



Robust Adversarial Attacks
 



Alternating one-step PGD  (APGD)

▪ efficient as PGD

▪ worst-case guarantee

▪ higher attack success rate 
(ASR)



Results – Attacking Model Ensembles



Results – Attacking Model Ensembles



Results – Devising Universal Perturbations



Results – Devising Universal Perturbations



Results – Robust Adv. over Data Transformations

▪ Deterministic

▪ Stochastic

avg. = EOT (SOTA)



Generalized Adversarial Training (GAT)

▪ Vanilla Adversarial Training:

▪ Generalized Adversarial Training:

sum: 

max:

▪ transferability between attacks under multiple norms is low!

▪ better overall robustness against multiple attacks

▪ faster convergence (min-max) 



Alternating multi-step PGD (AMPGD)

▪ better overall robustness
▪ good interpretability



Results – Generalized AT



Results – Generalized AT



Summary (Min-Max Opt. in Adv.)

▪ A general min-max framework applicable to both adversarial 
attack and defense settings 

▪ Reformulating many problem setups in our framework
▪ Attacking model ensembles

▪ Devising universal perturbation against multiple input images 

▪ Generating robust adv. examples over data transformations

▪ Generalized AT under mixed type of attacks

▪ Significant improvements on four attack and defense tasks (more 
efficient)

▪ Providing a holistic tool for self-risk assessment by learning 
domain weights
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