
CSC2457 3D & Geometric Deep Learning

Date: 16 Feb. 2021
Presenter: Jingkang Wang
Instructor: Animesh Garg



Differentiable Rendering is Important!

- The ability of calculating gradients are crucial to optimization
- (a) inverse problems, (b) deep learning

3D scene image
neural

network

rendering

Inverse
rendering

neural
network

Cameras LightsGeometry Material



Differentiable Rendering is Important!

- Render and compare approach

Gradients?

3D scene

distance
to target

target

source

Optimize scenes via 
differentiable renderer



Differentiable Rendering is Important!

- Computing the gradient of rendering is challenging!

rendered image

Pixel filter Radiance (another integral)

Rendering integral includes visibility terms that are not differentiable 

Scene function: 𝑓 𝑥, 𝑦;Φ = 𝑘 𝑥, 𝑦 𝐿(𝑥, 𝑦)



Differentiable Rendering is Challenging!

- Challenge: both primary and secondary visibility matter



Contributions

- Previous works
- Differentiable rendering that targets specific cases (faces, hands, etc.) => hard to generalize
- Fast, approximate general renderers (OpenDR, Neural Mesh Rendering) => simplified models
- challenges: estimating the derivative corresponding to the integral of the rendering equation

Specific cases 
(Blanz et al. 1999, Gorce et al. 2008, 

Gkioulekas et al., 2013)

Limited general renders
(Loper and Black 2014, Kato et al. 2018)



Contributions

- This paper proposed a general physically-based differentiable render

glossy reflection mirror reflection shadow global illumination



Contributions
- This paper proposes a general physically-based differentiable renderer

- General differentiable path tracer
• a stochastic approach based on Monte Carlo ray tracing to estimate both the integral and the 

gradients of the pixel filter’s integral
- Handling geometric discontinuities

• a combination of standard area sampling and novel edge sampling to deal with smooth and 
discontinuous regions

- This paper shows
- The utility of proposed differentiable renderer in several applications (inverse rendering, 3D 

adversarial examples)
- Better performance than two previous differentiable renderers



Physically-based Rendering

- The Rendering Equation

eye



The Rendering Equation

Credit: https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/

https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/


The Rendering Equation

Credit: https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/

https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/


Rendering = Sampling 

pixel
color change
when blue triangle
moves up?



Key idea: Edge sampling

pixel
color change
when blue triangle
moves up?



Mathematical formulation
- Model each pixel is an integral over the step function
- Each pixel is an integral over the step functions

∇∫ s(x)dx = ∫ ∇s(x)dx = δ(x)

Step function Dirac delta



Mathematical formulation
• A smooth shading function 𝑓 multiples to the step function 𝑠

∇(s ⋅ f) = (∇s) ⋅ f + s ⋅ (∇f)
Dirac delta Shading derivatives



Mathematical formulation
- Scene function

- Pixel Color 

- Gradient

- All discontinuities happen in the scene edges

f(x, y; Φ) = θ(α(x, y))fu(x, y; Φ) + θ(−α(x, y))fl(x, y; Φ)

I = ∬ f(x, y; Φ)dxdy = ∑
i

∬ θ (αi(x, y)) fi(x, y; Φ)dxdy



Mathematical formulation

- Using the Chain rule

∇∬ θ(α(x, y))f(x, y; Φ)dxdy = ∬ δ(α(x, y))∇α(x, y)f(x, y; Φ)dxdy + ∬ ∇f(x, y; Φ)θ(α(x, y))dxdy

Edge sampling Area sampling



Mathematical formulation

- Using the Chain rule

∇∬ θ(α(x, y))f(x, y; Φ)dxdy = ∬ δ(α(x, y))∇α(x, y)f(x, y; Φ)dxdy + ∬ ∇f(x, y; Φ)θ(α(x, y))dxdy

Edge sampling Area sampling
∫αi(x,y)=0

∇αi(x, y)
∥∇x,yαi(x, y)∥ fi(x, y)dσ(x, y)∇∬ θ(α(x, y))f(x, y; Φ)dxdy = ∬ δ(α(x, y))∇α(x, y)f(x, y; Φ)dxdy + ∬ ∇f(x, y; Φ)θ(α(x, y))dxdy



Generalization & Scalability

- Generalizable to shadow & interreflection
- Use importance sampling to sample edges and pick points (Hill and Heitz 2017) 

area of a light source
select an edge & pick a point



Experiments – Synthetic examples

TargetSource

- Optimizing 6 triangle vertices



Experiments – Synthetic examples

TargetSource

- Optimizing blocker vertices



Experiments – Synthetic examples

Target

camera & teapot material

Source

logo translation camera



Experiments – Synthetic examples

- Compare with central finite differences (32 x 32 scenes)



Experiments – Synthetic examples

- Sampling with or without edge importance sampling



Experiments – Inverse rendering

initial guess target reconstructed

- Optimizing camera pose, light emission and materials



Experiments – Inverse rendering

- Optimizing camera pose, light emission and materials

optimization target



Experiments – Inverse rendering

- Optimizing camera pose, light emission and materials

camera gradient table albedo gradient light gradient



Experiments – 3D adversarial examples

25 iterations: 
23.3% handrail
3.4% street sign

5 iterations: 
26.8% handrail
20.2% street sign

VGG 16: 
53% street sign
6.7% handrail

- Optimizing vertex position, camera pose, light intensity, position



Limitations

- Performance (rendering speed & large variance): 
- Edge sampling and auto differentiation are slow (bottleneck)
- It is a challenging task to find all object edges and sampling them
- A few hundreds of milliseconds to generate a small image (256x256) with a 

small number of samples (4)

- Assumptions:
- Mesh
- Interpenetrating geometries and parallel edges
- Shader discontinuities
- Motion blur



Follow-up works

- Addressing the discontinuity problem in the rendering equation 

Handle volumetric light 
transport (Zhang et al., 2019) Re-parameterize the integral 

(Loubet et al., 2019)



Follow-up works

- Estimate the derivatives of the path integral formulation

Path space differentiable rendering (Zhang et al., 2020)



Contributions (recap)
- Previous works

- Differentiable rendering that targets specific cases (faces, hands, etc.) => hard to generalize
- Fast, approximate general renderers (OpenDR, Neural Mesh Rendering) => simplified models
- challenges: estimating the derivative corresponding to the integral of the rendering equation

- This paper proposes a general physically-based differentiable renderer
- General differentiable path tracer
- Handling geometric discontinuities

- This paper shows
- The utility of proposed differentiable renderer in several applications (inverse rendering, 3D 

adversarial examples)
- Better performance than two previously proposed differentiable renderers



References
- Differentiable Monte Carlo Ray Tracing through Edge Sampling. Li et al., 2018.
- Slides for “Differentiable Monte Carlo Ray Tracing through Edge Sampling”. Li et al., 2018. 
- Differentiable Ray Tracing. Novello. https://sites.google.com/site/tiagonovellodebrito/diffrt.
- Differentiable Rendering: A Survey. Kato et al., 2020.
- Ray Tracing Essential Part 6: The Rendering Equation. https://news.developer.nvidia.com/ray-

tracing-essentials-part-6-the-rendering-equation/

https://sites.google.com/site/tiagonovellodebrito/diffrt
https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/

