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Simulation for Robot Learning and Testing

® | ong-tail scenarios are critical for robot learning and evaluation
® \We need scalable and affordable way to generate experiences - Simulation!
e Realistic sensor simulation is key for running the full autonomy system

Autonomy testing with sensor simulation



Existing Simulators Lack Scale and Diversity

e Standard game engines for simulation - (a) not scalable: artists create
assets manually + simple automation; (b) lacking diversity; (c) not realistic

e We need to cover the full space in the real world for small domain gap

[1] CARLA: An open urban driving simulator. [Dosovitskiy, et al. CoRL 2017]



Building Assets from In-the-Wild Data for Diversity

360° Textured
Vehicle Assets

LiDAR Points

AN CADSim a

Realistic and Controllable Simulation

—>

ra Images Fast Recon.

Real-time

Came
iy rendering

i




Assets for Self-driving
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Assets for Self-driving
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Mesh Representation



Current Mesh Approaches do not work in the Wild

e Underlying geometry is poor

NeusS [1] NeRS [2] NVDiffRec [3]
Sphere Deform [4] Ellipsoid Deform [5] SAMP [6]

[
[2
[3
[4
[5
[6

Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. NeurlPS 2021
Zhang et al. NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild. NeurlPS 2022
Munkberg et al. Extracting Triangular 3D Models, Materials, and Lighting From Images. CVPR 2022.

Kanazawa et. al. Learning Category-Specific Mesh Reconstruction from Image Collections. ECCV 2018.

Wang et. al. Pixel2mesh: Generating 3d mesh models from single rgb images. ECCV 2018.

Engelmann et al. SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction. WACV 2017.



Current Mesh Approaches do not work in the Wild

e Underlying geometry is poor
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Neus [1] NeRS [2] NVDiffRec [3]

Sphere Deform [4] Ellipsoid Deform [5] SAMP [6]
e (Generates rigid mesh that cannot be articulated
N “ﬂ ﬁ
‘ ! Needs to be L
articulated

[1] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. NeurlPS 2021

[2] Zhang et al. NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild. NeurlPS 2022

[3] Munkberg et al. Extracting Triangular 3D Models, Materials, and Lighting From Images. CVPR 2022. %@
[4] Kanazawa et. al. Learning Category-Specific Mesh Reconstruction from Image Collections. ECCV 2018.

[56] Wang et. al. Pixel2mesh: Generating 3d mesh models from single rgb images. ECCV 2018.

[6] Engelmann et al. SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction. WACV 2017.
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CADSIm - Vehicle Parameterization




CADSIm - Vehicle Parameterization




CADSIm - Vehicle Parameterization




Learning a Shape Prior over a CAD Library
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CADSIm - Differentiable Rendering

Mesh Initialization

Latent code Z



CADSIm - Differentiable Rendering
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CADSIm - Differentiable Rendering
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PandaVehicle Dataset

Training frames (left camera)

Testing frames (front-left camera)

LiDAR sensor Camera sensor



Novel View Synthesis SOTA Comparison
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[1] Miller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

SIGGRAPH 2022

[2] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view SAM P [3] CADSI m Ou rS
Reconstruction. NeurlPS 2021

[3] Engelmann et al. SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction. WACV 2017.




Novel View Synthesis SOTA Comparison
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[1] Mdiller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

SIGGRAPH 2022

[2] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view SAM P [3] CADSI m Ou rS
Reconstruction. NeurlPS 2021

[3] Engelmann et al. SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction. WACV 2017.
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Novel View Synthesis SOTA Comparison
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[1] Miller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

SIGGRAPH 2022 .

[2] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view SAM P [3] CADSl m (OU rS)
Reconstruction. NeurlPS 2021

[3] Engelmann et al. SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction. WACV 2017.




Novel View Synthesis SOTA Comparison
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[1] Miller et al. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
SIGGRAPH 2022 .
[2] Wang et al. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view SAM P [3] CADSl m (OU rS)

Reconstruction. NeurlPS 2021
[3] Engelmann et al. SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction. WACV 2017.



Quantitative Comparison

e CADSIm produces the best performance on all metrics

Method SSIM1T LPIPS| 7T (hour) FPS
NeRF++ [Zhang et al., 2020] 0.611 0.300 4.70 0.05
Instant-NGP [Miiller et al., 2022] 0.641 0.319 0.05 1.14
NeRS [Zhang et al., 2021] 0.562 0.265 1.37 3.23
NVDiffRec [Munkberg et al., 2021] 0.593 0.396 1.07 51.2
NeuS [Wang et al., 2021] 0.640 0.247 6.25 0.02
SI-ViewWarp [Tulsiani et al., 2018] 0.514 0.371 — 1.67
SAMP [Engelmann et al., 2017] 0.628 0.283 0.09 71.4
CADSim (ours) 0.674 0.220 0.13 49.6




Quantitative Comparison

e CADSIm produces the best performance on all metrics

e (CADSIm results in fast reconstruction and real-time rendering

Method SSIM1T LPIPS| 7T (hour) FPS
NeRF++ [Zhang et al., 2020] 0.611 0.300 4.70 0.05
Instant-NGP [Miiller et al., 2022] 0.641 0.319 0.05 1.14
NeRS [Zhang et al., 2021] 0.562 0.265 1.37 3.23
NVDiffRec [Munkberg et al., 2021] 0.593 0.396 1.07 51.2
NeuS [Wang et al., 2021] 0.640 0.247 6.25 0.02
SI-ViewWarp [Tulsiani et al., 2018] 0.514 0.371 — 1.67
SAMP [Engelmann et al., 2017] 0.628 0.283 0.09 71.4
CADSim (ours) 0.674 0.220 0.13 49.6




Leveraging CAD Improves Reconstruction

Unit Sphere Ellipsoid NeRS SAMP Ours
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Sensor Observations (Log 028

Left Camera Front Camera Right Camera




Reeonstructlng Nearby Vehicles (Log 028)
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Reconstructing Nearby Vehicles (Log 028)
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Log-Replay Simulation (Log 028)
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Log-Replay Simulation (Log 028) - Side Camera
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Mixed Reality: Actor Manipulation




Mixed Reality: Actor Manipulation




Mixed Reality: Safety-Critical Scenario




Mixed Reality: Safety-Critical Scenario




Mixed Reality: Safety-Critical Scenario




Mixed Reality: Safety-Critical Scenario







Swapping Texture in the Real World
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Swapping Texture in the Real World
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Swapping Texture in the Real World
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Swapping Texture in the Real World
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Swapping Texture in the Real World
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Swapplng Texture in the Real World




Swapping Texture in the Real World
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Swapping Texture in the

Real World
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Swapplng Texture in the Real World




Swapping Texture in the Real World
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Thank you!

Robust and Scalable in-the-wild 3D Reconstruction
for Realistic and Controllable Sensor Simulation

CoRL Paper ID 56

Supplementary Video

This video contains audio.



