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Visual object recognition is one of the key human capabilities that we wouldni&ehines to have.
The problem is the following: given an image of an object (e.g. someoaet)f predict its label
(e.g. that person’s name) from a set of possible object labels. Thempieant approach to solving the
recognition problem has been to learn a discriminative model, i.e. a model adidéional probability
P(l|v) over possible object labelgjiven an image.

Here we consider an alternative class of models, broadly referredjenasative modejshat learns
the latent structure of the image so as to explain how it was generated. Thisostrast to discrimi-
native models, which dedicate their parameters exclusively to represergicgriditional distribution
P(Ilv). Making finer distinctions among generative models, we consider a sspeyenerative model
of the joint distributionP(v,1) over image-label pairs, an unsupervised generative model of the dis-
tribution P(v) over images alone, and an unsupervisszbnstructivemodel, which includes models
such as autoencoders that can reconstruct a given image, but defime a proper distribution over
images. The goal of this thesis is to empirically demonstrate various ways @f tse models for
object recognition. Its main conclusion is that such models are not onlyludsefecognition, but can
even outperform purely discriminative models on difficult recognition tasks

We explore four types of applications of generative/reconstructiveefaddr recognition: 1) in-
corporating complex domain knowledge into the learning by inverting a syistheslel, 2) using the
latent image representations of generative/reconstructive modelségmnigion, 3) optimizing a hybrid
generative-discriminative loss function, and 4) creating additional stiotdata for training more ac-
curate discriminative models. Taken together, the results for these appiecatpport the idea that
generative/reconstructive models and unsupervised learning hameralk to play in building object
recognition systems.
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Chapter 1

Introduction

Among the human capabilities that we would like machines to have, the ability tormeeogbjects
visually ranks high on the list. We can look around us and recognize fambiacts without much
trouble. Getting a computer with a camera connected to it to do the same is the miah garaputer
vision research. The holy grail is a general-purpose artificial visistesy that can rapidly recognize
instances of objects from a large catalogue of object types in a real-sawttk.

Such a system does not currently exist, but if it did, it would have no tediurdxling a wide variety of
applications. Face recognition is perhaps the most well-known applicati@rewvie task is to identify
a person from the image of his or her face. Here the ‘objects’ are tee t#different people currently
known to the recognition system. Given the image of some scene as input,td Haside whether
any instances of the known faces appear within it. Other applications inbktter searching of image
databases, robot navigation, improved image/video compression, autosnatedlance, and so on.
There are simply too many to list — by definition, any task that can make usenafose looking at a
scene and identifying the objects in view is a potential application. Since machiaaisually much
cheaper than humans and do not get bored or tired, artificial systemsewiilibh more widely useful
than their human counterparts.

Despite their advantages, artificial vision systems are not yet in widebpsesgas they are far from
matching the accuracy, speed and generality of human vision. Objegmnitioa is hard because the
appearance of the object can vary with lighting, viewpoint, changes pesbaclusion etc. For example
consider two images of the same person’s face, one taken indoors atbéheutdoors. If we examine
the numerical values of the pixels in the two images, they can be very diffd@ahan accurate object
recognition system must still report the same face identity in both settings. Moeraly, the output
of the system must bi@variantto any changes in the input pixels that do not correspond to a change in
object identity, while at the same time being sensitive to those that do. Solving Hreaimse problem
has turned out to be extremely difficult for computers, even though ouahMiystem seems to solve it
without apparent effort.

The thesis will focus on the problem of visual object recognition. Weidens specialized version
of the problem where an object has already been localized within a lartgee sand only its identity
remains to be decided. So the input to the recognition system is a fixed-size imiidgthe object
roughly centred at a standard scale. There is a pre-specified dgjeot types from which the system
chooses a label to assign to its input image. This formulation in effect redaliject recognition to
image classification. The problem of localizing an object within a scene,segmentationis also
important and cannot be avoided when building a practical recognitiagaray8ut the core challenge
of visual invariancestill remains, so one can make useful progress just by concentrating: émaige
classification task in isolation.
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Classification strictly requires only a model of the conditional probability obifiject label given
an imagev. The standard approach to recognition has been to define a parantetksizéminative
modelP(l|v, 8;), where the parameter vecty is estimated by maximum likelihood learning on a set
of image-label pairs. Alternatively one can defingemerative modeP (v, [|6,) representing the joint
distribution and estimaté,, again by maximizing likelihood. At test time, the conditional probability
P(llv,0,) is given by:

P(v,1]6,)
P(llv,8,) S P, l]0,)" (1.1)

It is not immediately obvious why the generative approach for estimating tiditamal probability
is useful. Fitting distributions to high-dimensional data (such as images) by maxiikelihood is
analytically intractable for all but the simplest models. Discriminative models owottier hand can
often be trained using the exact gradient of the log-likelihood. So thedadiffeculty of learning the
joint distribution appears unnecessary at first glance.

Going a bit further, we can consider an unsupervised generative riwtelepresents the distri-
bution P(v) over images alone, without the labels. It is even less clear what role soadel can
play since the required conditional probability cannot be computed froninitilé8ly, we can consider
non-probabilistic counterparts like PCA and nonlinear autoencodeishwlb not define a distribution
over images but can be used to reconstruct a given input image r&uafstructivanodels also cannot
be used directly to compute the conditional probability and initially appearsassilerecognition.

The main goal of this thesis is mpirically demonstrate various ways of using generative and
reconstructive models of images for object recognitibine overall conclusion that comes out of it is that
these models are not only broadly useful for recognition, but can ewgredorm purely discriminative
models on difficult recognition tasksThis may sound counter-intuitive in the context of the above
arguments, but the results presented in the upcoming chapters providecaiog support for it. The
thesis also serves a secondary purpose as a collection of tricks fanpuetter recognition systems
using generative/reconstructive models. So even the pragmatic engiitleero ideological interest
in generative models and unsupervised learning will hopefully find somestiichere that are worth
adding to his or her toolkit.

We first summarize the different applications of generative/reconsteustadels demonstrated in
the thesis. The applications are not all new or unique to the thesis, but wieelsthere to emphasize
that these models are useful for recognition, and that they are usefdrimthan just one way.

1. Incorporating complex domain knowledge into the learning: Consider a graphics program that
can synthesize realistic images of objects by manipulating a set of inputteari&dor example, it
may be a physically-based model of handwritten digits with inputs like muscleest#és, thick-
ness of the pen, ink darkness etc. Given these inputs, the programaiiteimulates the physics
of the arm trajectory to output a digit image. By using such a forward modah ianalysis-by-
synthesis loop, we can define a reconstructive representation of dafiesdbloits the knowledge
built into the graphics program. Discriminative models allow limited forms of domaimdedge
into the learning, e.g. sharing parameters in a convolutional network loaséee 2D topology
of images (LeCun et al. [1998]), and enforcing known invariancesttieclassification func-
tion should satisfy (Simard et al. [1996]). But much richer domain knovdezhn be expressed
naturally as a synthesis model, which can then be used for recognitionrbinigés ‘inverse’.

2. Recognition based on image representations learned by unsuperesd models: The hidden
representation inferred by an unsupervised model compactly desaribesage such that it can
be reconstructed from that description. When used as part of a disatimeirmodel, such a rep-
resentation can give better recognition accuracy than the raw pixelaupeingsed models are
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less susceptible to overfitting than purely discriminative ones. There aree@sons for this:
first, informally we can think of unsupervised learning as a large multi-taskilegproblem in
which the model simultaneously predicts many variables (as many as therpas®) imvhile dis-
criminative learning involves predicting just one (the label). Secondly, &pibject recognition
problems have many more unlabeled training cases available than labeledBmibsf these
factors allow unsupervised learning to put more constraints on the maadehpters, and support
more parameters and richer representations without overfitting.

One way to take advantage of this property is to rely on unsupervisedrigamdo most of the
heavy-lifting when training an object recognition model, and use the small euofdabeled

cases for discriminative training in a more limited way. For example, unsupeni&arning

can be used to extract a large set of features, with the role of discringrnativing limited to

learning a low-capacity classifier on top of those features or to just fimaguhose features
discriminatively (instead of learning them from scratch). Deep Belief N#itston et al. [2006])

are a good example of this approach.

3. Optimizing a hybrid generative-discriminative objective function: As described earlier, a dis-
criminative model is optimized to represent the conditional distribuBt¢ifv ), while a supervised
generative model is optimized to represétitr,!). One can consider using a hybrid objective
function that is a weighted sum of the above two objectives. A number @&frpdp.g. Bouchard
and Triggs [2004], Holub and Perona [2005], Raina et al. [2008fghried this idea and empir-
ically shown it to give better accuracy than optimizing either one of the indalidhjectives in
isolation. The results in the thesis lend more support to this idea.

Although simply taking a weighted sum may seem ad hoc, Bishop and La$26@¢] have
shown that it can be interpreted as a principled way of compensating foll méslepecification
when learning a model aP(v, ). From the point of view of discriminative learning, the advan-
tage of the hybrid objective is that it allows unlabeled images to be included iatednning,
which has a strong regularizing effect.

4. Creating extra training images for discriminative models: This is perhaps the simplest way
to use generative/reconstructive models for object recognition. Tekéng labeled training
images, infer their hidden representations under an unsupervised maodmly perturb those
representations, and compute the images corresponding to them. Theimgasahat small
random changes in feature space are likely to correspond to semanticalhyngiel changes
in pixel space that do not change the class. The resulting synthetic imageisen be used as
additional examples for training a discriminative model with better accuracy.

1.1 Contributions of the thesis

As a whole, the thesis provides empirical support for the idea that gemenaodels and unsupervised
learning are useful for object recognition. This is its main contribution. floee specific ones are
listed below:

1. We present a new algorithm callbdeeder learningor inverting a given synthesis model and
obtaining its corresponding analysis model. The algorithm allows a pre-existitthesis model
to be used as part of an analysis-by-synthesis loop.

2. We describe a physically-based synthesis model for images of hidtedwdigits that simulates
the actual hand-drawing process to generate the images. This model iednusing breeder
learning, and the resulting analysis-by-synthesis system is used feifyilag digit images.



CHAPTER1. INTRODUCTION 4

3.

1.2

Maximum likelihood learning of a mixture model whose components are Restf8nltzmann
Machines is intractable because of the need to compute the probability of wedé&ba under a
component RBM. We show how by defining the mixture model such that the mixpgprtions
are implicitly determined by the model parameters (rather than treating them|ast gpgrame-
ters), it becomes tractable to learn a mixture of RBMs using Contrastivedenee.

. We introduce a new type of top-level model for Deep Belief Networl&B) that allows separate

sets of features to be learned for each object class.

. We show how optimizing a hybrid generative-discriminative objectivetfan avoids the poor

Markov chain mixing that affects a top-level RBM model for a DBN. It gieetter results than a
purely generative top-level model on a difficult 3D object recognitiok.tas

Outline of the thesis

We end this chapter with a short summary of each of the upcoming chapters:

1.

Chapter 2. Approaches to Learning Visual Invariance for Object Recognition We give a
brief review of some of the existing approaches to solving the invariarodsem.

. Chapter 3: Analysis-by-Synthesis by Learning to Invert a Black Ba Synthesis ModelThis

chapter introduces the breeder learning algorithm and shows how itecasdal as part of an
analysis-by-synthesis approach to modeling images. We present soofi@pomncept type re-
sults. The material in this chapter is based on Nair et al. [2008].

. Chapter 4: Inverting a Physically-Based Synthesis Model of Handwriten Digit Images This

chapter is a detailed application of breeder learning for a recognition\téskonsider the prob-
lem of classifying handwritten digit images. The synthesis model simulates yis&plof an arm
trajectory drawing a digit. The corresponding analysis model is learriad bseeder learning.
Various ways of applying the learned model to the recognition task arédewad. The material
in this chapter comes from Hinton and Nair [2006].

Chapter 5: An Implicit Mixture of Restricted Boltzmann Machines This chapter shows how
a seemingly intractable mixture of RBMs can be learned if we are willing to giverupaving
mixing proportions as explicit parameters. We also consider a simple way of s1sif a model
for recognition. The material in this chapter first appeared in Nair and R{i2@08].

. Chapter 6: 3D Object Recognition with Deep Belief NetworksThis chapter presents a new

top-level model for a DBN, as well as a hybrid generative-discriminatigerithm for training it.
We apply the new model to a 3D object recognition task that requires ineartarpose, lighting,
and intra-class shape variations. We also consider a semi-supervisgha the task and show
how unlabeled data improves discriminative performance. The material irhdyder will appear
in Nair and Hinton [2009].
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Approaches to Learning Visual Invariance

This chapter reviews various methods described in the literature for sahéngsual invariance prob-
lem. The main ones considered are Lie group-based methods, slow faaalysis, multi-stage Hubel-
Wiesel architecture, interest region descriptors, and higher ordeelmyalich as higher order Boltz-
mann machines and multilinear extensions of PCA and ICA.

2.1 Introduction

Learning invariant image representations is one of the most basic problerosnputer vision. The
human visual system has the ability to recognize common objects at differsitibps, scales, orien-
tations, viewpoints, illuminations etc. Giving artificial vision systems similar capalsilisie difficult
problem.

There are two types of learning problem we can consider regardinglvistariance. In the first
type, a set of transformations is pre-specified based on prior knogyladd the goal is to learn a model
that is invariant to these known transformations of the image input. This is théepn that is addressed
by the vast majority of papers on visual invariance. In many real-wondiaions there is much prior
knowledge about which transformations the model should be invariantot¢éea®ning algorithms that
are designed to use pre-specified transformations are very usefaliticg.

In the second type of problem, the invariant transformationsat@re-specified. Instead, trans-
formation invariance of the learned model comes through generalizatias.isTd much harder prob-
lem, and fewer papers have attempted it (Hinton [1987], Memisevic and Hi28&7]). For example,
Memisevic and Hinton [2007] describe a model that learns to represasfdranations between pairs
of images without any built-in knowledge about specific transformationis type of learning is more
general and potentially more useful.

The rest of the chapter describes a number of learning approachidsatleabeen proposed for
solving the visual invariance problem.

2.2 Learning invariance to Lie transformation groups

Consider an image transformatiog, parameterized bw. For example,, could be translation on a
pixel grid, wherex is a 2D vector that specifies the number of pixels for horizontal and vettares-
lation. The set of transformatiorig corresponding to all possible values@fform agroupif (1) the
composition of any two transformations is another transformation in the sarfudoseirg, (2) the com-
position order does not mattexgsociativity, (3) there is a uniquelentitytransformation, and (4) every
transformation in the set has a unigueersetransformation. Typical image transformations, such as
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translation with wrap-around across image boundaries, satisfy the abodé@ions. For example, as-
suming wrap-around, two translations can be composed into another ti@mdlae order in which two
translations are applied does not matter, zero translation correspon@stityicand every translation
t, can be undone by_,,.

A Lie transformation groupsatisfies the additional condition thatis differentiable with respect to
a. This means that applying, (o« € ®™) to an imagel € " produces amn-dimensional (typically
nonlinear) manifold in image space.

The main advantage of Lie transformation groups is that they provide a mdtbaliyaconvenient
way of modeling many image transformations that are of practical relev&@ineet,, is a continuous
function of a, it becomes possible to consider infinitesimally small transformations. If weesgjthe
effect oft, onI as a Taylor series, then an infinitesimal transformation can be repreggrredcating
all the terms in the series that are higher than first-order. The result is ge irepresentation that is
linear ina. Therefore, infinitesimally small transformationsidfe on anm-dimensional plane in image
space, and this plane is tangent to the manifold of transformed imagegaia result, in practice, Lie
groups allow small discrete transformations to be modeled approximately aaimtasd linear algebra.

Another advantage of Lie transformation groups is that, under certaima$i®ns, it is possible to
derive a closed form expression for the entire Taylor series (i.e. withaucating any terms). The basic
idea s to first define a model for infinitesimally small transformations. Givemibidel, arbitrarily large
transformations can be created by composing infinitely many small transfonmatiben a closed form
expression for this infinite composition is derived based on the model fdt saresformations. So Lie
groups can be used to define mathematically convenient models of arbitregigyttansformations as
well.

Note that discrete image transformations (e.g. pixel-wise translation) danotlfie groups be-
cause they do not satisfy the differentiability condition. But we can alveaysert a discrete pixel
image into a smooth, differentiable mapping fréth (the 2D pixel coordinates) t& (pixel values) by
convolving it with a 2D Gaussian filter. Then it becomes sensible to consifiigtésimally small trans-
lations, rotations etc. applied to the continuous version of the original imagee ansformations are
inherently non-smooth (e.g. reflection) and does not have an equiealetinuous version, so they do
not form Lie groups as well.

An example of applying Lie groups to learning invariant image represengatothe work by
Simard et al. [1996]. They propose two different approaches fonileg an image classifier that is
approximately invariant to a set of pre-specified transformationgaigent distanceand (2)tangent
propagation Let s(I, «) denote the image generated by applying the transformatioo I (I € R",

a € 1™, as before). Also, letv = 0 correspond to the identity transformation, i.e(/,0) = I.
Computing the Taylor series expansions¢f, o) with respect tax and truncating all terms higher than
first-order gives

s(I,o) = I + Jay, (2.1)

whereJ = 85&‘” la—0 IS the Jacobian matrix of. (The expression for computing) depends on the

set of invariant transformations that we pre-specify, and can beedkeainalytically for many common
types of transformations, as shown in Simard et al. [1996].) This isrtlddmensional tangent plane
that approximates the manifold in the vicinity bf

The basic idea of tangent distance is the following: given two im@geasad/,, compute the tangent
planes for both of them, and then let the tangent distance between the imagdkealistance between
their corresponding planes. Note that, by definition, any two images that tizecsame tangent plane
will have zero tangent distance between them. This makes it approximatefiaim@ small transfor-
mations because images generated by such transformations would lie @mny(@tose to) the tangent
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plane. The results on the MNIST classification task show that a neaighboer classifier using tan-
gent distance significantly outperforms Euclidean distance. Examplesefdrenations that were used
in this task are translation, rotation, scaling, and thickening.

Tangent propagation is a way of incorporating approximate transformiatiariance into a classi-
fier learned by gradient-based optimization. In addition to the usual costidn that is used to learn
the classifier, an extra regularizing cost is added to enforce approxinvaréance of the classifier to
a set of pre-specified transformations. Supp@gé!) is the function being learned (parameterized by
the vectorw) using a training set oV imagesly, ..., Iy. We want it to be approximately invariant to
the transformation,, of its input for smalla.. In other words, we wantr,, to have approximately zero
gradient along the directions in image space in which the transformations tpodha training image.
The extra cosE, added to the usual training cost function is:

The main insight from tangent propagation is that it shows how the diffietglity property of Lie
transformation groups can be exploited to incorporate invariance in gtaused learning methods.
The alternative is to apply a large, discrete set of small transformations tmathig images, include
these synthetic images in the training set with the same label as the original iraadethen train
a classifier as usual. Tangent propagation achieves the same effegtuchamore direct manner by
taking advantage of the differentiability of the transformations.

Another way of using the tangent plane approximation to the continuouddraraion manifold is
proposed in Hinton et al. [1997]. They train a mixture of factor analyadtsan additional term in the
cost function that penalizes poor reconstructions of tangent vedteesch training image. The result
is that the model learns to reconstruct not only the training images, but &doatisformed versions
of those images produced by a set of pre-specified continuous traregfons. So the overall model
consists of a set of local, linear models that together form a global, nonlmedel of the image data.

Papers by Rao and Ruderman [1999], and Miao and Rao [2007] tleee eéxamples of learning
visual invariance using Lie group theory. (The latter is mostly a longetiorers the former.) Unlike
Simardet al,, they do not truncate the Taylor series expansiog(df«a) (as in equation 2.1). So their
model can handle arbitrarily large transformations. But they assume thgriattlient of the transforma-
tion s(7, «) (with respect tax) at an imagd depends linearly of. In other words, each column of the

Jacobian matriy/ = dsgff) la=0 Is & linear function of:

J=[GiI | GoI | ... | Gwl],

whereG; is ann x n matrix. If we substitute this assumption into the vector form of the Taylor series,
we get:

s(I,a) = Z (Zale> (I,a) ;(Zaz ) I, (2.2)

— 6(2211 @iGi) T (2.3)
So the linear gradient assumption results in a closed form expressioreféayor series in terms of

the matrix exponential. We can think of equation 2.3 as defining a generatihel inavhich the latent
representation consists of a “normalized” imdgend a transformation, and the model parameters are
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the matrices;. Given particular values fof anda, the observed image is generated by transforming
I according tax usings(1, ).

To learn this model, Rao and Ruderman [1999] note that for infinitesimally smalaiks ofa, we
can truncate the higher order terms in the Taylor series. The resultingagigaenodel ishilinear in I
anda. (Bilinear models are discussed in more detail in section 2.9.) So

s(lya) I+ Ja=1+ (iaiGZ) I=1+ (iiailk(;ik> ,

=1 k=1 1i=1

whereq; is theit® component ofy, I}, is thek! pixel of I, andG}, is thek!* column of the matrixG;.
They first learn this bilinear model using pairs of images that are related bglkanown, infinitesimally
small, transformation. Once the matric&s are learned this way, they simply substitute them into
equation 2.3 to obtain the model for arbitrarily large transformations. So suergtion of infinitesimal
transformations is used only for training, just to learn the model param&tieice the same parameters
are used in the large-transformation model, there is no need for suckwan@Etson at test time.

The observed imagF is assumed to be generated4§¥, «) and then corrupted by additive Gaus-
sian noise with an identity covariance matrix. The maximum likelihood solution isidgiyeninimizing
the squared error between the observed image and its reconstructianrhpdel. The training images
are generated by taking small natural image patches and applying smdibtnaasons to them (e.g.
subpixel translations). At training time, the latent “normalized” imdge assumed to be given (it's
the original, un-transformed patch), ands inferred by gradient descent on the squared error between
the artificially transformed image and its reconstruction by the model. Withd« both known, the
model parameter&’; are updated by the negative gradient of the squared reconstruation At test
time, I and« are inferred by coordinate descent on the squared error betweéssthienage and its
reconstruction by the large-transformation model in equation 2.3.

The later paper by Miao and Rao [2007] apply the above model to vidatgeregs, where they
assume that two consecutive frames undergo a transformation that is smaghefor the bilinear model
to hold approximately. This is a more realistic application than the previous oaadethe transformed
images are not generated synthetically. However, the video sequegaesthis fairly simple (a camera
undergoing 1D translation above a toy town scene). Their results shovitehgporal slowness” can
be used to correctly learn a transformation model (at least for a simplesegjuwithout an explicit
supervisory signal specifying what the transformations are.

2.3 Slow feature analysis

Temporal slowness is the idea that high level visual representationseha should vary more slowly
over time than the low level sensory inputs. For example, as a person nimugssaroom, the identities
of the (stationary) objects in the room should remain constant even thougttitied input is changing
dramatically. In the case of Miao and Rao [2007], they assume that the iatage/ stays constant
across two consecutive frames, and the changes between the franbesssglained as a transformation
of I. This idea was proposed by Hinton [1989] as a general principle fonileg invariant visual
representations without a teacher. An early example of an actual implemartdbtice idea is the paper
by Foldiak [1991].

Here we look at a more recent paper by Wiskott and Sejnowski [200@y propose an algorithm
for learning a slowly-varying latent representation of temporal signdis.répresentation is linear, and
the cost function used for learning is the time-averaged magnitude of therepeasentation’s temporal
derivative. In the following description, we use the same notation as in itj@alrpaper.
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The input is a time-varying/-dimensional vectok(t). The goal is to learn d-dimensional rep-
resentatiory (¢) such that the temporal derivativég; /dt (for j € 1, ..., J) are small.y(¢) is assumed
to be a linear, instantaneous functionofi.e., y(t) = Wx(t), whereW is a.J x J matrix. The;"
column of W, w;, is computed such that it minimizédej/dt)2> under the following constraints:

(yj) =0,

<y32> =1,
(yjryj) =0 Vj' <.
(The symbol() denotes time-averaging.) The first constraint is used only to simplify theessions
for the other two constraints and is not essential. The second constrainit @ariance excludes the
trivial constant solutiory;(¢) = 0. The third constraint of decorrelated componentsyf@tr) excludes
solutions where the components are simply replicas of each other.

Assume that the input(t) is whitened (zero mean, identity covariance). Using the relationship
Y; = ijx the above constraints can be re-written as

(y;) = w} (x) =0,

() = wj (xx
(yjrys) = wj(xx")

T>wj = w;‘-ij =1,

W :wfwj =0 vV <ij

These constraints specify that the matVix must be orthogonal. In addition, it8" column must
minimize .
dx dx
2\ _ T
(dy; /dt)?) = wii = =2 hw;.

Such a matrixi¥’ is given by the eigenvalue decomposition (¢} %’;Ty (In practice the temporal

derivative is approximated by finite differences.) So the column¥ @fre the eigenvectors ()1% %T>.
The components of(¢) can be ranked from slowest to fastest by sorting their corresponidjegv@lues
from smallest to largest.

This particular formulation of slow feature analysis by Wiskott and Sejnosless not maximize the
likelihood of the training data. So it is not clear in what sense the learnedsemtation is meaningful
other than that it varies slowly in time. Slowness alone need not producangédmepresentations
of the input signal. For example, simply lowpass filtering the input signal cagugce an uninteresting
slow representation. Such a solution is avoided in this formulation by forefhgto depend only on
the value ofx for time ¢. Even with such restrictions, it is not obvious why the learned represamta
should be interesting.

Also, the above approach cannot be directly applied to a model with a ldamanlinearity. (The
authors mention using fixed nonlinearity on the inputs, which of course is always possible.) The
reason is based on an insight from methods that learn a nonlinear similaritg bettween data vectors
(Salakhutdinov and Hinton [2007]). One way to learn a similarity metric is to trparametric mapping
from the high dimensional data space to a low-dimensional output spacedh &clidean distance is
semantically meaningful. Suppose the mapping is trained to maximize the mutual ititorimetween
the outputs of two similar data vectors. Computing entropy exactly is expeiasiveulti-dimensional
real-valued outputs. A tractable approximation is to assume Gaussian distriuifeits and compute
the entropy as the log determinant of the Gaussian’s covariance matrighiBapproximation allows a
trivial solution in which a sufficiently flexible nonlinear mapping makes the iidgdial output entropies
arbitrarily large (by making the log determinant large), while keeping the jaitgud entropy not much
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larger than any of the individual entropies, thus making the mutual informatioitrarily large. The
approximation can be safely used only to learn a linear mapping, becauseaa irapping cannot
simultaneously achieve large individual entropies, an identity covariantéxmand a joint entropy
that is not much larger than any one individual entropy. Using a nonlimegping, it is possible
to satisfy all three of these constraints. The same argument applies to thefaboulation of slow
feature analysis.

2.4 Models based on discretized transformations

If the set of transformations that a model should be invariant to is disanétsraall, then a brute-force
approach to invariance might be practical. For example, many face detegtittims do an exhaustive
search for faces in an image at a discrete set of scales and positiase Jystems consist of a local,
fixed-scale face detector which is applied to local patches in the image aisalibfe scale-position
combinations. So the idea is to build a transformation-normalized face modelanddt on invariance
by exhaustively applying all possible transformations to the normalized molislisTa general method
for achieving invariance to a discrete set of pre-specified transfomsatih can be seen as a special
case of the “normalize first and then recognize” strategy where the mwhpessible transformations
is small, so it is feasible to run the recognizer on all possible normalizations.

The advantage of the above approach is that the transformations cabitberya— unlike in other
approaches, they need not be continuous or small. The disadvantageifgtire are different types
of transformations (translation, rotation, scaling etc.), then all possibleicatidns of them need to be
considered, and so the set of transformations grows exponentially witluthber of types. Fot types
of transformations, withn of each type, there are™ possible combinations. Even a modest number of
transformation types can be too expensive computationally.

Frey and Jojic [2000] present a set of models based on the aboveaahprThey treat transfor-
mation as a discrete latent variable, and model the transformation-normalizgel im&1) a Gaussian,
(2) a mixture of Gaussians, (3) a factor analyzer, and (4) a mixturectdrfanalyzers (Ghahramani
and Hinton [1996]). The pre-specified transformations are implementéiddn/permutation matrices
(one matrix per transformation). So the observed image vector is relatedyliteethe transformation-
normalized image vector. Once the discrete latent variables (the transfamraatidhe mixture compo-
nent) in a model are clamped, it reduces to a standard linear-Gaussian frtoeldIscrete variables can
be marginalized out by brute-force summation over all their possible settirsgsi#ing the summation
is tractable, all four models can be trained unsupervised with EM, withguliadels specifying which
transformations are observed in the training images.

Thetransformed Gaussian modeses a Gaussian distribution over the transformation-normalized
image and a multinomial distribution over the transformations. It tries to model taeagavarious
transformed versions of a single prototype image. Faesformed mixture of Gaussians modehn
extension in which each mixture component is a transformed Gaussian modet&d of one proto-
type, now there are multiple prototypes, each of which are transformeddaog to prototype-specific
transformation probabilities. Theansformed component analygi§CA) model is the same as the
transformed Gaussian model, except the distribution over the normalized imggen by a factor
analyzer. Thamixture of TCA(MTCA) model uses a TCA model as its component distribution. In
all these models the normalized image’s distribution is shared across albimaasibns, which signifi-
cantly reduces the number of parameters compared to, say, a mixture modielstioae component per
prototype-transformation pair.

A modification of the MTCA model makes it possible to combine the local, tangené@pproxi-
mation to the continuous transformation manifold with the global, nonlinear ajppation to the man-
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ifold given by the discrete set of transformations. (This is assuming thtieatransformations being
considered are continuous.) The trick, suggested in Hinton et al. [1i89@]replace each factor loading
matrix in MTCA with a matrix that contains the tangent vectors computed at thespnding mixture
component’s mean. This fits a plane which approximates the transformationofddnitally at the
component’s mean. The overall model then consists of a set of locally linedelsihat together form
a nonlinear model of the transformation manifold.

2.5 Invariance in face detectors

Almost all recent face detectors described in the literature are translatioscale invariant. A standard
approach is to first train a classifier to discriminate between faces anfhoes- The face patches used
to train this classifier are pre-segmented and normalized (e.g., the eye Iscatioforced to have the
same pixel coordinates across all face patches). So the classifier itsgtfesplicitly designed to have
translation and scale invariance with respect to its input. At test time, the infhe face detector is an
image that contains an unknown number of faces in it. The faces (if aey)etected by independently
applying the binary classifier to local windows in the image at all possible lotatad scales. When
a local window matches the position and the scale of a face in the image, thg tlimssifier outputs
the face class label, and the window is then taken to be a detected facesarble sver locations and
scales must be done over a sufficient range of values and with enesiglition to make sure that none
of the legitimate faces in the input image are missed.

The same brute-force approach can potentially be applied to achievems@to facial pose. The
binary classifier can, in principle, be trained on faces in all possiblespd®at, as explained in Jones
and Viola [2003], in practice it is difficult to train such a single classifieruagtely. For some non-
frontal poses (e.g. profile views), the face image will contain a signifiaargunt of background. So
the problem of segmentation becomes much more important than in the casefobotdi/poses. Also,
standard methods for normalizing the training faces (such as placing thatfed pixel coordinates)
are no longer meaningful when all poses are considered together.

Rowley et al. [1997] build a rotation-invariant face detector using aifiassained on faces in the
frontal, up-right pose. The system can only deal with in-plane rotatibfeces, which unfortunately
rules out a large number of poses that produce out-of-plane rotafibes.detector consists of a neural
network that is trained to estimate the rotation angle of a face. They first #pplgetwork to a local
image window. The estimated angle is used to rotate the local image patch so tfmethened) face
becomes up-right. The binary classifier is then be applied to the rotationatized face. In the case of
a non-face patch, the rotation estimator will output a meaningless anglegtatidg the patch by that
angle is unlikely to hurt the subsequent classification step.

Jones and Viola [2003] propose a similar system, but instead of trainingyke silassifier on up-
right faces, they discretize the entire range of orientations into a small mwhblkasses and train one
classifier per orientation class. A decision tree classifier is used to assigrage patch to one of these
orientation classes. Although the underlying task is regression, theyittesatlassification. Then the
face/non-face classifier trained for that orientation class is used toedetidther the patch is a face.
The drawback of the general detection strategy adopted by both Rowédy[#997] and Jones and
Viola [2003] is that if the orientation estimator fails, then the face detector wilaf&well. So the
detector can only be as good as the orientation estimator itself.

The original Viola-Jones face detector (Viola and Jones [2001]) hés scale and position in-
variances, but they are implemented in an interesting way. The face/oeritssifier has a cascade
structure, with each stage of the cascade being a stricter test for a &cththearlier stages. A stage
can reject an image patch as a non-face, in which case no furthespitngés done on that patch. But
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a patch which is labeled as a face by one stage is passed on to the nefbstagber checking. Only
those patches that pass through all the stages are reported as deteese®b only the very first stage
of the classifier is applied exhaustively at all scale-position combinatiohs. fifst stage contains a
small number of low-level features, making it somewhat likeaxrnedlow-level interest region detec-
tor for faces. The results show that, in practice, even a simple, fast thst finst stage can rule out vast
regions of the input image as non-face. Therefore most of the wordctde and position invariance is
done through low-level processing that is fast and efficient.

Osadchy, Miller and LeCun (Osadchy et al. [2004]) present anaib@roach to pose-invariant face
detection. They train a convolutional neural network to simultaneouslyperface/non-face classifi-
cation and 3D pose estimation. Instead of representing the pose with 3 rsythiegroverparameterize
it with a 9D representation. (The mapping from the pose to the 9D représentaspecified by hand.)
Since specifying the pose requires only three degrees of freedomaliigpeses form a 3D manifold
in the 9D output space. A convolutional neural network is trained to taleaifmage patch as input
and compute its corresponding correct 9D pose representation as, evtipe for a non-face patch, the
network is trained to compute a 9D vector that is far away from the 3D manifoldliol poses. At test
time, a patch is classified by first inferring its 9D pose representation usngpttvolutional network.
This 9D vector is then projected on to the 3D manifold of valid poses. If therdisthetween the
original 9D vector and its projection is greater than a threshold, then thie isattassified as non-face.
Otherwise it is classified as a face with the pose given by the projectionteBa#s show that training
the network to do the two tasks simultaneously results in better accuracytfootibem than indepen-
dently training a separate network for each task. The trick here is to trace&bn-face classifier with
labels that are much more informative than binary labels. The extra informatomided by the pose
label results in a much better classifier.

2.6 The Multi-stage Hubel-Wiesel Architecture

This is a class of models for invariant pattern recognition that is based dalliwvging approach:

(1) Replicate local image features by applying various amounts of whdtansformation the recogni-
tion needs to be invariant to. For example, to achieve rotational invariarioeal feature is replicated
by applying various amounts of rotation to it.

(2) Pool the activations of the replicas over a small range of transforngitito a single activation that
is invariant to which of the replicas in the pool is active. For example, aipaansidered active if any
one of the rotated versions of a feature in that pool is active. So its feotivia invariant to rotation.
Then learn features on these pooled activations to produce ‘feafifiestares’.

(3) Gradually build up invariance by repeating the above two steps ovey lagers of features.

The above strategy is inspired by experimental results from neuroscaut the mammalian visual
cortex. Position and scale invariances seem to be built up hierarchicallg ivetfitral stream using
transformed replicas of features, and the receptive field size tendsréagecwith the hierarchy level.
The namanulti-stage Hubel-Wiesel architectuveas suggested in Ranzato et al. [2007]. Examples of
models that have this architecture are convolutional neural networlGufLet al. [1998]), Neocog-
nitron (Fukushima [2007]) and HMAX (Riesenhuber and Poggio [129%hey differ mostly in the
details of how the three steps are implemented.

Convolutional neural networks learn local features that are replicatexss all possible pixel posi-
tions via convolution. Features over a small local neighbourhood afegtamether by an average. This
makes a second level feature invariant to changes in the positions oftHeviel features within its own
pool, because the averaging operation is invariant to permutations of its.inpimilarly, the second
level features are replicated by convolution and pooled to form the inptie third level features, and
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so on. As more levels are added, the features become increasingly pwsididant. A fully connected
network is usually applied on the activations of the highest-level convohitieatures to compute the
final output of the network (e.g. a class label), and the entire hierardhgied simultaneously, end-
to-end. A feedforward pass through a convolutional network is cortipotdly efficient because image
convolution is a fast operation in modern CPUs. This makes translation ingarialatively cheap to
implement. Incorporating other types of invariances can be more experfsivexample, rotational
and scale invariance can be included by first generating various ratatestaled versions of the input
image and then applying the convolutional filters to them. But the large humhmmabinations of
transformations makes this approach expensive.

HMAX ! is meant to be a model for theoretical neuroscientists studying object igoagn the
human visual cortex. The pooling of feature activations is done by a mesatipn. So among all the
feature activations in a pool, the largest one is picked to be the pool'safictiv Also, learning is done
only at the highest level of the network, and the lower level featurebamd-coded. The features in
the lowest level are oriented bar and edge detectors. The learned mem@d the architecture is a
Gaussian Radial Basis Function network that simply stores the top-lewatdezctivations for all the
training images and trains a linear network from the feature activations teeieed output (e.g. the
pose of an object) by supervised learning. The idea is that the same, dbtedf feature layers are
used for many different visual inference tasks, and task-specifigifgaoccurs only at a high level, to
convert the top-level feature activations into desired outputs.

One limitation of the above models is that they are limited to producing invariancdysomll,
local transformations in the image because allowing larger invariances dilteethe discriminative
power of the features. Two different objects containing the same feattieg different positions cannot
be discriminated by a fully translation-invariant detector for that featunee ®Way to get around this
limitation is to explicitly model not just the “what” information, but the “where” infiaation as well.

It is easy to explicitly retain the “where” information in the HMAX model simply byrsig which
feature in a pool produced the maximum activation. Ranzato et al. [200@tparate this idea into
learning an autoencoder-type network with convolutional kernels teagsaentially “movable parts” of
objects. The trick is to learn the kernels by backpropagating gradientsronfythe image locations
where they fired most strongly, rather than from all locations in the imagev¢asd be done in a
standard convolutional network). This can be done by setting the faatypef a kernel (i.e. the output
of convolving the kernel with the image) to zero everywhere except albttaion of the maximum
activation. The kernel parameters are then updated using gradientsteshgmly for that location. So
if two different objects have the same local feature (“part”) but at thffiépositions, the model can learn
a single feature for that part and still discriminate between the two objects logéson of maximum
activation.

The learning algorithm used in Ranzato et al. [2007] is an extension of ’iaramsupervised
learning algorithm for training an encoder-decoder architecture @aret al. [2006]). As in the ear-
lier algorithm, the main steps are: (1) infer a hidden representation, oy tadéne input image by
forward propagation through the encoder, (2) optimize the code witlecesp reconstruction error by
backpropagation through the decoder, (3) update the encoder paraméh the optimized code as its
target output, and (4) update the decoder parameters with the optimizedsidsiénput and the image
as the target output. The new algorithm uses modified versions of the sgmeste an encoder with
a convolutional architecture, the code now includes the pixel coordichtde maximum activation
location for each kernel. This extended part of the code is kept fixettpnZd The feature maps are
set to zero at all locations except those corresponding to the maximuratatiyone location per fea-
ture map). Steps 3 and 4 remain unchanged. Results in Ranzato et al. $80@i7that applying this

HMAX stands for “Hierarchical Model and X” (http://riesenhuberlaluriegeorgetown.edu/hmax.html)
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algorithm to MNIST produces kernels that resemble “movable parts” flodwatten digit images.

The strategy used in this paper to make the features translation-invariaattgal only because
there is a simple method for estimating the position of a local feature within an imageit iB not
clear how this approach can be extended to other types of transformatimtsas rotation. Also, the
assumption here is that a particular part/feature can appear only oncemaga because only a single
location in the feature map is kept. This seems like a strong assumption.

2.7 Local interest region detectors and descriptors

An important class of algorithms for invariant visual recognition is basettheindea of first detecting a
set of local regions in an image that are “interesting” in some $ease then computing descriptions
of those regions. Both thdetectionanddescriptionsteps are designed to be approximately invariant to
common image transformations (e.g. affine transformations). The hope thétstme descriptors can
be reliably re-computed from a transformed version of the original imageatdhé two images can
be matched even under large transformations. A well-known example of gafyalgorithm is SIFT
(Scale Invariant Feature Transform) by Lowe [2003].

What makes the local descriptor approach different from other appes to invariance is that it is
purely low level. The algorithms for detecting and describing the local rediane no built-in notion
of objects or any such high level image representations. Instead, theynaply trying to find image
patches that are highly re-detectable under various transformatiorer¢haft interest in typical vision
applications (e.g. affine transformations, illumination changes etc.). Therigefow level nature
of these algorithms makes them a useful front end for a wide variety dicafipns, such as object
recognition, image retrieval, and visual SLAM (simultaneous localization amupbimg).

A large number of algorithms have been proposed for both region detemtidmescription. A
review and performance evaluation of these methods is presented in M#ydaod Schmid [2005].
It considers five region detection methods and ten region descriptaggegion detectors are all based
on similar ideas and differ only in the computational details, so only the partiouddinod used by
SIFT is described here. (Not surprisingly, one of the conclusionsikblsljczyk and Schmid [2005]
is that the choice of the region detector does not significantly affectaigts’s performance.) There
is more variety in the ideas for region descriptors, although many of theobestmers are essentially
variants of the one used by SIFT (e.g. shape context (Belongie eD8R]R and gradient location and
orientation histogram, or GLOH (Mikolajczyk and Schmid [2005])).

SIFT’s region detector aims to find patches in the input image that are likely te-tetectable
across scale changes of the image. It performs a brute-force searcall possible positions in various
scaled versions of the image. At each scale, the response of a diffeofiGaussian (DoG) filter
is computed for all image positions. A scale-stable region is taken to be ceiteegixel location
that produces a local extremum in the DoG responses across scaemtdition is this: consider an
idealized image containing a white circle on a black background. A DoG filtesthgs off with a small
receptive field and gradually gets scaled up will produce its maximum (or miniriyixel colours
are flipped) response when the on-centre part of its receptive filydita the circle, regardless of the
scale of the circle. Therefore the circle can be detected at any scaledtinpan extremum in the filter
response as a function of scale. In real images, this criterion tends taddimdike homogenous regions.
Note that the detector is invariant to scaling and rotation of the image, but medr® general affine
transformations. Affine-invariant alternatives have been propdgédlajczyk and Schmid [2005]),
but in practice, the invariances in the region descriptor can compensdbefdetector’s lack of affine

24nteresting” typically means that it is possible to extract a description ofébimn that is stable over a range of viewing
conditions.
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invariance (Lowe [2003]).

Once the scale-stable image locations are identified, descriptors are cdrfgrutege pixel neigh-
bourhoods centred on those locations. Each location has a scale tesbogth it. The descriptor for
a location is computed usingl® x 16 pixel patch from the original image rescaled by the location’s
scale. So d6 x 16 neighbourhood may correspond to a much larger neighbourhood in itfinadr
image. The region is then assigned an orientation by computing a histogramabinage gradient
orientations (discretized into 36 bins) from th&x 16 patch. The bin with the most mass is selected to
be the region’s orientation. If many bins have significant mass, then multigilensare created at the
same location, but each with a different orientation.

So each region has its own location, scale and orientation, which togethrer deéigion-specific 2D
coordinate system. The region’s descriptor is computed with respect totindicate system. As long
as aregion’s axes are estimated correctly from a transformed verdiom afiginal image, its descriptor
will remain the same. This is in effect the low level version of the object neitiog approach that first
estimates an object-centric reference frame and then describes theaeljit to that reference frame.

The descriptor consists of histograms of gradient orientations computedifi®16 x 16 patch.
Gradient orientation is discretized into 8 bins. Thex 16 patch is divided into 16 non-overlapping,
smaller patches, each of whichdsx 4. One gradient orientation histogram (8 numbers) is computed
per smaller patch to producelé « 8 = 128 dimensional, real-valued descriptor for the region. The
histogram-based representation provides invariance to the specifid spafiguration of the gradients.
The 128-D feature vector is normalized to unit length for approximate illuminatic@ariance.

One approach to object recognition using SIFT is based on nearebboaigmatching of descrip-
tors. Given a test image containing an unknown set of objects and loaridyclutter, the descriptors
computed from the image are compared to descriptors computed from astatdibeference images of
known objects. Euclidean distance is used to measure the similarity betweeseatiwefvectors. Since
the SIFT features in the testimage need not all be produced by objectshtseto be a way of rejecting
some of them as background clutter. One method is to reject a test image fastbackground’ if it
matches multiple features in the database with similar distances as its nearesse&alture. In other
words, for a feature to be considered ‘foreground’, it has to matchsiogle database feature much
better than to any other database feature. Once a set of test imagedéatergatively matched to a
particular object in the database, each of them provides an indepgmddittion for the position, scale
and orientation of that object in the test image. If the predictions are inmahkoagreement, then the
object is taken to be present in the image. The biggest advantages of ghigelp to recognition is
that (1) there is no need for a pixel-wise segmentation of the image, ang (Xifg local features,
recognition is possible even under occlusion.

The constellation model by Fergus et al. [2003] is another approacljctebcognition using local
image descriptors. It uses the Kadir-Brady region detector, which is sitaitae one used by SIFT. At
each pixel location in the image, the detector computes the entropy of the histofjpixel intensities
in a circular region of various scales (i.e. radii) centred at that locaticeating the entropy{ (s) as a
function of scales, image locations that produce a local maximumf(fs) (over some fixed range of
scales) are selected as interesting. This detector tends to find blob-liGges@gthe image.

In the constellation model, interest regions are used as candidatest®oppabjects. Each object
consists of a set of parts, and an object-specific model specifies distnibdior the relative locations
and appearances of those parts. Given a test image containing at rmadiject, the region detector is
applied to the image to find interest regions. All possible assignments of integémns to the parts of an
object are considered (including not assigning any regions to a padhatows for occlusions). Any
region not assigned to an object belongs to the background. A partasgagnment of the regions to
the parts of an object in effect defines an object-based refereamoe to explain those regions. Relative
to that reference frame, the probability of the regions being producdkebgbject is computed. This
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allows the recognition system to decide whether an object is present in the amagif so, which

object it is. Here the segmentation problem is solved in a brute force wagrsidering all possible
interpretations of the detected regions as belonging to the object or thgrbaoki. This is practical
only because the number of parts in an object model and the number ofedetegions in an image
are both restricted to be small. The approximate scale invariance of the mgfiector makes the
recognition less sensitive to scale changes in the objects.

2.8 Perceptrons and SVMs

Minsky and Papert [1988] consider the invariance properties ofepémans. Theilgroup invariance
theoremshows that the perceptron can only implement simple transformation inval@sifiers that
check whether the area occupied by the active pixels in a binary imagesiteigtkan some threshold.
It cannot implement a classifier that, for example, distinguishes two diffeteracters with the same
number of active pixels regardless of where they appear in the image. isTh@t surprising since
transformation invariant classification of two different input patternsld/oequire nonlinear features
of the input image. Perceptrons can be made more powerful with higher wnits that combine many
input units into one (i.e. make the inputs nonlinear features of the pixels).exanple, Giles and
Maxwell [1987] show that it is possible to handcraft features for asledion invariant perceptron by
multiplying together pairs of input units to produce a higher order input ®p#rceptron.

The impossibility results for the perceptron no longer apply once nonlinedeh units are in-
cluded in a neural network. Hinton [1987] showed that a feedforwartdal network with hidden units
can learn to do translation invariant classification of different input pateihe network is trained
to discriminate among sixteen patterns, each of which is allowed to undergad$dation (with wrap
around) without changing the class label. The training set contains onhsatof all possible combina-
tions of patterns and translations, so the network cannot simply memorizpa&isein at every possible
position. The results show that it is able to generalize correctly to familiar patsgpearing in novel
positions. This work is one of the few examples in the literature where a mateklénvariance to a
transformation without having it pre-specified and built into the model bylhan

A number of methods have been proposed for incorporating invariantesupport vector ma-
chines. DeCoste and Scholkopf [2002] describe two simple methodari{ig! support vectorand (2)
thekernel jittering The virtual support vector method has three steps: (1) train an oydavl on the
training set, (2) expand the training set with artificial examples generategglying the desired trans-
formations on the support vectors of the trained SVM, and (3) train a MW@ the expanded training
set. Steps 2 and 3 can be repeated if necessary. The main advantagapptbach is that the training
is computationally cheaper than applying the transformatiomad toaining cases and then learning on
the resulting (much larger) set. Since the learning computational cost felsSWows quadratically
with the number of training cases, the savings can be large. This appgraadieen shown to do well
on the MNIST classification task, with an error rate(0$6% (DeCoste and Scholkopf [2002]). Its
drawback is the assumption that the transformed versions of only thersupptors are needed to learn
an invariant classifier. For example, a training case that is originally nagppost vector may turn into
one once a transformation is applied to it. The virtual support vector methodeigthis possibility.

Kernel jittering uses an ordinary kernel which may not have the desiratiamces, to define a
new kernel that does have them. The output of the new kernel for aopa@ctors is computed by
(1) applying all desired transformations to one of the vectors, (2) etafuthe ordinary kernel on
the resulting vector pairs, and (3) outputting the result for only the nepeasof vectors (nearest
according to the oridinary kernel). Under some assumptions, this new ‘jittkeenel satisfies Mercer’s
conditions and can be used in an SVM. Decoste and Scholkopf mention thraicitice, the conditions
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are almost always satisfied. The main drawback of this approach is thral lkevaluations become
expensive if the set of possible transformations is large.

Scholkopf et al. [1998] suggest another approach that incorpoagigroximate local invariance by
modifying the dot product between two data vectors. Consider a modifieat [8¥M classifier of the
form

!

F(x) = sgn(>_ cuyi(Bx - Bx;) +b), (2.4)

=1

wherex is the input vector,f(x) is the binary classification functiod,(x1,v1), ..., (x;,y)} is the
training setq; are the learned multipliers, aids a scalar bias. The matriX is a linear pre-processor
applied to the classifier's input. We want to chodssuch that the resulting classifier is approximately
invariant to a pre-specified transformation (e.g. translation of the inpuiye® is determined some-
how, the modified SVM is learned in the usual way by maximizing the followingesgion:

I I
1
E 1 @G =3 k§ laiyiakyk(BXi - Bxy,), (2.5)
i= i,k=

subject to the constraints, > 0, Zﬁzl a;y; = 0.

B is selected as follows. Let(x) = Zﬁzl a;y;(Bx - Bx;) + b, so f(x) = sgn(g(x)). Transfor-
mation invariance of(x) is sufficient to make the classifier invariant. (This is not a necessaryteond
because even if a transformation changes), but not its sign, it will not affect the classifier output.)
We can enforce local invariance gfx) to a differentiable, 1-parameter transformationby making
sure thaty(£,;x) does not vary with respect toat the identity transformation, taken to beftat 0. So
we need to minimize the following regularizer:

1< 09(Lix;) 2

Substituting the expression fg(x) into equation 2.6 gives

! ! 2
1 0
T Z (at <Z akyk(BEtxi . Bxk)> ) . (27)
=1 k=1 t=0
After some manipulations, this can be re-written as
l
Z aqyiony(Bx; - BCBTBxy), (2.8)
i,k=1
where z
1 (0L aLx;| \'
C== . 2.9
l Z( 8t t=0> < 8t t=0> ( )

Note that the tangent vecto%‘% have zero mean since the transformation gradient is evaluated

at the identity transformatiort & O)t.f'IQhereforeC is a sample covariance matrix of tangent vectors.

The simplest way to include the regularizer (equation 2.8) in the SVM objeftingtion (equation
2.5) is to pickB such thatBC BT = I. Then the regularizer becomes identical to the second term
of the objective function, and maximizing the objective makes the regularizegiom small, as we
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want. BC BT can be made equal to identity with the choiBe= C /2. If C is invertible, its inverse
square root exists becauékis a non-negative matrix. I€' is not invertible, then it is replaced by
Cy=(1-XNC+ M for0 < A < 1. Cyis invertible and non-negative becausés a non-negative
matrix. Scholkopf et al. [1998] call it theangent covariance matrix

We can think of the linear pre-processing donegbgs a form of transformation-specific whitening.
C (or Cy) is positive definite, so it can be decomposed’as SDS”, whereS is an orthogonal matrix
containing the eigenvectors 6f, andD is a diagonal matrix containing the corresponding eigenvalues.
SoB = C~1/2 = §D~1/28T Since the dot product is not affected by an orthogonal transformation
we get thatBx; - Bx;, = (D~Y/287)x; - (D~%/25T)x,. Computing the dot product of the vectors
pre-processed bl is equivalent to first projecting each input vector onto the eigenvectars scaling
the components of this projection by the inverse square root of the elgesyand then computing the
dot product of the scaled projection vectors. The eigenvecto€s with the biggest eigenvalues are
the directions in input space along which the transformation gradient hdsghest variance. Those
components of the projected vector are scaled down by the squaré tieetorresponding eigenvalues,
as done in whitening. As a result, the dot product after pre-procebsirig is less sensitive to the
transformation than the dot product in the original input space. This nmthkdiear SVM classifier
approximately invariant to the transformation.

2.9 Higher order models

Many of the standard methods for learning models of image data use a sihgielsdden factors
to explain the observed data (e.g. PCA, ICA, RBM). One way to extena timeslels is to use two
different sets of hidden units and form three-way cliques containingviilgle unit and two hidden
units, one from each of three sets of units. If the hidden units in one ofetsease clamped to a
particular configuration, the model reduces to the original form with a siipglelamped) set of hidden
units modeling the visible units. But now the parameters of this reduced madeal fanction of the
clamped hidden configuration, instead of being constant as in the origimal 5o the new model is a
higher order version of the original one. In general, the number aérdifft sets of hidden units can be
arbitrarily large.

The main attraction of higher order models is that the activities of one set déhidnits can
modulate the interaction between the remaining sets of hidden units and the vistble®umodel with
only one set of hidden units also has this property, but in a much weakss.seor example, clamping a
hidden unit in an RBM also produces a different model over the remaindueh units and the visible
units by changing the biases into the visible units. But a higher order Boltzmanhine allows much
richer ways of modulating the model. A third order Boltzmann machine with two $étislden units
and three-way cliques (a clique contains one unit from each of thréecaetsase one set of hidden units
to modulate arentire RBM between the other set of hidden units and the visible units. This is more
powerful than just changing the biases into the visible units.

Higher order models are useful for learning invariant representat©mssider a third order Boltz-
mann machine trained on images in such a way that one set of hidden unésemgsrshape and the
other represents viewpomt Then at test time, given an image, the shape and viewpoint representa-
tions can be inferred by prolonged Gibbs sampling that alternatively updagetwo sets of hidden
units with the visible units clamped. So a viewpoint representation is inferredtaimeously with a
shape representation that is normalized for that viewpoint. This model implentenidea of doing
invariant recognition by imposing a view-specific reference frame onlfecband interpreting shape

3For example, during training constrain the activities of the shape units toebsathe for images containing the same
shape but different viewpoints, and constrain the viewpoint units similarly
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with respect to that frame. However, unlike other works fhrat infers a viewpoint andheninfers the
shape with respect to that viewpoint, this model infers both simultaneoustyid&a of simultaneous
viewpoint-shape inference by iterative settling in a three-way model vigisally suggested by Hinton
[1981], although that paper did not use higher order Boltzmann mactureplement the idea.

One of the main drawbacks of higher order models is that the nhumber of garangeows expo-
nentially with clique size. Suppose that therearseparate sets of units, each containingnits. If we
restrict them-way cliques so that a clique contains exactly one unit from each setgthe mestriction
an RBM has in its 2-way cliques), then there aré possible cliques. Allowing one free parameter
per clique, which is the most obvious way of extending a basic model to hagter, will requiren™
parameters. For example, a model with three sets of 1000 units each hasragaitiioneters in it, so a
massive training set is needed to fit it.

The alternative is to regularize the model so that its effective number oéeegf freedom is much
smaller thann™. One way is to allow only one free paramepar unitin each set, and then define
the parameter for am-way clique as the product of the parameters ofsthenits in that clique. It
is equivalent to taking the futiz-dimensional array of parameters and factoring it as the outer product
of m vectors, each one-dimensional. So in the case of = 2, the matrix of parameters is given by
the outer product of twa-dimensional vectors. In the casef = 3, the 3D array of parameters is
given by the outer product of threedimensional vectors, and so on. With this factorization strategy,
the number of free parameters is omly m, so the exponential growth with respectitois avoided.

In general, one can define the parameter array to be the sunswth separate factorizations, which
allowsn - m - k free parameters. For the = 2 case this corresponds to representing the full parameter
matrix as the product of two rank+matrices.

A possible disadvantage of factorization is that optimizing the model parancetefze difficult. A
model defined in terms of the product of two scalar parameters has theifalloegeneracy: multiply-
ing one parameter by a constant and dividing the other parameter by theceastant results in the
same model. This can be a problem for gradient-based optimization sincewditylar setting of the
parameters has an infinite number of equivalent settings in its vicinity. But wijitogriate regulariza-
tion (such L2 weight cost), the degeneracy can be removed. Anothengationed in the literature is
coordinate descent: in a set of parameters that are multiplied together, optimjzene of them at a
time and keep the remaining parameters in the product fixed.

The rest of this section will describe various types of higher order modédlsaw they are used for
learning invariant visual representations. We first explain higherd@dd#zmann machines, and then
look at higher order extensions of PCA and ICA.

2.9.1 Higher order Boltzmann machines

Higher order Boltzmann machines were first described in Sejnowskib]198emisevic and Hinton
[2007] describe the first application of such a model to real data. Theyauhird order Boltzmann
machine to learn a model of transformations between pairs of images. Istsooktwo sets of visible
unitsx andy, and one set of hidden unis It represents the conditional distributipfy, h|x), defined

as follows:
ply.hlx) = PR ) (2.10)
’ > ynerp(—E(y, h;x))’
where
E(y,h;x) = — Z Wijkxiyjhi. (2.11)

i,j,k
Wik is the 3D array of parameters for the model. The array is not factoriaéthas one free parameter
per three-way clique.
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Oncex is clamped to a particular configuration, the model reduces to an RBMywaththe visible
vector andh as the hidden vector. But the parameters of that RBM are a functign A$ can be seen
in equation 2.11, a particular setting of thgs will add various slices of the 3D array together to define
the weight matrix of the RBM. Since is assumed to be always observed, inference and learning steps
conveniently become identical to those of an RBM. This is possible only fasfibeial case in which
two of the three sets of units are observed. In the case of two sets of hididsrand one set of visible
units, inference is much more expensive because it requires prol@igkd sampling between the two
sets of hidden units.

2.9.2 Bilinear models

Tenenbaum and Freeman [2002] use a bilinear model to decompose datearétors correspond-
ing to what they calktyleand content They consider two kinds of bilinear modelsymmetricand
asymmetricIn the symmetric model, &-dimensional data vectaris given by

Y= Z wija;bj, (2.12)
i7j

where the vecton® represents stylé;” represents content, ang; arek-dimensional basis vectors. So

the data vector is generated as a linear combination of basis vectors whemthination coefficients

are given by the outer product of the style and content representatibizsmodel treats both style and

content symmetrically, i.e. mathematically there is no distinction between the styl@atahtvectors.
In the asymmetric model, the data vectas given by

y= 3w, (2.13)
J

wherew? are style-specific basis vectors abfdis the content representation. So the data vector is
generated by linearly combining the style-specific basis vectors using thepotents of the content
vector as the coefficients. Here there is a distinction, or asymmetry, bestiderand content in that
style determines the basis functions while content determines how they areedmbhe asymmetric
model can be derived from the symmetric one by combining the style-spedifis te equation 2.12 as
follows:

w; = Zwijaf. (2.14)
J

Both models are learned by minimizing the sum of squared errors betweeanittiagrdata vectors
and their reconstructions. For the asymmetric model, learning is particularlyesand can be done
with the basic matrix SVD. The training cases are assumed to be column vebledldy their (dis-
crete) style and content classes. (The number of training cases farssibte style-content pairs are
assumed to be the same. If there are multiple examples per style-contentgyadrdtaveraged together
to form a single training case.) The entire training set is arranged as a mathxXtsat each column
contains a single content class, with the vectors corresponding to multiple styrieatenated together
as one long column vector. So there are as many columns as content,dassthe number of rows is
given by the product of the number of style classes and the dimensionatly ofata vector. Let this
matrix beY’. It can be decomposed as

Y = WB, (2.15)
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where the columns dfi” contain the style-specific bases and the columnB afe the coefficients for
combining the bases. This decomposition can be computed by applying S¥D to

Y =USVT, (2.16)

and setting? = US andB = V7. By throwing out the columns df” and rows ofB corresponding
to the smallest singular values f the dimensionality of the content representation can be reduced.

For the symmetric model, the learning is more complicated and involves multiple iteratiSND.
The basic idea is to compute the style and content representations for tiegtcgises by alternatively
keeping one of them fixed and optimizing for the other. Each such optimizagprcan be done using
SVD. This iterative procedure is guaranteed to converge to a local minimtime equared reconstruc-
tion error. Once the style and content representations are computed)ythaknown in equation 2.12
are the basis vectois;;, and they can be solved for analytically.

To describe the learning algorithm, first we define teetor transposef a matrix. Consider the
matrix Y as defined before, where each column is a concatenation of columnsvéchor the same
content class but in different styles. Thector transpos& "'’ of such a matrix is created by horizon-
tally concatenating the column vectors from the same content class, aatsegalumns, rather than
vertically as a single long column vector (see figure 5 in Tenenbaum aedBre[2002]). The vector
transpose is analogous to the ordinary transpose if we Vieag a 2D array whose elements are col-
umn vectors — the vector transpose re-arranges those column vectoessiantie way as the ordinary
transpose re-arranges the scalar elements of a matrix.

Re-writing equation 2.12 in matrix form, we get that

Y = [WVTAYTB, (2.17)

yVT = (wB]VT A. (2.18)

The iterative learning is initialized by first computig)from the SVD ofY” (just as in the asymmetric
model learning). Sinc® is orthogonal B! = BT, and thereforéY BT]VT = WV7T A. So thenA can
be estimated from the SVD ¢¥ BT]V7. A is orthogonal as well, which givgs "7 AT]VT = W B.
Now B can be re-estimated from the SVD [of V7 AT]VT | and the whole procedure is repeated again.
Once the iterations convergé; can be solved for analytically.

Grimes and Rao [2005] describe a variant of the style-content bilineaelmdtere the style and
content representations are assumed to be sparse. They use the safmaation (sum of squared
reconstruction error) as in Tenenbaum and Freeman’s symmetric medal gy equation 2.12, with
two extra additive terms to enforce sparsity of the two factors. Insteadin§EVD, they train the
model by gradient descent.

Grimes and Rao describe some interesting problems that they ran into while toyingke the
learning algorithm work. Optimizing the squared reconstruction error (withay sparsity costs) by
gradient descent did not work and got stuck in poor local minima. Incfuthie extra sparsity costs
caused the style and content representations to shrink to 0 in magnitudectiieging low sparsity
cost) while making the weights extremely large so that the reconstructiongdayely the same nu-
merical scale as the training data. To prevent this, they scale down thetsvaigdach learning iteration
by a gain factor so as to maintain a desired variance level for the activitts sfyle and content units
in the model. Another problem is that the style and content representatioriseaaultiplied and di-
vided, respectively, by a constant without changing the output of the Imdlis is because the output
depends only on the product of the style and content activities, not anitkdézidual values. As a
result, the parameter space contains many points near each other thaeadixaatly the same cost,
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making optimization difficult. The problem is solved by minimizing the cost function wagpect to
one factor until near convergence while keeping the other factor fb@sically coordinate descent).

Their training data consists of natural image patches. Translations diedajopthese patches (e.g.
+3 pixels both horizontally and vertically), and the model is trained on the regyttches so that
the content representation remains invariant to translation while the sty&sespation remains invari-
ant to different patches undergoing the same translation. This is acHig\vedt inferring the content
representation of a set of training patches that heotdbeen translated (i.e., the zero-translation view
is the canonical view of the patches). Then the content representatieptislemped while the input
patches are translated, and the style representations are inferregéedahle style representation in-
variant to translation, the style vectors for s@metranslation butlifferentpatches are adapted towards
their mean. The cost function gradient is computed using the resulting stylecsmtent vectors, and
the parameters are updated. The results show that the model manages ltuckelired features that are
translation-invariant.

2.9.3 Multilinear models

Vasilescu and Terzopoulos [2002] present an algorithm for learnmgl@linear model of data. They
extend PCA to arbitrary order by defining a higher order version of SWie training data is now
assumed to be arranged as a multi-dimensional array.

The higher order SVD decomposes tNé&"-order data arrayp into the product of aore tensor
(analogous to the matrix of singular values in ordinary SVD) and a setlobgonal matrices, one for
each dimension ob. Multiplication of a multi-dimensional array and a matrix is defined by a new
operation called théensor product Its exact definition is not necessary to understand the high-level
idea. Roughly, the higher order SVD is computed by “re-shaping”Nhdimensional arrayD as a
matrix in N different ways, and then applying ordinary SVD to each of thi¥smatrices. The results
of theseN runs of SVD are then combined to define the decomposition of the data tensor.

More specifically, given av"-order arrayD, a higher-order SVDxan be defined as follows: for
each of theN dimensions of the array, construct an ordinary matrix by collecting thefsetabors
obtained by varying that dimension while keeping all other dimensions fixedl aeranging them as
column vectors. Compute the ordinary SVD of this matrix, and keep only thegwtial basis for the
column space from the result (the mattiin USV7T). This procedure producéé matrices[/y, ..., Uy.

Once the matriceS1, ..., Ux have been computed, it is straightforward to use them alongMvith
solve for the core tensor. The result is a decompositidl of terms of the core tensor ad matrices.
This decomposition is called thHé-mode SVD. Since there are many ways to define the notions of rank
and orthogonality for tensors, this is not the only way to define a higtdarareneralization of SVD.
N-mode SVD becomes identical to the ordinary SVD when applied to a a matrix.

Unfortunately, one of the most important properties of ordinary SVD dmscarry over to its
higher-order generalization. It it the case that truncating the lower corner of the core tens®r of
produces the best low rank approximation (in the squared error sefifBe)See an example of this in
Lathauwer et al. [2000].) But in practice truncating the core tensor tendsoduce good approxima-
tions to the data tensor.

More recent work by Vasilescu and Terzopoulos [2005] extendslibeeaideas to derive a mul-
tilinear version of independent component analysis as well. If we tresémihg as a pre-processing
step for ICA, then ICA can be seen as an extension of PCA. Once thesdatsitened, the mixing
matrix that ICA is trying to estimate must be orthogonal (assuming the data wagéndrated by an
ICA model). So the ICA solution can be computed by modifying the PCA solution avitinknown
rotation matrix. Analogously, we can define a multilinear version of ICA by nyadlif the multilinear
PCA solution described above.
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First, the N-mode SVD is computed as before. For each oflthe..., Uy matrices given by the
N-mode SVD, the corresponding rotation matrié€s, ..., W are computed by doing ordinary ICA
on the data matrix given by flattening the multi-dimensional array along each of dgnensions.
Then the solution found byw-mode SVD is modified by replacing; by UinWi = C;W;. Then
the matriced¥V; are absorbed into the core tensor frédfamode SVD to produce a new tensor product
decomposition of the multi-dimensional array.



Chapter 3

Analysis-by-Synthesis by Learning to
Invert a Black Box Synthesis Model

In this chapter we describe a new way of learning to infer reconstrutpeesentations of data. Its
advantage is that it can incorporate into the learning complex domain knoevidugut how the data
was generated. This potentially allows the representation to capture theetireed of freedom in the
data better than those learned by generic models like PCA or autoencoders.

Briefly, the premise of the chapter is this: we can often express knowksigét the underlying
generative process of the data in the form dyathesis modelFor example, if the data is generated
by a well-understood physical process, the model may be a simulation of é.siffulation may be
controlled by a set of variables that can be smoothly changed to prodffexiot data vectors, and
these variables form the inputs to the synthesis model. By learning the mamdisganalysis model
i.e. a mapping from a data vector to the synthesis inputs, it becomes possilsle theuinputs as a
reconstructive representation. Such a representation takes advahthg domain knowledge built into
the model.

Learning the analysis model is difficult — in a typical application, we only hheeinputs to the
function (data vectors) and not their corresponding target outputifiies to the synthesis model that
would reconstruct those data vectors). We describe a way of traineggddhdrward neural network that
starts with just one labeled case (input-output pair) and uses the symttoassto “breed” more labeled
cases. As learning proceeds, the training set of input-output pairgesvand the target output vectors
that the analysis model assigns to unlabeled data vectors converge taorda galues of the control
variables.

The explanation of the algorithm and its results are spread over two chaptés chapter presents
the algorithm and shows two simple applications of it, just to verify that it doa&.vilthe next chapter
presents a more extensive application where we consider differerst efaysing the reconstructive
representation for recognition.

3.1 Introduction

“Analysis-by-synthesis” is the idea of explaining an observed data véetg. an image) in terms of

a compact set of hidden causes that generated gymhesis modealpecifies how the hidden causes
produce the data vector. Aanalysis modeis the inverse mapping — it infers the causes from a given
data vector. In coding terms, the analysis and synthesis models are tleeacd decoder, respectively,
and the hidden causes represenbde vector The composite of the two models should implement the
identity function: inferring the code vector from a data vector followed yoytlsesizing from the code

24



CHAPTER3. ANALYSIS-BY-SYNTHESIS BY LEARNING TOINVERT A BLACK BOX SYNTHESISMODEL25

vector should reconstruct the original data vector.

Here we consider the following problem: given a training set of data veetod a synthesis model
for that data, learn the corresponding analysis model. We will assumesattaatettors and code vectors
are both real-valued. For example, suppose that we have a facetdatdse graphics program that
can generate any realistic face image. This program may have a set t&f jafu pose, lighting, facial
muscle activations) that can be smoothly varied to create any face. Thie tasarn an analysis model
that infers from a face image the graphics inputs that will accurately stean that image. The inputs
to the synthesis model can be seen as a reconstructive representatiemafa vector.

Note that this is anew type of problerthat existing learning algorithms are not designed to solve.
Here we assume that a synthesis model of the data is given as part obthenpr and the goal is to
learn the inverse of that particular model. In contrast, algorithms such Asf&&or analysis, and ICA
simply assume specific parametric forms for the synthesis model and fit theagi@rs to the data. A
nonlinear autoencoder learns separate encoder and decoder mouddareeously by also assuming
them to be of a specific parametric form with an analytic gradient. As expldated our problem is
more difficult than the ones solved by these standard methods.

3.2 Motivation

There are two main motivations for this work. First, it is a way to incorporateao knowledge,
via a synthesis model, into the analysis-by-synthesis framework for modedilag 8ynthesis models
are a natural way of expressing complex prior knowledge. For exarmpl®modeling face images,
knowledge about facial muscles and skin and how they interact to pealifierent expressions can be
expressed as a physics-based graphics model. Having a simulation ofdédying physical process
built into the model gives its inputs (i.e. the code vector) useful semanticis apiproach can help
mitigate the model mis-specification problem that affects simple generativeansteuctive models
whose parametric forms are not powerful enough to correctly capterteitd generative process.
Second, solving the above problem is a way to directly take advantagéstihgmodels from com-
puter graphics for learning representations of image data. Enormaustedf already been expended
on building graphics models (see e.g. face models by Lee et al. [199%b]Sidakis et al. [2005]),
and now they can be used for building better vision models. Successfullitimy realistic graphics
programs will result in image representations that can improve object rigéioogand image coding.

3.3 Overview of our approach

Our goal is to design one learning algorithm that can be used to invert niffgnedt synthesis models.
The algorithm we propose treats the synthesis model as a “black boxidartbat can be evaluated
as many times as necessary, but knowledge of its internal details is ndtydireailable. In particular,
we assume that the gradient of the synthesis function is not kho®acoupling the learning of the
analysis model from the specific design details of the synthesis model aliff@rent synthesis models
to be inverted without changing the algorithm.

The learning problem as stated so far is very general. We do not sohgetiesal version — instead,
we consider a restricted setting in which the distribution in data space is assarhedhe result of
combining aunimodal distribution in code spaaeith a deterministic, nonlinear synthesis modeLA
is somewhat similar in that it also assumes a simple distribution in code space atdriaidistic
mapping to data space to explain the data distribution. Unlike ICA, here we tdassame that the

!In practice there may not be an analytic expression for the gradiertarhalex graphics program.
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components of the code vector are independent or that the synthesimigiapp a known parametric
form. Here we are given a set of samples from the data distribution, aedsto the synthesis model
as a black box function. But we are not given any samples from thedisttéoution, nor do we know
the exact form of this distribution to draw samples from it.

Whether the assumption of a unimodal code distribution is valid for a partiqogdication depends
strongly on the synthesis model itself. Currently we do not have a fornsarigion of the full set of
conditions on the synthesis model for its inverse to be learnable by ouithfgorThis is one of the
limitations that needs to be addressed in future work. Consider the lineaircadich the synthesis
model multiplies the input vector by an unknown matrix to produce the outptekhe elements of
the matrix can be discovered trivially by evaluating the synthesis functioneostéimdard basis vectors.
So the problem is interesting only for the nonlinear case. The three simthedels that we apply
the algorithm to (in this chapter and next) are nonlinear, and in all thres,ciaseiccessfully learns
an approximate inverse. While these results are encouraging, the lggradrehe algorithm and the
conditions under which it will work still need to be characterized formally.

The goal of the algorithm is to learn a regression mapping from data spaodespace. There are
three difficulties: first, only the regression function’s inputs (data vetare given for learning — the
corresponding target outputs are unknéwif they were known, then the problem reduces to standard
supervised learning. For a complex synthesis model, we expect thatngfarhigh-dimensional code
vector for a given data vector is too hard to do “by hand”, ruling out thesibility of hand-labeling a
large set of data vectors with their target outputs.

Second, the black box’s gradient is unknown, so learning cannaireelgly propagating the gradient
of the data reconstruction error through the black box. Estimating it nunfigrimafinite differencing
is too inefficient. If the black box gradient were known, then learningobesgs similar to that of an
autoencoder whose decoder part is pre-specified and fixed.

Third, codes corresponding to the real data occupy only a very smalineoin code space. For
example, consider a face model that simulates muscles with springs. Hunmartd sadependently
control each facial muscle, so the muscle activations are dependesttontber. Therefore only a small
subspace of possible spring states correspond to valid facial catfans. This makes it impractical to
naively takeuniform random samplefsom code space, generate data vectors from those samples using
the black box, and learn the recognition model from the resulting input-opgtg. Such an approach
will waste almost all the capacity of the analysis model on “junk” training ctseswvay from the real
data that we are interested in modeling.

Our approach addresses these three difficulties. We assume that gieeara single point in code
space, referred to as tipeototype near the mode of the (unknown) code distribution. Its purpose is to
restrict the learning to the relevant part of code space. The algoritmtonaly perturbs the prototype to
compute a set of nearby code vectors from which their corresponditagvectors are generated using
the synthesis model. The analysis model is trained by standard supenaseitidgeon the resulting
input-output pairs. In the subsequent learning iterations, codes evthierf away from the prototype
are sampled and the corresponding input-output pairs are trained onmdfighlearning the sampling
procedure produces code vectors from an increasingly broadsbdi®on. The details are in section
3.4. As the algorithm “breeds” its own labeled training cases, we refer shiteder learning

We use breeder learning to invert two different black boxes in this chapte for images of eyes
(section 3.5.1) and the other for faces (section 3.5.2). In the formey wasgot the software for the
graphics model from its authors (Moriyama et al. [2006]) and simply usasl & black box subroutine
in our algorithm. This shows the usefulness of de-coupling the design detdiie synthesis model

2This is the more likely scenario in practice — the data vectors are usualljiedipthout any extra quantitative informa-
tion about how they were generated, except for maybe class labels.
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Matrix of weights
from hidden to
output units
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Matrix of weights
from inputto Wy
hidden units

Sigmoid
hidden units

Data vector

(a) Feedforward network with one hidden layer of (b) A single sigmoid unit.
sigmoid units.

Figure 3.1: (a) Architecture of the analysis neural network used in akpplications. The output units
can be either sigmoid or linear, depending on the application. (b) A sigmoidsumplemented using
the logistic functionas the squashing nonlinearity. So the overall function implemented by ohe suc
ynlt ISy = Trexp(—0- 5T, wie) Wherexll, = T ar(? the inputsywy, ..., w, are learnable weights on the
inputs, and is a learnable scalar biag lies in the interval0, 1].

from the learning.

3.4 Breeder learning

Breeder learning is not specific to any particular parametric form for tiadysis model. But as we
will see, the set of input-output pairs is generated dynamically during tagaisim the model must be
learnable in an online manner. We choose a feedforward neural hetvitbra single hidden layer (see
figure 3.1) to implement the analysis model.

When picking the prototype, we want to avoid outlying points far away froenhilgh probability
region of the code space. So we pick the prototype to be a point thatqge®du‘realistic” image even
under small random perturbations. Finding such a point by hand is adsionfee tractable. This of
course depends on the patrticular synthesis model being inverted ritbhefthree applications consid-
ered in the thesis, constructing the prototype has been straightforward.

Breeder learning relies on the analysis network itself, as it is being leafdd new code vectors
to train on. To start off the search in the relevant part of the code spfae@arameters (weights) of
the analysis network should be initialized such that its output is approximatefyrdietype early on
in training (regardless of which data vector it sees as its input). This cdore by setting the biases
into the network’s output units to produce the prototype code vector amdhalt parameters to small
random values. As a result, early in training, the network’s output will fleceed by its input only
weakly, and determined almost entirely by the output biases.

The complete set of inputs to the algorithm are 1) the synthesis model, 2) théypemtand 3) a
training set of data vectors. The final output is an analysis model trairetttoately infer from a data
vector its corresponding code vector.

Once initialized, the weights are updated iteratively. Each iteration has fdorstegs (see figures
3.2,3.3and 3.4):

1. Data vectors from the training set are input to the current analysisorietw infer their corre-
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Figure 3.2: The main steps in a single iteration of the breeder learning algorithm.

sponding code vectors.

2. These codes are perturbed by adding zero-mean, sphericai@ausise with user-specified
variance. In the case where the components of the code vector aretedstiv the intervalo, 1]
and are represented by logistic sigmoid units at the output layer of the madysiork, the noise
is added to thénput of the unit. So the perturbed codes will still be in the interfgall . If the
output units are linear (i.e. their values aré¢-imo, o)), the noise is added directly to their values.

3. The synthesis model is applied on the perturbed codes to producextiesmonding data vectors.
The noisy codes and the data vectors generated from them form ais@utbutput pairs on
which the analysis network can be trained.

4. The weights are updated by the negative gradient of the squacedbetween the target code and
the network’s prediction.

Since the network weights are changing at each iteration, the code®thferstep 1 for the same
data vectors in the training set will change from one iteration to the next. Sogbeoutput pairs that
are used to update the weights are also changing throughout traininge pags are used only for a
single update and then thrown away. They are not re-used in futureatesa

Because of how the analysis network is initialized, it first learns to inversyimehesis model in
a small neighbourhood around the prototype. The early noisy codesenitibor variations of the
prototype, so the input-output pairs will not be very diverse. At this fpthia network can correctly
infer the codes for only a small subset¥f i.e., those that are near the prototype’s corresponding data
vector. Randomly perturbing the outputs allows the network to discoverscslaghtly farther away
from the prototype. Training on them expands the region in code spaictnéhaetwork can correctly
handle.

In subsequent iterations, the network will correctly infer the codes fewamore real data vectors.
Perturbing their codes generates new ones that are even farthethiegonototype. As learning pro-
gresses, the training pairs become increasingly diverse, as the aydedrom a larger region in code
space. The network eventually learns to handle the entire region of pade sorresponding to the real
data vectors.

Some notes about the algorithm:
e The algorithm is not defined in terms of directly optimizing a loss function withgeisip the training
data vectors (e.g. optimizing the squared reconstruction error loss atgevekctors). But empirically,
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STEP 4: Update the analysis network
on the code-data pairs from step 3.

Code space

Code space

Code space . @ ._ . ._

STEP 2: Perturb inferred
code vectors with noise. i
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Figure 3.3: A cartoon summary of the main steps in a single iteration of the breadaing algorithm.
The manifolds in both data space and code space are “fat” in the sensaltliag small amounts of
noise to a point do not typically take a point off the manifold. In step 1, theif@idata vectors
(squares), which come from all over the manifold in image space, areassétputs to the current
analysis network to infer some code vectors. Early on in training, theseators (circles) will be
close to the prototype (star). They are perturbed with noise in step 2 tageatw code vectors. In
step 3, the perturbed code vectors are used as input to the synthesidsommigerate the corresponding
data vectors. In step 4, the analysis network’s weights are updatedthsidgta vectors from step 3 as
inputs, and their corresponding code vectors as the target outputs.

the data reconstruction error drops almost monotonically during trainingrmAdl analysis of what loss
function the algorithm is optimizing remains to be done.

e The algorithm is not doing a naive random search in code space. dnsteses the current anal-
ysis network itself to produce new codes to learn on. So the network’s afailitprrectly generalize
to previously unseen data vectors is being exploited in the search. Sectisinod/s that it allows the
algorithm to discover codes that correspond to real data vectors mu&hdfiimiently than a random
search. If the network generalizes incorrectly, the learning can beuanstable and move away from a
good solution. We have observed this behaviour in a small minority of theofutthe algorithm.

e The amount of noise used to perturb the code vectors (i.e. the variarthe spherical Gaussian
noise) is set by trial-and-error. Too much noise makes the learning lmstdtile too little makes it
slow. For the applications we have tried the algorithm on, setting the noisectavektly was not diffi-
cult.

e The set of code-data pairs that the network learns on starts off mostlygemaous, with all the
code vectors close to the prototype. With more learning, the code vectmmbenore diverse as they
start to come farther away from the prototype. Eventually the learning\disgdhe correct code vec-
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Algorithm for training an analysis network A,, parameterized by weight vectorw:
Given: Training setX of n data vectorqz,xo, ..., 2, }, @ black box synthesis mod#| prototype code vector
p-

Initialization: Set output biases of,, usingp, and the remaining weights to samples from a zero-mean @auss
with a small standard deviation.

Weight update computed using the*” (unlabeled) training casez;:

Let y; be the code vector inferred from using the current analysis netwas,,.
1. Yi = Aw(xi)'

2. Perturby; randomly to creatg;.
3. = S(y)).
4. Supervised learning o}, v;):
@) yi' = Aw (7).
(o) E = ly; —v/II*.
(€) w—w-— ng—g.

Figure 3.4: Summary of the breeder learning algorithm. Although the ab®ezipion is in terms of
updatingw using a single input-output pair at a time, in practice we average the gradienates from
amini-batchof such pairs to compute a single update.

tors for all the data vectors in the original (unlabeled) training set. Oncartalgsis network reaches an
approximately correct solution, it will stay there since it is being trained oril gagurbations of the
correct code vectors and their corresponding data vectors.

e One underlying assumption is that Euclidean distance in code space is agmametigally meaning-
ful way of assessing similarity than any generic distance metric in data spaesefore small random
perturbations in code space should produce semantically similar data whetiorsay nevertheless have
a large Euclidean distance between them.

e It is possible to formulate a mixture version of the algorithm that can handkgpfart modes in code
space. It would require creating one prototype per mode. We haveshtitad this possibility.

e During training there is no attempt to filter out those synthetic data vectorm figure 3.4) that
are highly dissimilar from the data vectors in the training $et (zs, ..., z,,} in figure 3.4). Generic
similarity metrics in data space can be highly misleading, and such filtering is likely te thakearn-
ing worse. Without filtering the network will occasionally learn on “junk” tiiaim cases. But if such
cases are rare, their effect on the network is small.

Relationship to wake-sleep algorithm:The wake-sleep algorithm (Hinton et al. [1995]) was proposed
for simultaneously learning two directed networks, one for analysigeargnition and the other for
synthesis, ogeneration (These networks consist of stochastic binary units, so both codeatad d
vectors are binary.) The recognition network first infers codes fore¢hkdata vectors, which are then
applied as inputs to the generative network to produce synthetic datasteEbar input-output pairs of
one network are used to train the other in a supervised manner (with theofdhesinput and output
reversed).
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Our approach here is similar in spirit, except only the recognition networkitindel. By solving this
more restricted problem we avoid the two drawbacks of wake-sleep. thiestyake-sleep recognition
network wastes capacity by learning to invert the generative networktarvectors with low probability
under the true data distribution. This is because early on in training theagseenetwork is poor at
producing the real data vectors. We avoid the problem by using 1) agyedbesis model throughout
learning, and 2) a prototype to restrict the learning to the relevant pareaode space.

The second drawback of wake-sleep is ‘mode averaging'’: if therenarelifferent codes that can
generate the same data vector, then the recognition network learns to aafée ghat is neither, but a
blend of the two. In our case the analysis network picks whichever cdipjtens to see first while
training and learns to infer that code. The other code would simply be ighdBased on similar
premises, a modified version of wake-sleep has been used successiDégp Belief Nets (Hinton
et al. [2006]) as a way of fine-tuning recognition and generative msnafter an initial pre-training
stage.

Random-code learning:A simpler alternative to breeder learning is to 1) sample an isotropic Gaussian
centred on the prototype code vector and with a fixed variance, 2)@ersmthetic data vectors from
these samples, and 3) train the recognition network on the resulting pawar gxperiments (section
3.5) this alternative consistently performs worse than breeder learfithg. Gaussian’s variance is too
large, many of the sampled codes will correspond to junk data vectorss lfid small, it will almost
never see valid codes that happen to be far away from the prototyptheSm@rticular way in which
breeder learning creates new codes is crucial for its success amok tenreplaced by a naive random
search.

3.5 Results

The rest of the chapter describes two applications of breeder learitingrting a synthesis model
for images of eyes (Moriyama et al. [2006]), and an active appeanaudel for faces (Cootes et al.
[2001]). In both cases we learn to infer a reconstructive represamfar images by taking a synthesis
model from the literature and simply “plugging it in” as the black box into bredel®rning. These

applications show our algorithm’s usefulness for exploiting an existing sgighmodel to define a
compact representation of the data.

3.5.1 Inverting a 2D model of eye images

The black box is a 2D model of eye images proposed by Moriyama et al6]200ey use knowledge
about the eye’s anatomy to define a model parameterized by high-leyerpes of the eye, such as
gaze direction and how open the eyelid is. Since breeder learning dbesatwto know the model’s
internal details, we explain them only briefly here. See Moriyama et al §]X00 a full description.

Based on its inputs, the synthesis model first computes a set of polygaomasthat represent the
2D shape of the sclera, iris, upper eyelid, lower eyelid, and the coafidhe eye. Once the shape is
computed, we use a simple texture model to generafexat4 grayscale image from it (see figure 3.5).
In total there are eight inputs to the black box, all scaled to be in the ri@inge (These inputs affect
only the shape; the texture model is fixed.) Given this black box and a traéeingf real eye images,
we use breeder learning to learn the corresponding analysis model.

Dataset and training details: We use 1272 eye images collected from faces of people acting out
different expressions. We normalize all images to3Bex 64, and apply histogram equalization to
remove lighting variations. See the odd-numbered columns of figure 3. &&onme images. Since
the eye images come from faces with many different expressions andigisnithey contain a wide
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variety of shapes and represent a difficult shape modeling task. W& gedgorototype code to be the
vector with all components set €05, which is the midpoint of each code dimension’s range of possible
values. From the set of 1272 images, 872 are used for training, 20@lfdation and 200 for testing.

The analysis network has 2048 input uni& < 64 = 2048 pixels), 100 logistic sigmoid units in
the hidden layer, and 8 sigmoid units in the output layer. A code vector i®nagderturbed during
learning by adding zero-mean Gaussian noise with a standard deviali®% o6 the total input of each
code unit. Training is stopped when the root mean squared error (RWISE® validation images is
minimized. The recognition network trained by breeder learning achievesstserformance on the
validation set after about 1900 epochs.

Figure 3.6 shows the RMSE achieved by breeder learning on the validatias fraining proceeds.
Random-code learning is unable to improve the RMSE beyond a certain vadustarts overfitting
because it only sees training cases from a limited region around the pmtdtigtried various values
for the variance of random-code learning, and the results shown atbdmne that gave the best
performance on the validation set.

Figure 3.7 shows examples of test images reconstructed by the recogniticorinéained with
breeder learning. The inferred boundaries of the sclera and irisnegi@® superimposed on the real
image. Notice that the network is able to correctly infer the codes for eyessigttificantly different
shapes. This is despite the limited texture model used by the black box.

3.5.2 Inverting an active appearance model of faces

We now consider inverting an active appearance model (AAM) of facg@néCootes et al. [2001]).
The AAM is a popular nonlinear synthesis model that incorporates kngeletout facial shape and
texture to learn a low-dimensional representation of faces. Unlike the egelnteere the black box
itself is learned from data, but this difference is irrelevant from the paiintew of breeder learning.

Our implementation of the AAM follows Cootes et al. [2001]. Again, we onlyegnbrief overview
of it here. It consists of separate PCA models for facial shape andgextose outputs are combined
via a nonlinear warp to generate the face image. As in Cootes et al. [20@Hpply PCA again to the
shape and texture representations of the training images to producepmatapce” model of faces.

We first train the AAM using a set of face images, and then use itfe®dblack box for breeder
learning. The face images are of siex 30, and the AAM’s appearance representation (i.e., the code
vector) is chosen to be 60-dimensional. So for the purposes of briszaleing, we treat the AAM as
a black box that takes 60 real-valued inputs and produd$s>a30 face image as output. (Note that
the AAM learning procedure itself computes the codes fotraming images as part of learning, so
they are known, but we do not use them when learning the recognitiororiet®n the other hand the
correct codes for theestimages are truly unknown.)

Dataset and training details: We use 400 frontal faces (histogram-equalized) containing different
expressions and identities. The dataset is split into 300 training images|i&&tiea images, and 50

Eye shape Generated eye image Eye region | Pixel value
- L - s |ris 0
Sclera 255

Specularity 255
Background| 128 + Noise

10
20
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20 40 60

Figure 3.5:The synthesis black box for eyes: shape model (left), textoodel (table on the right), and the
image generated by applying the texture to the shape.
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Figure 3.6: Validation set RMSE (left graph) during
training, and test set RMSE (above table) after training,
for breeder and random-code learning algorithms on the
eye dataset.
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test images. None of the identities in the test set appear in the training andivalisiets, so at test
time, the recognition network has to generalize correctly to unseen identi#teer(than unseen images
of familiar identities). Note that only the 300 training and 50 validation imagesseé i the learning
of the AAM itself.

The analysis network has 900 input units, a hidden layer of 100 logistic gigimnds, and 60 linear
output units. We select the origin of the code space, corresponding tact&vith the mean shape and
mean texture, as the prototype code. Since the network’s output units eae lihe code vectors are
perturbed during learning by adding zero-mean Gaussian noise @Witstandard deviation) directly
to the outputs. The analysis network trained by breeder learning achig\eesst performance on the
validation set after slightly fewer than 3400 epochs.

Figure 3.8 shows the RMSE results. Interestingly, the best reconstrectimmachieved by breeder
learning on the validation set is below that of the AAM itself (dashed line in thelgr This means
that the net is able to find codes that are better in the squared pixel ense than the ones found by
the AAM learning. Example reconstructions of test faces are shown irefig®. In most cases, the
network reconstructs the face with approximately the correct expreasididentity. In contrast, the
reconstructions computed by the network learned with random-code lgarervisually much worse
and most of them resemble the face corresponding to the prototype code.

3.6 lterative refinement of reconstructions with a synthesis netwd¢c

So far analysis, or inference, has been treated as a poo#igm-upcomputation. A key property of
analysis-by-synthesis is the use of top-down knowledge in the synthed toamprove inference via

Figure 3.7: Test image reconstructions computed by the recognition netraor&d with breeder learn-
ing. The odd columns show the eye images with the superimposed curveibidesihe shape inferred
by the recognition network. The even columns show the reconstructiomguted by applying texture
to the inferred shapes. The images should be viewed on screen to setireof the curves properly.
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Figure 3.8: Validation set RMSE (left graph) during
training, and test set RMSE (above table) after training,
for breeder and random-code learning algorithms on the
face dataset.

RMSE on validation set
I\ N
N B
o o

N
o
(=]

=
o]
(=]

0 2000 4000 6000 8000 10000
Epochs

a feedback loop that minimizes an error measure in data space itself. lasmimeplementing such a
feedback loop requires knowing the gradient of the synthesis blaclkabd»so it is not possible. But
once a fully-trained analysis network is available, an alternative apptoe@mmes possible.

The idea is to approximate the function implemented by the black box vétimtnesis neural net-
work (Jordan and Rumelhart [1992]). This network emulates the black boxkesta code vector as
input and computes the corresponding data vector as output. Once sycthasis network is trained,
an approximate gradient of the data reconstruction error with respea twtle can be computed ana-
Iytically by backpropagation. As a result, analysis now becomes a graoteset iterative optimization
problem that minimizes reconstruction error in data space.

Training the synthesis network is possible only because a fully-traindgsimanodel is already
available. It provides the synthesis network with approximately corregetarodes for the training
images. Given these code-image pairs, training reduces to a standardiseg learning task. The
analysis network restricts the learning to the small part of data space thtainsthe real data, thus
making it practical. Without it, the synthesis network would have to be trainechtdege the black box
everywhere in code space, which is impractical.

Figure 3.10 shows the main steps of the closed loop inference procesingethe analysis and
synthesis networks (both fully trained). The initial code is computed by aretip pass through the
analysis network as before. But unlike in open-loop recognition, this irggimate is subsequently
refined by (approximate) gradient descent on the squared erroedetive data vector and its recon-
struction. The iterations continue until the squared error stops improving détails of each step are
given in figure 3.11.

Figure 3.9:Test image reconstructions
computed using the analysis network
trained with breeder learning.
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Figure 3.10: The main steps of the iterative inference procedure usthghmanalysis and synthesis
networks. Note that the gradient computation proceeds impipesitedirection of the connections in
the synthesis network.

Algorithm for closed-loop analysis of data vectorz:
Given: Synthesis black bo%, analysis networld.,, synthesis networls,,, .

Initialization: y = A, ().
For each refinement iteration:
1. 2 =S(y).
2. E=|z—2'|2
3. Compute%—f by backpropagation through,, .

4. y%y—n%—g.

Figure 3.11: The closed-loop analysis algorithm using a synthesis mexivedrk.

We learned a synthesis network to emulate the AAM and then used it to refinecirstructions
of faces. The average improvement in squared pixel error for theatmlidand test sets are 6.28% and
5.41%, respectively. It should be emphasized that the closed-loops@algorithm is used only as a
way of fine-tuning the initial open-loop code estimate, which is already ag@wy solution. This side-
steps the issue of whether a generic distance metric such as Euclideanalistarbe used to correctly
measure similarity in data space. Here we use Euclidean distance to mieaslisgmilarity only, i.e.
to decide how an already good reconstruction can be made a little bit bettsrinBoizing Euclidean

distance can be sensible for fine-tuning, even if it is prone to get studhkaiioe local minima when
starting from a random solution.
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3.7 Conclusions

Breeder learning is a new tool for engineers building analysis models. Wygtadvantage of the
rich domain knowledge in a synthesis model, it can learn to infer better misg®ns of data than
those learned by standard methods such as PCA or autoencodertingngemplex physically-based
synthesis models is an especially promising application of breeder learnértgefext chapter shows,
successfully inverting such models can result in representations thadeftd for object recognition.

Although the empirical results for breeder learning (including those in tkeat@pter) have been
very encouraging, we do not yet have a good theoretical undemstaofithe algorithm and the condi-
tions under which it can be expected to work. We have made some highctanglarisons to existing
methods like ICA and the wake-sleep algorithm, but a formal analysis ofibrdearning would be
needed to make strong claims about its generality and usefulness. Suchlgsisawill be tricky be-
cause the model being learned itself is being used to decide what it will learn.



Chapter 4

Inverting a Physics-Based Synthesis
Model of Handwritten Digit Images

This chapter presents another application of breeder learning, this tinmvéoting a synthesis model
of handwritten digit images. Unlike the previous chapter, here we showtleweconstructive repre-
sentation learned this way can be used for classification. The inversiblepr is more difficult relative
to the applications we saw earlier, and the results bring into full view the lngsfiof breeder learning,
and more generally, inverting synthesis models.

The synthesis model itself is interesting, so we describe it some detail ewaghtbhoeeder learning
does not need the internal details. The model numerically simulates the plpysioass of handwriting
as a highly idealized mass-spring system. This is not a new idea (e.g. E6&j,[Hollerbach [1981]),
but our contribution here is to make the simulation realistic enough for it to balgctiseful in learning
an accurate reconstructive representation of real handwritten digits.

We consider a number of different ways of using the learned repiganfor digit classification.
Results for the MNIST dataset (section A.1) show that inverting synthesigisioan be very useful for
improving classification accuracy.

4.1 Introduction

One of the first proposed applications of the analysis-by-synthesieagipwas the recognition of hand-
writing using a synthesis model that involved pairs of opposing springsarémpeterized simulation of
the motor acts that produce handwriting should provide a natural wayashcterizing it. For example,
the images of twos in figure 4.1 are far apart in pixel space as measukadbgean distance, but they
are all produced by very similar motor acts. In fact, these images wereageddy first inferring the
code vector (i.e. our synthesis model’s inputs) for the left-most image, ancaibplying small random
perturbations to it and generating from the perturbed codes. As we wilaser, those inputs are atime
sequence of spring stiffnesses, but figure 4.1 makes it clear thatdirayaf meaningful representation
of such images.

4.2 A Physics-based Synthesis Model for Handwritten Digits
The synthesis model relies on a simple physics-based description of hawthmeoves when drawing a

digit. We approximate the motor act of drawing as an arm moving on top of admbalzdrawing surface
with a pen attached to its end. Inspired by arm movement models in the biomedHaeiature, we

37
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Figure 4.1: An MNIST image of a two (leftmost image) and the additional imagesrgeed from it by
inferring its code vector and randomly perturbing that code. The pixatespepresentations are very
different, but they are all clearly twos.
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Figure 4.2: The mass-spring system we use to simulate the physics of diawargiwritten digit.

use the mass-spring system shown in figure 4.2 to model the muscle foecteon the pen. The two
pairs of opposing linear springs represent antagonistic muscle pairs arrtheThe mass represents
the pen in contact with the drawing surface. The other end of each sgiiieg without friction along
rails that mark out the boundaries of the drawing area. This allows us tdheeforce vector generated
by an individual spring to be axis-aligned and one-dimensional, which siegptifie simulation of the
system.

There are two main steps in generating a digit: 1) simulating the the mass-ssiagidp compute
a pen trajectory, and 2) applying ink to the trajectory. We now describediz@slof these steps.

4.2.1 Computing the pen trajectory

The stiffnesses of the four springs are varied over time so that a timewgdigrce is applied on the
mass. Each spring exerts a force (directed along an axis) on the masdiagdo Hooke’s law:

F(t) =k(t)(z(t) — x), 4.1)

whereF'(t) is the force at time, k(t) is the spring’s stiffness;(t) is the (one-dimensional) position of
the end of the spring attached to the mass, &aigthe rest length.

The behaviour of the system is numerically simulated over a fixed numberooétigime steps. We
assume that the four spring stiffness values at each time step are givgruiss In the very first time
step, the position of the mass is set to the equilibrium point determined by the itiffieéss values.
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This is the position at which the net force on the mass is zero, anddt®rdinate is given as:

X1 - kl[l] + Zg - kQ[l]

=) = kr[1] + ke[1]

(4.2)

Here we use the square bracket notatigrfor the discrete time index. The expression for the
coordinate is analogous. The mass is assumed to have zero velocity atetatam at the first time
step.

At each subsequent time step the acceleration, velocity, and position of the masslong the
x-axis, denoted by, [n], v, [n] andz[n| respectively, are computed as:

kaln] - (21 — ln — 1)) + koln] - (22 — afn — 1])

az[n] = - , (4.3)
vg[n] = (1 =) - vz[n — 1] + az[n], (4.4)
z[n] = z[n — 1] + vg[n], (4.5)

wheren is a viscosity parameter. The expressions for the corresponding guaalitieg they-axis
are analogous. Therefore, given a sequence of stiffness valudseffour springs as input, the above
computation produces a pen trajectory in the drawing area.

In our implementation, the drawing area has size 78 units on each side. Teanuhgscosity are
set to fixed values selected by trial and error. It is possible to treat the andsviscosity parameters as
externally specified inputs to the synthesis model, but using fixed valugsdeavork well enough.

To compute a digit’s complete pen trajectory, the simulation is carried out fored fiumber of
time steps. Different digit classes require different numbers of stepsata d~or example, a one can
be drawn with a quick, short stroke, while an eight has a circuitous trajeittat needs many temporal
variations in the force, which can be simulated only with a large number of. siegcommodate such
differences, we use a different number of time steps per class. Maseslaise 17 steps, but it can be
as low as 10 (for ones) and as high as 20 (for eights). Digit instancemlih same class are drawn
using the same number of time steps.

4.2.2 Applying ink to the trajectory

We now describe one particular method for inking the trajectory. It is fadigenerates fairly realistic-
looking ink. Inking is done in two steps: first, the trajectory is thinly tracedavug pixel grid. Then
the ink is given the desired thickness and brightness by convolving theitrege with a kernel. See
figure 4.3 for a summary of the main steps.

A 36 x 36 pixel grid is overlaid at the centre of the drawing area. Any part of thedtary that
goes outside this grid is not inked. The sequence of pen positions is uleshmyginearly interpolating
three points between two consecutive points on the trajectory. We call idieadrtrajectory points
‘coarse-grain’ points and the newly interpolated ones ‘fine-grain’.

The coordinates of the points are real-valued, so some kind of discretizatieecessary to relate
them to pixel coordinates. This is done by applying ink on the four pixelsaséto each point on the
trajectory. A fixed amount of ink is split among the four pixels using bilinearpaation (so the closer
a pixel is to the trajectory point, the greater the fraction of ink it gets). @egrain points contribute 2
units of ink to their four nearest pixels. The fine-grain points also corttriink the same way, except the
amount of ink they contribute is zero if they are less than one pixel apdnises linearly to the same
amount as the coarse-grain points if they are more than two pixels apartprékents a large amount
of ink clumping in a small part of the image if the fine-grain points happen to lfadkety together. The
result is a thin trace of the trajectory on the pixel grid.
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Figure 4.3: Main steps in applying ink to the trajectory.

The trace image is then convolved wittBax 3 kernel to give the ink the desired thickness and
brightness. The entries of the kernel are computed based on two sqal#s which determine the
brightness and thickness of the stroke. The pixel values in the convolutigput are clipped to lie in
the intervall0, 1]. Finally, a28 x 28 window is cropped from the middle of tt8$ x 36 pixel grid to
produce an image of the same size as those in the MNIST database.

This inking algorithm generates reasonably realistic output. In particuéinkiooks more realistic
than what can be generated by applying Gaussian blur to the trace imadénBRges from the MNIST
database tend to have ink that sharply drops off in intensity at the eddpsh wannot be created
correctly with Gaussian blur. One limitation of the current method is that the saigigriess and
thickness parameters are used to ink the entire trajectory. So it is notlpdassienerate significant
variations in the ink brightness and thickness along the trajectory. This isthagproximation for most
real images, but in some cases such variations are useful.

To summarize, the complete set of inputs to the synthesis model are a) thaceglistiffnesses
for the four springs (four scalars per time step), and b) two scalarsathickness and brightness.
Given these inputs, the model first simulates the mass-spring physics to teothpuen trajectory.
Then it puts ink on the trajectory to produce a grayscale image as the fipaltoWiewed from outside,
the model’s full set of inputs is treated as simply one long vector. The sequeterpretation that its
components have inside the model is not exploited when the analysis netwoputes a code vector.
We refer to the code vector asreotor programin the sense that it is a sequence of commands computed
to carry out a motor act.

As mentioned before, the number of time steps used in the simulation varies daiilasses.
Therefore the dimensionality of the code vector depends on the class,griakinkward to learn a
single analysis network for all classes. So we train a separate analysizrkéor each one. Keeping
the classes separate also makes it possible to incorporate some othepelgfis-attributes into the
synthesis model that are described next.

4.3 Class-specific modifications to the basic synthesis model

We now describe two enhancements of the synthesis model that apply ooiynéodsd the digit classes.
The basic model as described so far assumes that the pen always staysaict with the drawing

surface and applies ink throughout its trajectory, which is inappropraatedrtain digit classes. The
enhancements are meant to get around this problem.
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4.3.1 Lifting the pen off the paper

Drawing some instances of fours and fives requires temporarily lifting theofiehe paper. For both
classes, there are two different kinds of motor acts people commonly usawotite digit: one that
requires lifting the pen, and another that does not. The former is moreajerseit can be used to
reconstruct an instance drawn by either method. We adapt the geaeretdel to simulate the lifting
of the pen. The simplest way to do this is to turn off the ink for a fixed subs@ine steps along
the trajectory. In the initial tracing of the trajectory on the pixel grid (sectié¢h?}, both coarse- and
fine-grain points corresponding to a pre-determined subset of aginsetime steps do not contribute
any ink to the pixel grid. The subsequent convolution step is carried suagubefore.

We use this trick to draw all instances of fours and fives. By placing thdée'asktime steps of the
trajectory at the appropriate image locations, it is possible to accuratelystegct any instance. The
reconstruction results in section 4.5 show that the analysis neural neteskiearn to place the time
steps properly to produce convincing reconstructions.

4.3.2 Adding an extra stroke

People often draw an extra dash through the middle of sevens and attitna lob ones. In the MNIST
database, about 2.2% of ones and 13% of sevens are dashed, soetiep common to be simply
ignored. We model such images with an additional motor program that drattbgudash. Note that all
images contain the conventional version of the digit, with a small percentagaiming an extra dash.
The problem here is different from the one we face with fours and:fitteere are two distinct parts,
with one part appearing rarely. Learning a motor program for eadtspparately is easy, and then both
versions of the digit can be generated by deciding whether or not to eumabor program for the dash.

To generate the dashed version, first the trajectories of the main pad digih (i.e. the ‘normal’
seven) and the dash are computed separately. They are then supedrapddraced out on the same
pixel grid, and the trace image is convolved with the same kernel.

4.4 Training a neural network to infer the motor program from an image

Trying to invert a synthesis model such as the mass-spring simulator makearitvy an algorithm
like breeder learning is necessary. The training images do not comey@ledavith their corresponding
correct motor programs or any other kind of quantitative measurementswrihiey were actually
generated. The alternative of autoencoder-style learning by minimizingxakerpconstruction error
requires the gradient of the output image with respect to the code vector.

Training the analysis network is a straightforward application of breedeniley. Of the three
ingredients that the algorithm needs (synthesis model, training set of inregkprototype), we have
already described the first one. Details of the MNIST dataset are inséctio The method for creating
the prototype is described next.

4.4.1 Creating the prototype motor program

The prototype should be a point on or close to the manifold of motor programnasdigit class. Since
the mapping from a motor program to the image it generates is highly non-linisadifficult to create

a prototype by trial-and-error search for the stiffness values. We ti@ated a graphical user interface
in Matlab (figure 4.4) that allows the user to interactively choose the stffuakies. The interface
contains four slider controls corresponding to the spring stiffnessesdolected time step. When the
slider positions are changed, immediate visual feedback is producedtwnshhow the shape of the
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Figure 4.4: User interface for creating a prototype.

corresponding pen trajectory changes. This way the user can sdiffiness values ‘visually’ for all
the time steps in a few minutes. To further simplify the prototype creation, we asadhn image of a
class as the target shape for setting the stiffness values so that theteds\dsual goal. The user sets
the stiffness sliders such that the pen trajectory approximately traceseauetin image. The thickness
and brightness parameters are set conservatively to mid-range values.

4.4.2 Detalils of the learning

We train a separate analysis network for each digit class. The same gatgorithm is repeated for
each digit class with a training set that contains only images from that cfaa.chses the network has
the three layer architecture shown in figure 3.1, with 784 pixels at the inper, ne motor program at
the output layer, and a hidden layer in between. Both the hidden and ougpts lzse logistic sigmoid
units. The hidden layer contains 400 units. The dimensionality of the motorgodepends on the
number of time steps in the mass-spring simulation, which can be differeniffioredt classes. The
general expression is«n + 2 wheren is the number of time steps — there are 4 stiffness values per time
step, and two additional values specifying the ink thickness and brightihsst classes use 17 steps,
so the dimensionality is 70 for those classes.

Dashed ones and sevens are treated effectively as two extra claisiséiseir own analysis networks
trained on datasets containing only the dashed cases. Both of thesésamethy®rks consist of two sub-
networks: one for computing the motor program of the main part of the digitaanther for computing
the motor program of the dash. The former is initialized to the analysis netwairiett for the regular
version of the digit (i.e. dashless ones and sevens), and the latter is initisdizdomly. The two
sub-networks are then trained simultaneously with breeder learningn @idashed image as input,
they both infer motor programs for their respective parts, which are #geinfo the synthesis model
to produce a single image as output. The component network for computingotioe program of the
dash contains 100 hidden units. The other component starts off welldr@gis@arameters have already
been trained on dashless images), so the subsequent training on the casts modifies its parameters
only slightly.
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Altogether we train 12 separate analysis networks (0-9, dashed osiegdiaeven). Except for
the training sets, prototypes, and the minor differences in the synthesidantideoverall learning
procedure is identical across all 12 networks.

The biases into the output units are initialized to the logits (inverse of the logistilsg @rototype
motor program. As explained in the previous chapter, this has the efféct #tleother weights in the
network are set to zero, then its output will be exactly the prototype. Téteofehe weights in the
network are initialized to independent samples from a zero-mean Gaustiea standard deviation of
0.01.

For each class, we use a training set of 4400 images and a validationl&&0oimages (except for
the two dashed digit classes, which have many fewer training casesliyaltiing set is split into ‘mini-
batches’ of 100 images, with one weight update done per mini-batch. Futlyattic updates (i.e. one
update per training case) can be very noisy because the actual irtput-pairs that the network learns
on are being dynamically generated and the distribution of those pairs igingahroughout training.

We measure training progress by computing the squared pixel recongirectar the network
achieves on the validation set. Training is stopped once this error is minimipedlriost all classes,
training ends within 5000 epochs, which takes about 10 hours in Matlal3Gta Intel Xeon machine.

Figure 4.5 shows how reconstructions of some training images of eightgelzmnthe analysis
network is being trained. The reconstructions start off poor, but @sngaprogresses, they improve
(see the figure caption for an explanation).

45 Reconstruction results

Figure 4.6 shows validation set images for all classes except foursvasdHtiat are reconstructed from
the motor program inferred with their corresponding class-specific sisalgtwork. Note that the motor
program representation is able to handle the wide variety of shapes anithiirk a class and produce
gualitatively convincing reconstructions.

Figure 4.7 shows reconstruction examples of fours and fives from tltatian set. Unlike for the
other classes, here the synthesis model lifts the pen off the paper & peetspecified time steps. The
reconstructions show how the analysis networks skillfully exploit this fedtugood effect. They learn
to pace the pen so that when it gets lifted, it is at spots along the trajectoryaimatt require any ink.
Note that the same synthesis models can also be used to reconstruct eecfotits and fives that do
notrequire lifting the pen.

Figure 4.8 shows examples of validation images of dashed ones and sev@nstructed using the
extra stroke.

4.6 Iterative refinement of reconstructions with a synthesis netwd

As explained in the previous chapter, once the analysis network is trédifetomes tractable to train
a synthesis network to act as a smooth, differentiable approximation of ttle & synthesis model.
Then, using the gradient of the synthesis network, a motor programeceafibed iteratively by mini-
mizing the squared pixel reconstruction error.

Under the iterative inference procedure, the motor program for an imsaggialized to its open-
loop estimate computed by the analysis network. The main steps for refiningtinate are summa-
rized below:

Repeat until the pixel reconstruction error converges:

1. Reconstruct from the current estimate of the motor program using tble i synthesis model.
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Figure 4.5: The image sequence shows how the analysis network for theldis eight improves
as learning progresses. Each step in the sequence shows MNISTgreasies of eights in red, with
the reconstructions in green computed using the analysis network aferediffnumber of epochs of
training. (Since red + green = yellow, images that are reconstructed heelldsconsist almost entirely
of yellow pixels.) Before training begins, the motor program inferred byattmaysis network for any
input image will be close to the prototype. This is why at the beginning the séremtions look almost
identical regardless of which image is at the input. As breeder learnirgygsses, it produces code
vectors that are increasingly farther away from the prototype and ttagnanalysis network on the
corresponding input-output pairs. As a result the analysis networknéandifferent motor programs
far away from the prototype for different input images. The final steahérsequence (after 1000 epochs
of training) shows that the network is eventually able to reconstruct a veidety of input images well.

2. Compute the gradient of squared pixel error with respect to the matgrgm by backpropagation
through the synthesis network.

3. Update the current estimate of the motor program in the direction of théiveegeadient to get
a new estimate.

We train twelve synthesis networks, one each for the ten classes, dast®cand dashed sevens.
Learning is supervised since the analysis networks can be used to laligitling images with their
approximately correct motor programs. Figure 4.9 shows an example otlwee&d-loop inference
improves squared pixel reconstruction error. Iterative inference laddps to improve classification
error significantly, as we will see in the next section.
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Figure 4.6: Examples of validation set images reconstructed by their poréisig model. In each case
the original image is on the left and the reconstruction is on the right. Supesedpmn the original
image in colour is the pen trajectory. The dots along the trajectory indicate the tiqpe s(These
images should be viewed on the screen to see the colour properly.)

4.7 Improving the synthesis model with additional learning

One of the drawbacks of the current synthesis model is that the ink iupesdhas constant thick-
ness along the pen trajectory and the texture tends to be too smooth. Thogiaggtion is poor for
the many MNIST images in which the thickness varies noticeably along the tngjextd the texture
is jagged. Allowing separate thickness and brightness valeesime stepcan partially address the
problem. The motor program representation is extended to now have sixenai(dbstiffness values,
thickness, brightness) per time step. The new analysis network for pnedibe extended motor pro-
gram can be initialized using the weights of the old one so that it starts off dnjiqting the same
thickness and brightness values at each time step. Further training ofitifesweill then let the values
vary with time. We have not yet tried this extension of the synthesis model.

More generally, the issue here is how to improve on a synthesis model gmhdbalways produce
completely realistic images. One solution is to train a neural network to predigtixbedifference
between the input image and its reconstruction computed by the analysjsiinesis loop. This net-
work takes the digit image as input, and computes the pixel residual as olityfputesidual can then be
added to the reconstruction computed by the analysis-by-synthesis loaplteep the final reconstruc-
tion. The purpose of the residual network is to capture whatever aspfebts image that the synthesis
model is incapable of generating correctly. We can think of the hidden uite @esidual network as
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Figure 4.7: Reconstructions of validation set 4's and 5’s with the synthesikel allowed to lift the
pen off the paper at fixed time steps. When drawing 4's, the ink is turrfddraimestepsd and 10.
For 5's ink is turned off for timesteps3 and14. The pen trajectory for 5’s starts with the downward
vertical stroke, does the open loop at the bottom, moves back up to the topevgtritifted, and finally
finishes with the top horizontal stroke. (These images should be viewee @atben to see the colour

properly.)

Figure 4.8: Examples of dashed ones and sevens reconstructed ssoand stroke. The pen trajectory
for the dash is shown in blue, superimposed on the original image. (Thegesmehould be viewed on
the screen to see the colour properly.)

an extension of the original code vector. And its hidden-to-output weitgnisbe seen aslaarnable
extension of the original, fixed, synthesis model. Note that the residuabriet&n potentially use the
original code vector itself as an extra input to predict the residual. Talysia and residual networks
can be trained jointly to minimize the pixel reconstruction error. This is a gewagaof improving any
synthesis model within the breeder learning framework.

4.8 Evaluating the usefulness of the motor program representation for
classification

The reconstruction results in the previous section represent one veaslofating whether motor pro-
grams are sensible for modeling handwritten digits. Another way is to use threarhigh-level infer-
ence task such as classification. Many standard learning algorithms éawetaluated on the MNIST
classification task, which makes it a useful benchmark for evaluating lygsitams.
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Initial squared pixel error = 33.8 10 iterations, error = 15.2 20 iterations, error = 10.5 30 iterations, error = 9.3

Figure 4.9: An example of how iterative refinement improves reconstrucliomimage sequence above
shows an MNIST image with its inferred trajectory superimposed on it. As magdidas of closed-
loop inference are done, the trajectory fits the shape of the digit better 20 iterations, the squared
pixel error is almost a quarter of its initial value. (These images should besdien the screen to see
the colour properly.)

We have tried three different ways of building a classifier:

1. Energy-based approach:Use the motor program representation to assign to a test image a small
set of scores, or ‘energies’, that measure the ‘badness-of-fitedfnage under each class-specific
model. Then feed the energies as input to a logistic regression classifodr edmverts them into
a distribution over the ten class labels. The logistic regression paramet¢ing anly ones trained
discriminatively in the overall system and make up only a small fraction of alptinameters.

2. Synthetic data approach: New synthetic training images are generated by randomly perturb-
ing the motor programs inferred from the MNIST images. These images carbthesed as
additional training cases for improving the performance of any discrimmativdel.

3. Feature pre-training approach: Take the features from all the class-specific analysis networks,
use them to initialize the features in the first layer of a fully-connected éeedfd neural net-
work classifier, and train the classifier. This is an example of ‘pre-traif@aures as part of a
reconstructive model first, followed by discriminative fine-tuning.

The details of each of these approaches and their results are explaxteHaor the energy-based and
synthetic data approaches, we use the iterative, closed-loop inferetbed of section 4.6 to compute
the code from an image. In the former case, the energy values for a tegt armcomputed after doing
closed-loop inference on it. In the latter case, the codes that are pttiarigenerate synthetic images
are computed using closed-loop inference.

4.8.1 Energy-based approach

Given a test image, we want to use the ten class-specific models to predibieits Aasimple way to
do that is to ask each model to reconstruct the image, and then pick the dlaghervsmallest pixel
reconstruction error. We can use a more general version of this ideanqyuting multiple energy values
(one of which can be reconstruction error) for the image under eacklreach energy measures how
poorly the image fits under a model, with the correct class model hopefuligdnboxwer energies than
the other models.

When there are multiple energies per class, picking the class with the ‘lonegfyeis no longer
straightforward. The proper method is to convert the energies into lpilies (by exponentiating
the negative energy and dividing by the partition function), and then canrthim probabilities into a
conditional probability over labels. But computing the partition function invelveum over all possible
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images, so that's intractable. A tractable, but less proper, alternative setihe energies as input to a
logistic regression classifier. The classifier can learn to combine theiesmiargl reconcile their different
units in such a way that the classification accuracy is optimized.

We use three types of energies: 1) pixel reconstruction error, Zyynader a Restricted Boltzmann
Machine (RBM) model of the trajectory for a class, and 3) energy uadeCA model of the image
residual (the difference between an image and its reconstruction) fasa &ach type contributes ten
scores, one for each class, for a total of thirty values per test imageclaksifier then computes the
distribution over ten classes from its 30D input. It has a total of 310 parasn@ex 10 + 10 biases
into the output units).

Note that for ones and sevens, we reconstruct the image using bottstieddend dashless models
and pick the one with the lower reconstruction error (rather than keepiti.bThe trajectory model
only uses the trajectory for the main part of the digit and ignores the daghege is only one model
for both types. The image residual model is also shared between theldashdashless versions. That
is why there are only ten energies per type rather than twelve.

We use the reconstruction computed from the motor program refined usingethtive inference
procedure, instead of the one computed from the initial motor progranradfdry the analysis net-
work. Using the refined reconstruction reduces classification errtimeoenergy-based approach by
approximately22%.

Image reconstruction energysum of squared differences is used to measure the quality of the image
reconstruction computed from the motor program. However, the simptistance between the image
and its reconstruction is sensitive to even small alignment differences dxetilie two shapes being
compared. We take advantage of the inferred trajectory to make the coompkss sensitive to such
problems.

The idea is to check whether locally shifting ink patches along the pen trajezdarimprove the
match between the image and its reconstruction. At each time step along the tyaggte 5 window
is placed on the reconstructed image centred at the pen coordinates fanthstep. The patch covered
by this window is then shifted up, down, left, and right, and at each positit@sum of squared
differences is computed between the original image and the (now modifigaf)steuction. The patch
position that results in the lowest error is selected and the reconstructed isnagdified to use that
patch position. The same procedure is repeated for each of the remainirgjdjmse In effect, a greedy
local search is done by wiggling the ink along the trajectory to find a reagi&in with a lower sum
of squared differences. This method improves classification accuraeyusing naivel., distance by
approximatelyl 8%.

Free energy under an RBM model of trajectori®@hen an analysis network is used to reconstruct an
image outside of its own class, it tends to produce a contorted pen trajectanysiffort to explain as
much of the ink as possible. For example, figure 4.10 shows how the two mkeawd the three network
reconstruct a two image. The three network achieves a better sum oédquieel error by generating a
highly contorted trajectory. The contortion can become even more proadwnth iterative refinement
using the synthesis network. Since such contortions are not typical akth@rk’s class, they provide
useful information about the true class of the image.

We fit an RBM to the trajectories inferred for the images in each class by thectalass-specific
analysis network. Once trained, it can be used to assign an energy tonagge’s trajectory computed
for that class. A highly unusual trajectory will be assigned a high enevich can be useful for
predicting the class label. Since the pen coordinates are real-valuedsen@aussian visible units
Hinton and Salakhutdinov [2006] to model them. We use 100 binary-valigel&i units. Training is
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Squared error = 24.9, Shape prior score = 31.5 Squared error = 15.0, Shape prior score = 104.2

Figure 4.10: Results of reconstructing the same MNIST digit by two difteckass models. Within
each pair of digits shown above, the MNIST digit is shown on the left of Hiegnd its reconstruction
on the right. The digit pair on the left shows the two-model’s reconstructisuliss and the pair on
the right shows the three-model’s result. The inferred trajectory is supesed on the original image.
The three-model sharply bends the bottom of its trajectory to better explainkthad achieves a better
pixel reconstruction error, but such bending is highly unusual feethr An RBM model of trajectories
can penalize an unusual trajectory by assigning it a high free endriggs¢ images should be viewed
on the screen to see the colour properly.)

done using the Contrastive Divergence algorithm (Hinton [2002]).
Let v be the vector of visible units, arld be the vector of hidden units. For an RBM with unit-
variance Gaussian visible units and binary hidden units, the energy fanstven by:

v — )2
E(v,h) =) (Zsz) — > bihy =Y vk Wi, (4.6)
i

i 1,3

wherev; is theit” visible unit,h; is thej*" hidden unit,W;; is the weight between; andh;, andb; and
b; denote the biases for the andh; units respectivelyE (v, h) is defined only for a full configuration
of units that specifies the values of battandh. For apartial configuration in which only the values
of the units inv are given, we can define an analogous quantity céilezlenergy

Vi — bi 2
F(v)=Y (2)—2 (P(hj|v)tj + P(hj|v)log(P(hj|v)) + (1 — P(hj|v))log(1 — P(h|v))),
i J
4.7)
wheret; is the total input into thg*" hidden unit. LikeE(v, h), F(v) can also be interpreted as mea-
suring ‘badness’, but for a partially observed configuratiorf’(v) takes into account the distribution

induced byv over the unobserved units

Energy under a PCA model of residual imagesr each digit class, we fita PCA model to the arithmetic
difference between an image and its reconstruction by the correctsgasgic motor program. This
can be thought of as fitting a simple linear model to the leftover image structtieaptured by the
motor program. There is one such model per class.

At test time we project the residual image computed for each class onto themaRC A hyperplane
and compute the squared distance between the residual and its projebgotis®nce is an additional
energy value that assesses how well a class-specific model explatastthmage.

The thirty energy values computed this way for a test image form the input @istitoregression
classifier. Its output unit is a discrete variabléhat uses 1-0f encoding to represerit” different
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Model # of discriminatively| % Test error
trained parameters
Logistic regression on pixels 7850 7.28
Fully-connected
neural network 636010 1.60
(800 sigmoid hidden units)
Energy-based approach 310 1.50

Table 4.1: MNIST test classification error rate of the energy-baseaagpip compared to two baseline
discriminative models.

labels. Given an input vecter consisting of the thirty energies, the probabilityiét class is:

exp(by + >_; Wikz;)
25:1 exp(bk/ + Zj ij/l’j) ’

Py, = 1|x) = (4.8)

where the matrix of weight8l” and the biases, are the learnable parameters of the classifier. The
parameters are trained to minimize the cross entropy between the predictedeadistributions over
the labels for a training case (the true distribution assigns probability 1 to thectdabel, O for all
others).

The energy-based approach to classification has a 1.50% error taeMNIST test set. This result
is significantly worse than a number of discriminative models (e.g. a convodlitimural network has
an error rate of only 0.89% (Ranzato et al. [2007])), but as table ¥ shit is still better than some
baseline models with many more parameters.

4.8.2 Synthetic data approach

We create new images in the same way breeder learning creates new sarnali@sio, by corrupting
motor programs of MNIST images with noise. Initially we used the inking algoritlescdbed in
section 4.2.2. However, the classification results of the synthetic datasegppirmprove significantly
when using an alternative inking algorithm described next.

The ink generated by 2D convolution has smoother texture than real imsgeeget around this
problem with a method inspired by work on patch-based generative modetegés, such as image
quilting (Efros and Freeman [2001]) and epitomes (Jojic et al. [2003])stitches’ together patches
from real MNIST images to produce new images. However, the probleeniisomewhat simpler than
the one solved by image quilting and epitomes because the patches are desirlealong the pen
trajectory, which is inherently one-dimensional.

Figure 4.11 provides an overview of the algorithm. The input is a pen trajeatwl the output is a
28 x 28 image with ink applied to that trajectory. The basic idea is to apply ink over sparts of the
trajectory by copying ink segments from the corresponding spans alerngajbctories of real MNIST
images. A source image is selected based on 1) a trajectory with similar shtgeimgut trajectory
over the current span being inked, and 2) an ink segment in that spamathgood ‘continuity’ with
segments previously placed on the input trajectory.

We use a span of 9 time steps for applying a single ink segment to the inputdrgjethe longer
this time span, the more realistic the ink will look in the output image since more of thmks from
the same source image. But a longer span may also result in a worse matekéte shapes of the
input trajectory and a real image’s trajectory. So it is necessary to kegjintbe span short. But if it
is too short, the ink can look choppy and ragged. By ‘ink segment’ we maasetiof pixels that are
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within a5 x 5 neighbourhood of all the coarse and fine grain points on the trajectorinvaiharticular
time span.

We now describe the steps for selecting a single ink segment to place on thé&ajectory. Shape
similarity between two trajectories over a particular time span is measured bynthef squared differ-
ences between the pen position coordinates at corresponding time stépsaictories are aligned to
have the same coordinates for the first time step of the span so that thecehgparison is translation
invariant. Only MNIST images from the same class as the image being genaratednsidered for
this comparison. A subset of MNIST images (e.g. 100) is initially selecteddb@msshape similarity as
candidate ‘sources’ for the current ink segment.

One source image is then selected based on continuity of the current mkstegith the previous
segment. To make the transition between consecutive ink segments appedhn, swe use a 50%
overlap between two consecutive time spans. The selected image is the otieensthallest sum of
squared pixel differences between the second half of the previgumsese in the output image and
the first half of the current segment in the source image. Since the veryséigment of the input
trajectory has no continuity constraint, an image is selected randomly fronultisets Once a source
image is selected, pixels from its segment are copied over to the corr@sgquixel locations in the
output image. Note that each segment is selected greedily, based on Hawowerlaps with only the
immediately preceding ink segment. The greedy approach is computationaligreffi

The new inking algorithm is used to generate 1.2 million synthetic images by adéingrean
Gaussian noise with standard deviationto the logits of the motor programs of 50,000 MNIST images.
(The remaining 10,000 images are set aside as a validation set, so theyasedto generate synthetic
images.) Each of the 50,000 images is perturbed 24 times to create the full set.

Classification results: We consider three types of classifiers: 1) k-nearest neighbour Y khissifier,
2) fully-connected neural network, and 3) convolutional neural oekwSince kNN with 1.2 million
extra images is very slow, we only use half of them. For the fully-connect¢édwe use a single
hidden layer of 800 hidden units with a 10-way softmax unit at the output. Eocdhvolutional net,
the architecture is as follows: the first convolutional layer contains 28ekereach of sizé x 5, the
second convolutional layer has 50 kernels also of Sizeb, followed by a fully connected layer with
200 sigmoid units, and finally a 10-way softmax unit at the output. The paresrnatboth types of
networks are initialized randomly and trained to minimize the cross entropy loss.

In addition to the 1.2 million ‘motor-distorted’ images, we have also tried small, ranaffine
transformations on the MNIST images to generate more images. Training lbriadfilce distortions’

2

Synthetic
image

Segment 1 Segment 2 Segment 3

> A P e
Source image 1 Source image 2 Source image 3
Figure 4.11: The patch-based inking algorithm cuts out ink segments frii$Mimages and stitches

them together to put ink on a new trajectory and generate a synthetic imagewtayght).

Trajectory
to be inked
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k-Nearest Neighbour models
Classifier details Synthetic data % Error
Lo distance None 3.09
L distance None 2.83
L- distance 600K motor distortions 2.43
L3 distance 600K motor distortions 2.24
Fully-connected feedforward neural networks

None 1.60
Single hidden layer, 0.5 million affine distortions 0.97
800 hidden units, 1.2 million motor distortions 0.75
logistic nonlinearity | 0.5 million affine + 1.2 million motor distortions  0.65
1.7 million affine distortions 0.98

Convolutional neural networks
Ranzato et al. [2007] None 0.89
Convolutional net | 0.5 million affine + 1.2 million motor distortions 0.73

(25-50-200-10)

Table 4.2: MNIST test classification error rate for various discriminativdefswhen trained with extra
data generated from motor programs and affine distortions.

is a commonly used trick for improving classifier performance. Some of cuiteesuggest that motor
distortions are more useful and contain information that cannot be peddincough random affine
transformations, but we have not done an extensive comparison loetheeéno types of distortions.
We use 500,000 affine-distorted images (10 draws of random affirefdramations per image 50,000
training images), so in total there are 1.7 million synthetic images.

Table 4.2 shows the test error rates for the three types of classifieesndtor distortions improve
the performance in every single case for all three classifiers, evephistioated one like the convo-
lutional net which already performs well without any extra data. For fodpnected nets, using only
affine distortions does not perform as well as using only motor distortewes) when more of the for-
mer are used. But when the two are combined, the error rate is lower tratnsachieved with either
one in isolation. The 65 test mistakes made by the best net in table 4.2 areisHayune 4.12.

When a network (both fully-connected and convolutional) is trained onythihstic images, mini-
batches are created by using an equal number of real and synthetic ifeagea mini-batch of 1000
images will contain 500 MNIST images and 500 synthetic ones). Thereferelétive influence of the
real and synthetic images on the parameters is equal even though thdisyintages outnumber the
real ones roughly by a factor 30.

4.8.3 Feature pre-training approach

Finally, we consider taking the features learned by the analysis netwokglagging them into a
classifier. This is an example of first learning features using an ungapdralgorithm and then fine-
tuning them with a supervised one.

We use the 4000 features from the ten class-specific analysis netwi@kdeatures per network,
excluding the networks for dashed ones and sevens) to initialize the fiest & a fully-connected
feedforward net. These features then connect to a softmax unit atitheto The parameters in the
output layer are randomly initialized. They are updated 100 times while ket#@rye-trained features
fixed. After that, all the parameters are updated together.
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Figure 4.12: 65 errors on the MNIST test set made by the net with 800rhiglies and trained on 1.7

million synthetic training cases, in addition to the original MNIST training set. Abeach image, we

show the true label (left of the arrow) and the predicted label. Some ofesare arguably errors in
the human labeling.
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We also consider using the same 4000 features to initialize the first layepafalational net. One
difficulty here is that the kernels typically used in the first layer tend to be raoiler than the image
itself (e.g.5 x 5 in the previous section’s net), while features of fully connected netsthavgame size
as the input image. The solution we have tried is to select, from 28828 feature, thes x 5 window
with the largestL, norm and use it as a kernel. In other words, selecttle5 window that has the
strongest influence on a feature’s output and ignore the rest.

Now we end up with 4000 kernels. A typical convolutional net has only tdrsernels in the
first layer. We use the following heuristic to select a subset of the 40@0gorthrough the kernels in
descending order af, norm, and pick one if it has a cosine distance greater than some threshiold (s
by hand) from all the previous picks. (The first kernel is alwaysceteby default.) If the minimum
distance condition is not met, the kernel is not kept. Using this rule, 25 leeaine selected for the first
layer. The remaining layers of the net are of the same size as those intfaipreection (50 kernels in
the second layer, followed by a fully-connected layer of 200 units, agd ghsoftmax output unit) and
they are initialized randomly. To see how high the performance of a convodltieet can be pushed,
we combine both pre-training and synthetic data to train it. The 25 kernelsiigkiie above heuristic
are shown in figure 4.13.

The results are shown in table 4.3. The error rate for the fully-conneeteshould be compared to
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Classifier with pre-trained features Synthetic data % Error
in the first layer
Fully-connected feedforward net

with a single hidden layer of None 0.91
4000 logistic sigmoid units.
Convolutional net 0.5 million affine + 1.2 million motor distortions 0.53

(25-50-200-10)

Table 4.3: MNIST test classification error rate for a fully-connectedanéta convolutional net when
the first layer is initialized using pre-trained features from the ten classifgpanalysis networks.

the 1.60% obtained without either pre-training or synthetic data.0Ts8&% result for the convolutional
net would tie for the fourth best error rate (as of September 2009) athengng list of results for a
variety of models shown on the MNIST webpagét should also be compared to a convolutional net
without pre-training or synthetic dat.§9% by Ranzato et al. [2007]), and without pre-training but
with synthetic data.73% from table 4.2).

As a final result, figure 4.14 shows a subset of the features of thedalipected net before and
after discriminative fine-tuning. These are the 100 features with the hidgedistance between the
‘before’ and ‘after’ versions. Qualitatively they still look very similar, iwh supports the idea that the
discriminative part of the learning does not need to significantly modify theltref pre-training to
achieve high accuracy.

4.8.4 Further ideas for using the motor program representaion

Another possible use of the motor program representation for classifigatas a regularizer that en-
courages the classifier to be invariant to small changes in the motor programidea is inspired by
the tangent propagation algorithm (see section 2.2), which propos#étgaddhe usual loss function
an extra regularizer term that penalizes the norm of the gradient of thsifida output with respect to
certain transformations (e.g. translation, rotation etc.) of the input imagepditadty encourages the
classifier to be invariant to small such transformations.

Similarly, we propose a regularizer that penalizesith@orm of the gradient of the classifier output
with respect to the motor program of the input image. The intuition is that smaigeisain the motor
program should not affect the class label, so ideally the gradient’s sbonid be 0. The penalty on the
norm enforces it as a soft constraint.

To implement the regularizer, we need its gradient with respect to the clagsifimeters. The

http:/fyann.lecun.com/exdb/mnist/



CHAPTER4. INVERTING A PHYSICS-BASED SYNTHESISMODEL OFHANDWRITTEN DIGIT IMAGES55

synthesis networks define a mapping from motor programs to images, arldsbiier is the mapping
from an image to the label. So the composite mapping from a motor program to éhéslalst a fully-
connected feedforward neural net. The first and second desdsaii this function are straightforward
to compute, and from those the gradient of the regularizer can be compiednplementation is left
as future work.

4.9 Conclusions

The results in this chapter show that inverting a synthesis model can hé febbject recognition.
They also show that breeder learning works well enough to learn thiexdpyate inverse of a non-trivial
synthesis model like the mass-spring model. Even though the empirical beha¥ite algorithm is
sensible, more work needs to be done to understand it better theoretically.
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Figure 4.14: Features before and after fine-tuning.



Chapter 5

Implicit Mixtures of Restricted Boltzmann
Machines

We present a mixture model whose components are Restricted Boltzmanimb®¢(RBMs). This
possibility has not been considered before because computing the pdttitaiion of an RBM is in-
tractable, which makes learning a mixture of RBMs by maximum likelihood intractetleell. How-
ever, when formulated as a third-order RBM, such a mixture modgrlbe learned tractably using
Contrastive Divergence. The energy function of the model captures-thiay interactions among vis-
ible units, hidden units, and a single hidden discrete variable that repsebencluster label. The
distinguishing feature of this model is that, unlike other mixture models, the mixogpptions are not
explicitly parameterized. Instead, they are defined implicitly via the energtitmand depend on all
the parameters in the model. We present results for the MNIST and NORBetia&howing that the
implicit mixture of RBMs learns clusters that reflect the class structure in ttze da

5.1 Introduction

Our main motivation is to develop a model that can simultaneously leclusteringof the data as well
as acluster-specific latent representatioihis can be useful if the dataset consists of several subsets
that require very different features to describe. For example, agrsimosection 5.4, when we apply
a mixture of two RBMs to unlabeled images of handwritten two’s and threes MINIST, it discov-
ers clusters that correspond to those classes and learns class:dpatifies entirely unsupervised.
Mixture of Factor Analyzers (MFA) (Ghahramani and Hinton [1996]) mother model that learns a
clustering and a latent representation together. In that case learningasghtforward application of
the Expectation Minimization (EM) algorithm because all the quantities requyré&dvbare tractable to
compute. This is not the case for a mixture of RBMs, as explained next. MIBA,is adirectedmodel,
while the model we propose ismdirected

A typical mixture model is composed of a number of separately parametegnsitylmodels each
of which has two important properties:

1. There is an efficient way to compute the probability density (or mass) afapdint under each
model.

2. There is an efficient way to change the parameters of each modetlsonasimize or increase
the sum of the log probabilities it assigns to a set of datapoints.

The mixture is created by assigning a mixing proportion to each of the comporwtels and it is
typically fitted by using the EM algorithm that alternates between two steps. -BhepEIses property 1

56
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to compute the posterior probability that each datapoint came from eachadntiyonent models. The
posterior is also called the “responsibility” of each model for a datapoingé. M¥step uses property 2
to update the parameters of each model to raise the responsibility-weightesf the log probabilities
it assigns to the datapoints. The M-step also changes the mixing proportitresammponent models
to match the proportion of the training data that they are responsible for.

Restricted Boltzmann Machines (Hinton [2002]) model binary data-veusing) binary latent vari-
ables. They are considerably more powerful than mixture of multivariateddéli models because
they allow many of the latent variables to be on simultaneously so the number ofatilte latent
state vectors is exponential in the number of latent variables rather thamllvear in this number as
it is with a mixture of Bernoullis. An RBM withV hidden units can be viewed as a mixture20f
Bernoulli models, one per latent state vector, with a lot of parameter sHaetageen the” component
models and with th@”" mixing proportions being implicitly determined by the same parameters. It
can also be viewed as a product®f‘uni-Bernoulli” models (plus one Bernoulli model that is imple-
mented by the visible biases). A uni-Bernoulli model is a mixture of a uniforthaBernoulli. The
weights of a hidden unit define th# probability in its Bernoulli model ag; = o(w;), and the bias,
b, of a hidden unit defines the mixing proportion of the Bernoulli in its uni-Bett as o (b), where
o(x) = (1+ exp(—z)) .

The modeling power of an RBM can always be increased by increasimgithber of hidden units
(Roux and Bengio [2008]) or by adding extra hidden layers (Sutskawd Hinton [2008]), but for
datasets that contain several distinctly different types of data, such gesroadifferent object classes,
it would be more appropriate to use a mixture of RBM’'s. The mixture could bd tesmodel the raw
data or some preprocessed representation that has already exteattedd that are shared by different
classes. Unfortunately, RBM’s cannot easily be used as the compafiemtgure models because they
lack property 1: It is easy to compute thenormalizeddensity that an RBM assigns to a datapoint,
but the normalization term is exponentially expensive to compute exactly @mdagproximating it is
extremely time-consuming (Salakhutdinov and Murray [2008]). Theredsred€fficient way to modify
the parameters of an RBM so that the log probability of the data is guaranteeni@¢ase, but there are
good approximate methods (Hinton [2002]) so this is not the main problem. fhjger describes a
way of fitting a mixture of RBM'’s without explicitly computing the partition functionedch RBM.

Our approach in effect trades off one intractable problem — computingé&ttgign function of
an RBM - for another — exact maximum likelihood learning of an RBM. Newbess, it is a good
trade because we know how to deal with the latter using a tractable, well-eggpedximation, i.e.
Contrastive Divergence (Hinton [2002]). One side-effect of thddria that we no longer have mixing
proportions as explicit parameters. But, as the results show, this doappedr to make the mixture
model any less useful.

5.2 The model

We start with the energy function for an RBM and then modify it to define the inphcture of
RBMs. To simplify the description, we assume that the visible and hidden vasiablhe RBM are
binary. The formulation below can be adapted to other (hon-binary) tfpesiables (e.g., see Welling
et al. [2005]).

The energy function for an RBM is

E(v,h) = =Y Whuh;, (5.1)
i,J

A multivariate Bernoulli model consists of a set of probabilities, one perfonent of the binary data vector.
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Figure 5.1: The Implicit Mixture of Restricted Boltzmann Machinda) Every clique in the model
contains a visible unit, hidden unit, and label unf{b) Our shorthand notation for representing the
cligue in (a). (c) A model with two of each unit type. There is one clique for every possibléetridf
units created by selecting one of each type. The “restricted” architgmteicudes connections between
units of the same typegd) Our shorthand notation for representing the model in (€).The 3D array
of parameters for the model in (c).

wherev is a vector of visible (observed) variablds,is a vector of hidden variables, ani © is a
matrix of parameters that capture pairwise interactions between the visibldduaehtvariables. We
omit biases for clarity. Now consider extending this model by including a eliscrariabld with K
possible states, represented a& alimensional binary vector with 1-adk activation. Defining the
energy function in terms dhree-way interactionamong the components of h, andl gives

E(v,h,1) == W/vihjly, (5.2)
4,7,k

whereW ! is a3D array of parameters. Each slice of this array alongtuémension is a matrix that
corresponds to the parameters of each offtheomponent RBMs. The joint distribution is

exp(—E(v,h,1))

P(v,h,1) = 7 : (5.3)
where
Zr =Y exp(~E(u,g,y)) (5.4)
u7g7y

is the partition function of the implicit mixture model. Re-writing the joint distribution in tseial
mixture model form gives

P(v)=> P(v,h,1) =) > " P(v,h|l, = 1)P(l = 1). (5.5)
h,l k h

=1
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Equation 5.5 defines the implicit mixture of RBMS?(v, h|l;, = 1) is the k** component RBM’s
distribution, parameterized by thé" slice of W/ along thel-dimension. Unlike in a typical mixture
model, the mixing proportiof?(/;, = 1) is not a separate parameter in our model. Insteadintpécitly
defined via the energy function in equation 5.2. Figure 5.1 gives a vigsarigtion of the implicit
mixture model’s structure.

5.3 Learning
Given a set ofV training casegv!, ..., vV}, we want to learn the parameters of the implicit mixture

model by maximizing the log likelihood = Zf:[:l log P(v™) with respect td¥!. We use gradient-
based optimization to do this. The expression for the gradient is

oL <(9E(V,h,l)> <8E v™. h, l)>
_ ny(o2wh] _ , (5.6)
oW’ oW/ prvn Z P(h]jv?)

n=1

where() p() denotes an expectation with respect to the distribui?¢n The two expectations in equa-
tion 5.6 can be estimated by sample means if unbiased samples can be genamatbd €orresponding
distributions. The conditional distributiaf(h, 1|v®) is easy to sample from, but sampling the joint dis-
tribution P(v, h,1) requires prolonged Gibbs sampling and is intractable in practice. We ggtditiois
problem by using the Contrastive Divergence (CD) learning algorithniodif2002], which has been
found to be effective for training a variety of energy-based models ogh and Black [2005], Roth
and Black [2007], Welling et al. [2005], He et al. [2004]).

Sampling the conditional distributions: We now describe how to sample the conditional distributions
P(h,1|v) and P(v|h,1), which are the main operations required for CD learning. The secordi€as
easy: giveri, = 1, we select thé:** component RBM of the mixture model and then sample from its
conditional distributionP,(v|h). The bipartite structure of the RBM makes this distribution factorial.
So thei?” visible unit is drawn independently of the other units from the Bernoulli distidin

PO =1l =1) = 7o 12 - (5.7)
2]k

SamplingP (h,1|v) is done in two steps. First, th€-way discrete distributio®(1|v) is computed
(see below) and sampled. Then, giign= 1, we select thé:"» component RBM and sample from its
conditional distributionP, (h|v). Again, this distribution is factorial, and th&" hidden unit is drawn
from the Bernoulli distribution

1

P(hj:”V?lk:l):l—FeXp( Z 1})' (58)
1k

To computeP(1]v) we first note that
P(ly = 1|v) x exp(—F(v,l = 1)), (5.9)

where thefree energyF'(v, [, = 1) is given by

F(v,l;=1) Zlog + exp Z kaz . (5.10)
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If the number of possible stateslaé small enough, then itis practical to compute the quatitity, [, =

1) for everyk by brute-force. So we can compute
exp(—F(v, I = 1))
P, =1v) = . 5.11
e =1V = S p F(v. I = D) &)

Equation 5.11 defines thresponsibilityof the k** component RBM for the data vecter

Contrastive divergence learning:Below is a summary of the steps in the CD learning for the implicit
mixture model.

1. For atraining vectov ., pick a component RBM by sampling the responsibilities
P(lx = 1|v4). Letm be the index of the selected RBM.

Samplén; ~ Pi(h|vy).
Compute the outer produkr! = v+h£.

Samplev_ ~ P, (v|hy).

o M 0N

Pick a component RBM by sampling the responsibilifi€s, = 1|v_). Letq be the index of the
selected RBM.

6. Sampléh_ ~ P, (h|v_).

7. Compute the outer produbt; = v_hT.

Repeating the above steps for a mini-batctiVgftraining cases results in two sets of outer products for
each componerit in the mixture modelS;” = {Dy, ..., Dy} andS;” = {D;}, ..., D, }. Then the
approximate likelihood gradient (averaged over the mini-batch) foktheomponent RBM is

10L 1 iDJF—iD_ (5.12)
Nb aWkI ~ Nb gl ki ot ki | .

Note that to compute the outer produfds andD~ for a given training vector, the component RBMs
are selected througtwo separate stochastic pick3 herefore the set§,j and S, need not be of the
same size because the choice of the mixture component can be differentédndv _.

Scaling free energies with a temperature parameterin practice, the above learning algorithm causes
all the training cases to be captured by a single component RBM, and thecothponents to be left
unused. This is because free energy is an unnormalized quantity thadwarery different numerical
scales across the RBMs. One RBM may happen to produce much smallen&rages than the rest
because of random differences in the initial parameter values, andrttiwgevith high responsibilities
for most training cases. Even if all the component RBMs are initialized to thet eame initial param-
eter values, the problem can still arise after a few noisy weight updatégustic to get around this
problem is to use a temperature paramé&tevhen computing the responsibilities:
exp(—F(v,l =1)/T)
Sopwexp(=F(v,ly =1)/T)
By choosing a large enoudh, we can make sure that random scale differences in the free enengies d
not lead to the above collapse problem. One possibility is to start with a Targed then gradually
anneal it as learning progresses. In our experiments we found thgtausonstani” works just as well

as annealing, so we keep it fixed. Note that this is not equivalent to simptlirdivthe weights of all
the RBMs by a factor of".

Pl = 1v) = (5.13)
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Figure 5.2: Features of the mixture model with two component RBMs trainechlabeled images of
handwritten two’s and three’s from MNIST. Those for the “two-RBM&an the right. The features
resemble what one would get if two RBMs are trained separately, one andmlg and the other on
threes only. But this requires knowing the labels of the images.

5.4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST and NORB. Detailsobh lof these
datasets can be found in section A.2. We use MNIST mainly as a sanity aretkyost of our results
are for the more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is not
possible to directly evaluate the quality of our mixture model’s fit to the data, §.garhputing the log
probability of a test set under the model. Recently it was shown that Arth&ajgortance Sampling
can be used to tractably approximate the partition function of an RBM (Saldikion and Murray
[2008]). While this is an attractive option to consider in future work, fonmee use the less direct but
computationally cheaper approach of evaluating the model by using it insifcdagon task.

A reasonable evaluation criterion for a mixture modeling algorithm is that itldHmiable to find
clusters that are mostly ‘pure’ with respect to class labels. That is, thef data vectors for which a
particular mixture component has high responsibilities should have the sassdatiel. So it should
be possible to accurately predict the class label of a given data vegtortifre responsibilities of the
different mixture components for that vector. Once a mixture model is fuligdth we evaluate it by
training a classifier that takes as input the responsibilities of the mixture canisofor a data vector
and predicts its class label. The goodness of the mixture model is measuttegl tegt set prediction
accuracy of this classifier.

5.4.1 Results for MNIST

Before attempting to learn a good mixture model of the whole MNIST dataset,igeetivo simpler
modeling tasks. First, we fitted an implicit mixture of two RBMs with 100 hidden unith ¢a an
unlabeled dataset consisting of 4,000 twos and 4,000 threes. As we, ladpedt all of the twos were
modeled by one RBM and almost all of the threes by the other. Figure 5.Zghevieatures learned by
each RBM (the one that models twos is on the right). These features aibledar detecting the kind
of strokes that appear in images of handwritten twos and threes.

On 2042 held-out test cases of twos and threes, there were only 2fici®n errors when an
image was assigned the label of the most probable RBM. This comparefavergbly with logistic
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Figure 5.3: Features of the mixture model with five component RBMs traineallden classes of
MNIST images.

regression which needs 8000 labels in addition to the images and giveso86 @t the test set even
when using a penalty on the squared weights whose magnitude is set ustidation set. Logistic

regression also gives a good indication of the performance that cogxjpeeted from fitting a mixture
of two Gaussians with a shared covariance matrix, because logistic segrés equivalent to fitting

such a mixture discriminatively.

We then tried fitting an implicit mixture model with only five component RBMs, each &&h
hidden units, to the entire training set. We purposely make the model very sntlalitst is possible to
visually inspect the features and the responsibilities of the component RB#snderstand what each
component is modeling. This is meant to qualitatively confirm that the algoritimegain a sensible
clustering of the MNIST data. (Of course, the model will have poor classifin accuracy as there are
more classes than clusters, so it will merge multiple classes into a single cludterfg&tures of the
component RBMs are shown in figure 5.3 (top row). The plots in the bottewstmw the fraction
of training images for each of the ten classes that are hard-assignechte@aponent. The learning
algorithm has produced a sensible mixture model in that visually similar digitedeea® combined
under the same mixture component. For example, ones and eights requirsimaayfeatures, so they
are captured with a single RBM (leftmost in fig. 5.3). Similarly, images of fosggens, and nines are
all visually similar, and they are modeled together by one RBM (middle of fig. 5.3)

We have also trained larger models with many more mixture components. As the moincoen-
ponents increase, we expect the model to partition the image space morgdittethe different com-
ponents specializing on various sub-classes of digits. If they specialez®ay that respects the class
boundaries, then their responsibilities for a data vector will become a beggicior of its class label.

The component RBMs use binary units both in the visible and hidden layéws.imffage dimen-
sionality is 784 (28x 28 pixels). We have tried various settings for the number of mixture comp®nen
(from 20 to 120 in steps of 20) and a component’s hidden layer size (80,2D0, 500). Classification
accuracy increases with more components, until 80 components. Additiomgonents give slightly
worse results. The hidden layer size is set to 100, but 200 and 500rathace similar accuracies. Out
of the 60,000 training images in MNIST, we use 50,000 to train the mixture modehanclassifier,
and the remaining 10,000 as a validation set for early stopping. The finadlmack then tested on a
separate test set of 10,000 images.

Once the mixture model is trained, we train a logistic regression classifier dacptee class la-
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Logistic regression % Test
classifier input error
Unnormalized | 3.36%
responsibilities

Pixels 7.28%

Table 5.1: MNIST test set error rates when a logistic regression classifiained on the unnormalized
responsibilities of the implicit mixture model versus on the raw pixels.

bel from the responsibiliti€s It has as many inputs as there are mixture components, and a ten-way
softmax over the class labels at the output. With 80 components, there argonlyp + 10 = 810
parameters in the classifier (including the 10 output biases). In ouriengr@s, classification accuracy
is consistently higher whetnnormalizedesponsibilities are used as the classifier input, instead of the
actual responsibilities. These unnormalized values have no propetplistic interpretation, but they
allow for better classification, so we use them in all our experiments.

Table 5.1 shows the classification error rate of the resulting classifier diMhWST test set. As a
simple baseline comparison, we train a logistic regression classifier thattpréng: class label from the
raw pixels. This classifier ha&50 parameters and yet the mixture-based classifier has less than half
the error rate. The unnormalized responsibilities therefore contain a sagtikmount of information
about the class labels of the images, which indicates that the implicit mixture nmesligldrned clusters
that mostly agree with the class boundaries, even though it is not giveolass/ information during
training.

5.4.2 Results for NORB

NORB is a much more difficult dataset than MNIST because the images amryotlifferent classes
of 3D objects (instead of 2D patterns) shown from different viewpoini$ ander various lighting
conditions. The pixels are also no longer binary-valued, but insteadtipagrayscale rande, 255).
So binary units are no longer appropriate for the visible layer of the coemidRBMs. Gaussian
visible units have previously been shown to be effective for modelingsgedg images (Hinton and
Salakhutdinov [2006]), and therefore we use them here. See HintrSalakhutdinov [2006] for
details about Gaussian units (or see equation 4.6 in the previous chaptee Energy function of an
RBM with Gaussian visible units with unit variance and binary hidden units).inAkat paper, the
variance of the units is fixed to 1.

Empirically, learning an RBM with Gaussian visible units has been found tareeggreater num-
ber of weight updates than an RBM with binary visible units. This problerotnes even worse in our
case since a large number of RBMs have to be trained simultaneously. Vdeitdwy first training a
single RBM with Gaussian visible units and binary hidden units on the raw patel dnd then treating
the activities of its hidden layer as pre-processed data to which the implicit mixtadel is applied.
Since the hidden layer activities of the pre-processing RBM are binayntkture model can now be
trained efficiently with binary units in the visible layetOnce trained, the low-level RBM acts as a fixed
pre-processing step that converts the raw grayscale images into bewiors: Its parameters are not
modified further when training the mixture model. Figure 5.4 shows the compooéthe complete

2Note that the mixture model parameters are kept fixed when training theifiga, so the learning of the mixture model is
entirely unsupervised.

3We actually use the real-valued probabilities of the hidden units as the ddtayeanlso use real-valued probabilities
for the reconstructions. On other tasks, the learning gives similar remiltg binary values sampled from these real-valued
probabilities but is slower.
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Figure 5.4: Implicit mixture model used for MNORB. A pre-processing ti@msation converts the raw
pixels, represented by Gaussian visible units, into the activation probabilitsechastic binary units.
The mixture model is trained on the real-valued probabilities rather than kastivities of the units.

model.

A difficulty with training the implicit mixture model (or any other mixture model) on NORBhiat
the ‘natural’ clusters in the dataset correspond to the six lighting conditiataad of the five object
classes. The objects themselves are small (in terms of area) relative tackgedamd, while lighting
affects the entire image. Any clustering signal provided by the objectadasil be weak compared
to the effect of large lighting changes. So we simplify the dataset slightly byaling the lighting
variations across images. Each image is multiplied by a scalar such that all iimageshe same
average pixel value. This crude normalization significantly reduces thdergace of the lighting on
the mixture learninty Finally, to speed up experiments, we subsample the images%6om 96 to
32 x 32 and use only one image of the stereo pair. We refer to this dataset as ‘®tbNi®RB’ or
‘MNORB'. It contains 24,300 training images and an equal number of teggeésiaFrom the training
set, 4,300 are set aside as a validation set for early stopping.

We use 2000 binary hidden units for the preprocessing RBM, so the dimansionality of the
implicit mixture model is 2000. We have tried many different settings for the nawhmixture com-
ponents and the hidden layer size of the components. The best classifiestidts are given by 100
components, each with 500 hidden units. This model has d@i#out500 - 2000 = 10® parameters, and
takes about 10 days to train on an Intel Xeon 3Ghz processor.

Table 5.4.2 shows the test set error rates for a logistic regression eassifned on various input
representations. As mentioned earlier, Mixture of Factor Analyzers (M&Aimilar to the implicit
mixture of RBMs in that it also learns a clustering while simultaneously learninggatleepresentation
per cluster component. But it is a directed model based on linear-Gausgesentations, and it
can be learned tractably by maximizing likelihood with EM. We train MFA on the rawlmata of
MNORB. The MFA model that gives the best classification accuracywshn table 5.4.2) has 100
component Factor Analyzers with 100 factors each. (Note that simply méikéngumber of learnable
parameters equal is not enough to match the capacities of the different rnedailsse RBMs use binary
latent representations, while FAs use continuous representations. ottasy to strictly control for

“The normalization does not completely remove lighting information from #tia.dA logistic regression classifier can still
predict the lighting label with 18% test set error when trained and testedromatized images.



CHAPTERS. IMPLICIT MIXTURES OFRESTRICTEDBOLTZMANN MACHINES 65

] Logistic regression classifier input | % Test error|

Unnormalized responsibilities computed 14.65%
by the implicit mixture of RBMs
Probabilities computed by the transformatidf; in 16.07%
fig 5.4 (i.e. thepre-processed representatijon
Raw pixels 20.60%
Unnormalized responsibilities of an MFA model| 22.65%
trained on the pre-processed representation in fig 5.4
Unnormalized responsibilities of an MFA 24.57%
model trained on raw pixels
Unnormalized responsibilities of a Mixture of
Bernoullis model trained on the pre-processed 28.53%
representation in fig 5.4

Table 5.2: MNORB Test set error rates for a logistic regression clasgiiie different types of input
representations.

capacity when comparing these models.)

A mixture of multivariate Bernoulli distributions (s&eg.section 9.3.3 of Bishop [2006]) is similar
to an implicit mixture model whose component RBMs have no hidden units and/mithye biases as
trainable parameters. The differences are that a Bernoulli mixture is@edirenodel, it has explicitly
parameterized mixing proportions, and maximum likelihood learning with EM is trbectélVe train this
model with 100 components on the activation probabilities of the preprogeR8M’s hidden units.
The classification error rate for this model is shown in table 5.4.2.

These results show that the implicit mixture of RBMs has learned clustersetiattrthe class
structure in the data. By the classification accuracy criterion, the implicit mixsuaéso better than
MFA. The results also confirm that the lack of explicitly parameterized mixirmgpgntions does not
prevent the implicit mixture model from discovering interesting cluster stradtuthe data.

5.5 Conclusions

We have presented a tractable formulation of a mixture of RBMs. That stdichmaulation is even
possible is a surprising discovery. The key insight here is that the mixtudelnoan be cast as a third-
order RBM, provided we are willing to abandon explicitly parameterized mixioggrtions. Then it
can be learned tractably using contrastive divergence. As futurde werould be interesting to explore
whether these ideas can be extended to modeling time-series data.



Chapter 6

3D Object Recognition with Deep Belief
Nets

We introduce a new type of top-level model for Deep Belief Nets and etiuan a 3D object recogni-
tion task. The top-level model is a third-order Boltzmann machine, trained agigbrid algorithm that
combines both generative and discriminative gradients. Performancdusiad on the NORB database
(normalized-unifornversion), which contains stereo-pair images of objects under diffeghiting con-
ditions from different viewpoints. Our model achieves 6.5% error on thiesit, which is close to the
best published result for NORB (5.9%) using a convolutional neurtaha has built-in knowledge of
translation invariance. It substantially outperforms shallow models suchsis §11.6%). DBNs are
especially suited for semi-supervised learning, and to demonstrate thisnsiel@oa modified version
of the NORB recognition task in which additionailabeledmages are created by applying small trans-
lations to the images in the database. With the extra unlabeled data (and the sauné @intetbeled
data as before), our model achieves 5.2% error.

6.1 Introduction

Recent work on DBNs (Larochelle et al. [2007], Lee et al. [2009F bhown that it is possible to learn
multiple layers of nonlinear features that are useful for object clasificavithout requiring labeled
data. The features are trained one layer at a time as an RBM using CDsa@madorm of autoencoder
(Vincent et al. [2008], Ranzato et al. [2007]), and the feature atitins learned by one module become
the data for training the next module. After a pre-training phase that léayess of features which
are good at modeling the statistical structure in a set of unlabeled imagesyiseg backpropagation
can be used to fine-tune the features for classification (Hinton and Siédiakdv [2006]). Alternatively,
classification can be performed by learning a top layer of features thaglstie joint density of the
class labels and the highest layer of unsupervised features (Hintbr{20@6]). These unsupervised
features (plus the class labels) then become the penultimate layer of theedie¢méxt (Hinton et al.
[2006]).

Early work on deep belief nets was evaluated using the MNIST datasahdfiritten digits (Hinton
et al. [2006]) which has the advantage that a few million parameters agea@ggor modeling most of
the structure in the domain. For 3D object classification, however, many pacaeneters are probably
required to allow a DBN with no prior knowledge of spatial structure to capé#lirof the variations
caused by lighting and viewpoint. It is not yet clear how well DBNs perfati®D object classification
when compared with shallow techniques such as SVMs (Vapnik [199€]oBte and Scholkopf [2002])
or deep discriminative techniques like convolutional neural network€heet al. [1998]).

66
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In this chapter, we describe a better type of top-level model for deeff nelie and show that if
the top-level model is trained using a combination of generative and disctiveirgaadients (Hinton
[2006], Kelm et al. [2006], Larochelle and Bengio [2008]) there isneed to backpropagate discrim-
inative gradients to fine-tune the earlier layers of features. We evaluaiadbel on NORB (LeCun
et al. [2004]), which is a carefully designed object recognition taskrdwatires generalization to novel
object instances under varying lighting conditions and viewpoints. Our nsaglgficantly outperforms
SVMs, and it also outperforms convolutional neural nets when givditiadal unlabeleddata produced
by small translations of the training images.

We use RBMs trained with one-step contrastive divergence as ourrbasiale for learning layers
of features. These are fully described elsewhere (Hinton et al. [28@#igio et al. [2007]) and the
reader is referred to those sources for details.

6.2 AThird-Order Restricted Boltzmann Machine as the Top-Level Mockl

Until now, the only top-level model that has been considered for a DBN iIRBM with two types
of visible units (one for the label, another for the penultimate feature veaitah)a hidden layer, with
bipartite connections between the visible and hidden layers. We now coasiddternative model for
the top-level joint distribution in which the class label multiplicatively interacts Wwitkh the penulti-
mate layer units and the hidden units to determine the energy of a full corifigur#t is the same as
the implicit mixture model introduced in the previous chapter, except now tloeetis(cluster) label
variable is no longer hidden, and the number of components in the modeldsdide the number of
object classes. Changing the label variable from hidden to obserfemdsathe inference and learning
procedures. As explained before, the model is a Boltzmann machine widnilae cliques, each con-
taining a penultimate layer unit, a hidden unit:;, and a label unit;. See the figure in the previous
chapter (figure 5.1) for a summary of the architecture.

We quickly review the energy function and the probability model of the thicteoRBM. Consider
the case where the componentsvadindh are stochastic binary units, ahds a discrete variable with
K states represented by 1-Afencoding. The model can be defined in terms of its energy function

E(v,h,1) = = Wijsvihjly, (6.1)
1,7,k
whereW;;;, is a learnable scalar parameter. (We omit bias terms in all expressionsity.clahe
probability of a full configuratioq{v, h, 1} is then

exp(—E(v,h,1))

P(v.h,l) = SE0

(6.2)

whereZ = >,y exp(—E(v', 1, 1')) is the partition function. Marginalizing ovér gives the dis-
tribution overv andl alone.

The main difference between the new top-level model and the bipartite eddérusarlier DBNs is
that now the class label multiplicatively modulates how the visible and hidden wnitstwute to the
energy of a full configuration. If the label’” unit is 1 (and the rest are 0), then th# slice of the
3D array determines the energy function. In the case of soft activati@asmore than one label has
non-zero probability), a weighted blend of the array’s slices specifeesriergy function. The earlier
top-level (RBM) model limits the label's effect to changing the biases into thdemicunits, which
modifies only how the hidden units contribute to the energy of a full configuraThere is no direct
interaction between the label and the visible units. Introducing direct iritengcamong all three sets
of variables allows the model to learn features that are dedicated to eashThas is a useful property
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when the object classes have substantially different appearancesdbat very different features to
describe. Unlike an RBM, the model structure is not bipartite, but it is stiittreted” in the sense that
there are no direct connections between two units of the same type.

Note that the third-order model is not the same as training a separate RB&hdbrclass. A
collection of independently trained class-specific RBMs represents ttréodimon P(v|l), while the
third-order model represents the joint distributiBv,1) = P(v|1)P(1). This distinction will become
important later when we consider the hybrid generative-discriminativaiteaalgorithm.

6.2.1 Inference

The distributions that we would like to be able to infer &@|v) (to classify an input), and’(v,1/h)
andP(h|v,1) (for CD learning). Fortunately, all three distributions are tractable to safrgteexactly.
The simplest case iB(h|v,1). Oncel is observed, the model reduces to an RBM whose parameters
are thek'" slice of the 3D parameter array. As a resBlth|v,1) is a factorized distribution that can be
sampled exactly.

For a third-order RBM model witlv,, visible units,NV;,, hidden units andV, class labels, the distri-
bution P(1|v) can be exactly computed ®( N, N, N;) time. This result follows from two observations:
1) settingl;, = 1 reduces the model to an RBM defined by #i& slice of the array, and 2) the negative
log probability ofv, up to an additive constant, under this RBM is the free energy:

Nh Ny

Fip(v) == log(1 +exp()_ Wijrvi)- (6.3)
=1 1

1=

The idea is to first computéy(v) for each setting of the label, and then convert them to a discrete
distribution by taking the softmax of the negative free energies:

exp(=Fy(v))
SN exp(— Fi(v))

Equation 6.3 require® (N, N;) computation, which is repeated,; times for a total ofO (N, N, N;)
computation.

We can use the same method to compRt#h). Simply switch the role of andh in equation 6.3
to compute the free energy bfunder thek** RBM. (This is possible since the model is symmetric with
respect tov andh.) Then convert the resultind; free energies to the probabilitig¥1; = 1|h) with
the softmax function.

Now it becomes possible to exactly samplév, 1/h) by first sampling ~ P(1/h). Supposéy, = 1.
Then the model reduces to it§"-slice RBM from whichv ~ P(v|h,1, = 1) can be easily sampled.
The final resulf{¥, 1} is an unbiased sample frof(v,1|h).

P(l, =1lv) = (6.4)

6.2.2 Learning

Given a set ofN labeled training case§(vy,1;), (vo,12), ..., (vn,1x)} , we want to learn the 3D
parameter arraylV for the third-order model. When trained as the top-level model of a DBN, the
visible vectorv is a penultimate layer feature vector. We can also train the model directly onsraage

a shallow model, in which caseis an image (in row vector form). In both cases the |dbepresents

the N; object categories using 1-0¥; encoding. For the same reasons as in the case of an RBM,
maximum likelihood learning is intractable here as well, so we rely on Contrd3iwezgence learning
instead. CD was originally formulated in the context of the RBM and its bipartifeiteicture, but here

we extend it to the non-bipartite architecture of the third-order RBM model.
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An unbiased estimate of the maximum likelihood gradient can be computed bynguamarkov
chain that alternatively samplé¥h|v,1) and P(v,1/h) until it reaches equilibrium. Contrastive diver-
gence uses the parameter updates given by three half-steps of thisvgttathe chain initialized from
a training case (rather than a random state). As explained in section @&t bflhese distributions are
easy to sample from. The steps for computing the CD parameter updatesnanarszed below:

Contrastive divergence learning B{ v, 1):
Given a labeled training pafiv™, 1, = 1}, sampleh™ ~ P(h*|vT 1} = 1).

Compute the outer produtty” = v*h*7.
Sample{v~,1"} ~ P(v,1|h™). Letm be the index of the component bf set to 1.
Sampléh™ ~ P(h|v—,1 =1).

a 0w N PE

. Compute the outer produgt,, = v—h=7,
Let W « denote theV;, x NN, matrix of parameters corresponding to thié slice along the label
dimension of the 3D array. Then the CD updatelfiar. ;, is:

AW..; = D — Dy, (6.5)

W =W .+ nAW.}.,k, (6.6)

wheren is a learning rate parameter. Typically, the updates computed from a “miri*hafttraining
cases (a small subset of the entire training set) are averaged togetheméntpdate and then applied
to the parameters.

6.3 Combining Gradients for Generative and Discriminative Models

In practice the Markov chain used in the learningRifv, 1) can suffer from slow mixing. In particular,
the labell~ generated in step 3 above is unlikely to be different from the true 1abafithe training case
used in step 1. The chain has a tendency to stay “stuck” on the same sttite falel variable, even
if it is run for a large number of steps. This is because in the positive gthadgidden unit activities
are inferred with the label clamped to its true value. So the hidden activitieainonformation about
the true label, which gives it an advantage over the other labels. We baeeved that empirically, the
label rarely changes from its original setting even after many Markondtaps.

Consider the extreme case where we initialize the Markov chain with a trainingya, 1" = 1}
and the label variablaeverchanges from its initial state during the chain’s entire run. In effect, the
model that ends up being learned is a class-conditional generativewisini?(v|l;, = 1), represented
by thekt” slice RBM. The parameter updates are identical to those for traiNjrigdependent RBMs,
one per class, with only the training cases of each class being used tthe&BM for that class. Note
that this is very different from the model in section 6.2: here the enenggtiins implemented by the
class-conditional RBMs are learned independently and their energyareitsot commensurate with
each other.

Alternatively, we can optimize theameset of parameters to represent yet another distribution,
P(1v). The advantage in this case is that éh@ctgradient needed for maximum likelihood learning,
OlogP(1|v)/OW, can be computed i®(N, N, N;) time. The gradient expression can be derived with
some straightforward differentiation of equation 6.4. The disadvantagatsttbannot make use of
unlabeled data. Also, as the results show, learning a purely discriminatidel mbthe top level of a
DBN gives much worse performance.
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However, now a new way of learning(v, 1) becomes apparent: we can optimize the parameters by
usinga weighted sum of the gradierfts log P(v|1) andlog P(1|v). As explained below, this approach
1) avoids the slow mixing of the CD learning fét(v, 1), and 2) allows learning with both labeled and
unlabeled data. In our experiments, a model trained with this hybrid learlgngtam has the highest
classification accuracy, beating both a generative model trained usiras @2l as a purely discrimi-
native model. The main steps of the algorithm are listed below.

Hybrid learning algorithm foP (v, 1):

Let{v",1} = 1} be a labeled training case.

Generative update: CD learning of P(v|1)
1. Sampleh™ ~ P(h|vt, 1} = 1).

2. Compute the outer produft = vth*7.
3. Samplev™ ~ P(v|h', 1} =1).

4. Sampléh™ ~ P(hlv~, 1} =1).

5. Compute the outer produtt, = v h~7.
6. Compute updat&W? , = D, — D,

Discriminative update: ML learning of P(1]v)
1. Computdog P(1. = 1|v™) forc € {1, ..., N;}.

2. Using the result from step 1 and the true laljel= 1, compute the update
AW? = 8log P(1|v)/OW.,.. for c € {1,..., N;}.

The two types of update for thé” slice of the arrayV. . . are then combined by a weighted sum:
Wee = Wee (AW .+ AAW ), (6.7)

where \ is a parameter that sets the relative weighting of the generative and disd¢iwminpdates,
andn is the learning rate. As before, the updates from a mini-batch of trainires cas be averaged
together and applied as a single update to the parameters.

Note that the generative part in the above algorithm is simply CD learning d@@hé for the k"
class. The earlier problem of slow mixing does not appear in the hybridigidgobecause the chain in
the generative part does not involve sampling the label.

Semi-supervised learning: The hybrid learning algorithm can also make useupfabeledtraining
cases by treating their labels as missing inputs. The model first infers the gniabil by sampling
P(1}v,) for an unlabeled training case,. The generative update is then computed by treating the
inferred label as the true label. (The discriminative update will alwaysbe in this case.) Therefore
the unlabeled training cases contribute an extra generative term to timegbaraipdate.
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6.3.1 Cost Function of the Hybrid Algorithm

For thediscriminativeversion of the third-order RBM, the 3D parameter ari@lyis updated by the
negative gradient of the training set's negative log-likelihood:

Zlog (Ln|vn, W), (6.8)

where(v,, 1,,) is a labeled training case a1, |v,,, W) is given by 6.4. The exact gradient of equation
6.8 can be computed tractably. For ttiass-conditional, generatiweersion, the negative log-likelihood
expression is:

LCG Z log Vn|ln> ))7 (6.9)

whereP(v,|1,, W) is the probability ofv,, under its corresponding class-specific RBM. In this case we
can use the CD approximation to the gradient of equation 6.9 to update
The cost function optimized by the hybrid learning algorithm is

Lea(W) + ALp(W), (6.10)

where) is the user-set parameter mentioned before. In our experiments, wibdwealues for\ from
0.1 to 20. The best classification results are achievedXor 5, but nearby values also give similar
results, so the algorithm does not appear to be extremely sensitive to itsvakec Note that the value
of A is not a good indicator of the relative size of the contributions made by the pes tyf gradients.
The generative gradient tends to have a much bidgenorm than the discriminative one (in some
experiments we have seen two orders of magnitude difference). Sgttin§ therefore does not mean
that the discriminative gradient makes a contribution 5 times bigger than theagjeagradient to the
weight update.

6.3.2 Interpretation of the Hybrid Algorithm

Hybrid learning resembles pseudo-likelihood learning: instead of maximi2ing1) directly, the op-
timization relies on the two conditional distributiof§v|1) and P(1|v). So one informal interpretation
of the algorithm is that it is still approximately learning the joint distribution.

A more rigorous interpretation can be found in Bishop and Lasserre’[20Mhey consider a cost
function that is slightly different from equation 6.10, but it can be showanttieir analysis applies to the
hybrid algorithm’s cost function as well. They show that the kind of bleddathing done by the hybrid
algorithm can be interpreted as learning a joint distribution model. The matt effehe blending is to
compensate for the model mis-specification problem suffered by the driginarative model.

6.4 Sparsity

Discriminative performance is improved by using binary features that @iserarely active. Sparse
activities are achieved by specifying a desired probability of being agtive< 1, and then adding an
additional penalty term that encourages an exponentially decayinggayeraf the actual probability

of being active to be close o The natural error measure to use is the cross entropy between theldesir
and actual distributiongilog ¢+ (1—p) log(1—gq). For logistic units this has a simple derivativepef ¢

with respect to the total input to a unit. This derivative is used to adjust bethi#ts and the incoming
weights of each hidden unit. We tried various valuegfand0.1 worked well. In addition to specifying
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p itis necessary to specify how fast the estimate décays. We useg,c., = 0.9 * qoiq + 0.1 * geyrrent
whereq...rent 1S the average probability of activation for the current mini-batch of 100itrgioases.

It is also necessary to specify how strong the penalty term should bthibig easy to set empirically.
We multiply the penalty gradient by a coefficient that is chosen to ensureothatjeragey is close to

p but there is still significant variation among thevalues for different hidden units. This prevents the
penalty term from dominating the learning. One added advantage of thisesgas penalty is that it
revives any hidden units whose average activities are much lowepthan

6.5 Evaluating DBNs on the NORB Object Recognition Task

Pre-processing:See section A.2 for details about NORB. A single training (and test) case RBN®a
stereo-pair of grayscale images, each of 8tze96. To speed up experiments, we reduce dimensionality
by using a “foveal” image representation. The cerirak 64 portion of an image is kept at its original
resolution. The remaining 16 pixel-wide ring around it is compressed Hgaigg non-overlapping
square blocks of pixels with the average value of a block. We split the rtogdnir smaller ones: the
outermost ring ha8 x 8 blocks, followed by a ring oft x 4 blocks, and finally two innermost rings of
2 x 2 blocks. The foveal representation reduces the dimensionality of a giahefsom 18432 to 8976.
All our models treat the stereo-pair images as 8976-dimensional vecides do not use the lighting
normalization that was used in the previous chapter when training the implicit mixtodel on NORB.

A crucial property of the NORB dataset is that the object instances Brengptwo disjoint sets to
define the training and test sets. Therefore at test time the model mushlgEner new instances of
the same object classes.

6.5.1 Training Details

Model architecture: The two main decisions to make when training DBNs are the number of hidden
layers to greedily pre-train and the number of hidden units to use in eadh ayesimplify the ex-
periments we constrain the number of hidden units to be the same at all lay#uslifig the top-level
model). We have tried hidden layer sizes of 2000, 4000, and 8000 un#shawé also tried models
with two, one, or no greedily pre-trained hidden layers. To avoid cluttdy, the results for the best
settings of these two parameters are given. The best classification mrsufiiven by the DBN with
one greedily pre-trained sparse hidden layer of 4000 units (regamfitise type of top-level model).

A DBN trained on the pre-processed input with one greedily pre-trainet 4000 hidden units
and a third-order model on top of it, also with 4000 hidden units, has rougtymillion learnable
parameters in total. This is roughly two orders of magnitude more parametarsdhee of the early
DBNs trained on the MNIST images (Hinton et al. [2006], Larochelle et24l0F]). Training such a
model in Matlab on an Intel Xeon 3GHz machine takes almost two weeks. ®eert paper by Raina
et al. [2009] that uses GPUs to train a deep model with roughly the same nofjerameters much
more quickly. We put Gaussian units at the lowest (pixel) layer of the DBN.

Early stopping: Previous papers that report results on NORB (LeCun et al. [20@&t]gi® and LeCun
[2007]) do not hold out a subset of the training images for early stopfihgy train models on the full
training set and report classification accuracy on the test set. To makesulis comparable, we also
train the top-level model with the full training set. We use a subset aetsténages for early stopping,
and compute classification accuracy on the remaining test cases. To estienateuhacy on thentire

!Knowledge about image topology is used only along the (mostly empty)elmrand not in the central portion that
actually contains the object.
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test set, we train the model twice, each time using a different, non-overtappbset of the test data for
early stopping and computing the accuracy on the remainder. The meanwbthstimates is reported
as the accuracy for the full set. The validation set and the partial testesate still split the object

instances disjointly, so at test time the model must still generalize to new instances

6.6 Results

The results are presented in three parts: part 1 compares deep modiaiaw snes, all trained using
CD. Part 2 compares CD to the hybrid learning algorithm for training the tegd-teodel of a DBN. Part
3 compares DBNs trained with and without unlabeled data, using either CI2 twytrid algorithm at
the top level. For comparison, table 6.1 lists results for some discriminative nmu#ie normalized-
uniform NORB test set (without any pre-processing). The result®©@mrDBN models range from
11.9% to 5.2%.

Model Error
Logistic regression 19.6%
KNN (k=1) (LeCun et al. [2004]) 18.4%

Gaussian kernel SVM (Bengio and LeCun [2007]) 11.6%
Convolutional neural net (Bengio and LeCun [2007]) 6.0%
Convolutional net + SVM (Bengio and LeCun [2007]) 5.9%

Table 6.1: Test set error rates for discriminative models on normalizédremNORB without any
pre-processing.

6.6.1 Deep vs. Shallow Models Trained with CD

We consider here DBNs with one greedily pre-trained layer. Its shallamteopart trains the top-
level model directly on the pixels (using Gaussian visible @hitsith no pre-trained layers in between.
Using CD as the learning algorithm (for both greedy pre-training and abgevel) with the two types
of top-level models gives us four possibilities to compare. The test extes for these four models(see
table 6.2) show that one greedily pre-trained layer reduces the efstastially, even without any
subsequent fine-tuning of the pre-trained layer.

Model | RBM with | Third-order Restricted
label unit Boltzmann Machine
Shallow 22.8% 20.8%

Deep 11.9% 7.6%

Table 6.2: NORB test set error rates for deep and shallow models tragivegl QD with two types of
top-level models.

The third-order RBM model outperforms the standard RBM top-level matieln they both have
thesame number of hidden unitsut a better comparison might be to match the numbeacimeters
by increasing the hidden layer size of the standard RBM model by five time20Q090 hidden units).
We have tried training such an RBM, but the error rate is worse than the REM000 hidden units.

2When training the shallow model with Gaussian visible units, the free engpggssion in equation 6.3 (for binary visible
units) must be changed appropriately. The new expression is givequation 4.7.
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6.6.2 Hybrid vs. CD Learning for the Top-level Model

We now compare the two alternatives for training the top-level model of a.OBMre are four possible
combinations of top-level models and learning algorithms, and table 6.3 lists trwirates. All these
DBNs share the same greedily pre-trained first layer — only the top-lev@dhdiffers among them.

Top-level Model
Learning | RBM with | Third-order Restricted
algorithm | label unit | Boltzmann machine
CD 11.9% 7.6%
Hybrid 10.4% 6.5%

Table 6.3: NORB test set error rates for top-level models trained usingu@Dthe hybrid learning
algorithms.

The lower error rates of hybrid learning are partly due to its ability to avoigtite mixing of the
label variable when CD is used to learn the joint density, [) and partly due to its greater emphasis
on discrimination (but with regularization provided by also learnig|()).

6.6.3 Semi-supervised vs. Supervised Learning

In this final part, we show how DBNs can take advantage of unlabeledalatgrove the classification
error. We create additional images from the original NORB training sepblyag global translations
of 2, 4, and 6 pixels in eight directions (two horizontal, two vertical and thagonal directions) to the
original stereo-pair imagés These “jittered” images are treated as exintabeledtraining cases that
are combined with the original labeled cases to form a much larger training set.

Note that the jittered images could have been assigned the same label as titivepgesre created
from. By treating them as unlabeled, the goal is to test whether improving tuparvised, generative
part of the learning alone can improve discriminative performance.

The unlabeled images here are specially designed to help the featuresetess sensitive to small
shifts of the image. This is clearly artificial — we normally would not expectheikd data to provide
information about a useful invariance so directly. Another way to simulatera-supervised learning
task is to hold out the labels of some of the original training images and treathamabeled. But this
does not provide any extra data for pre-training the lower layer femginee there is no distinction be-
tween labeled and unlabeled images in the greedy pre-training phaseth&lssiginal NORB training
set is already relatively small (only 24,300 cases) and holding out laliikleake it even smaller.

Instead of artificially crippling the discriminative part of the training with fewadrels, we add a
separate unlabeled set to the full labeled set and measure how much impritke generative part of
the training can make given the best possible contribution by the discriminmtite This is a stricter
assessment of the usefulness of the generative part. It also aordssip what one would do in a real
application, i.e. not hold out any labeled data and try to maximize classificatbomeay.

There are two ways to use unlabeled data:

1. Use it for greedy pre-training of the lower layers only, and then trandp-level model as before,
with only labeled data and the hybrid algorithm.

2. Use it for learning the top-level model as well, this time with the semi-supervisgant of the
hybrid algorithm at the top-level.
Table 6.4 lists the results for both options.

3The same translation is applied to both images in the stereo-pair.
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Top-level model | Unlabeled Unlabeled
(hybrid learning jitter for jitter at the | Error
only) greedy top-level?
pre-training?
RBM with No No 10.4%
label unit No Yes 10.5%
Yes No 9.0%
Third-order No No 6.5%
model No Yes 7.1%
Yes No 5.3%
Yes Yes 5.2%

Table 6.4: NORB test set error rates for DBNs trained with and withoutbetdal data, and using the
hybrid learning algorithm at the top-level.

The key conclusion from table 6.4 is that simply using maméabeledtraining data in the unsuper-
vised, greedy pre-training phase alone can significantly improve théfidagen accuracy of the DBN.
It allows a third-order top-level model to reduce its error from 6.5% to 5.8%6ch beats the current
best published result for normalized-uniform NORBhout using any extra labeled datb/sing more
unlabeled data also at the top level further improves accuracy, but gyl to 5.2%. When the
unlabeled data is used only for training the top-level model (and not &trpming the first layer), the
results becomevorsethan not using unlabeled data at all. It appears that the main effect dfaledth
data is to produce better features in the pre-trained layer. Without thosevietpfeatures in the first
layer, using unlabeled data to train the top-level model does not help.

Now consider a discriminative model at the top, representing the distribé@{dw). Unlike in
the generative case, the exact gradient of the log-likelihood is tractallentpute. Table 6.5 shows
the results of some discriminative models. These models use the same greadibimped lower layer,
learned with unlabeled jitter. The only difference is in how the parameterg ébfhlevel are initialized.

Initialization | Use jittered
of top-level images as | Error
parameters labeled?
Random No 13.4%
Random Yes 7.1%
DBN top-level
model with Yes 5.0%
5.2% error

Table 6.5: NORB test set error rates for discriminative third-order modlels third-order models
trained to represeri?(1|v)) at the top level. They all use the same greedily pre-trained lower layer. Th
only difference among them is how the parameters are initialized.

We compare training the discriminative top-level model “from scratch” (@amchitialization) ver-
sus initializing its parameters to those of a generative model learned by thid hidgorithm. We also
compare the effect of using the jittered images as datraledcases. As mentioned before, it is possi-
ble to assign the jittered images the same labels as the original NORB images tgeparrated from,

which expands the labeled training set by 25 times.
The bottom two rows of table 6.5 compare the accuracy of a discriminativedhilet model with
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and without generative pre-training. Generative pre-training significémproves accuracy, but using
the labels of the jittered images for the subsequent discriminative training oklysmasgsmall additional
improvement. We have also noticed that fine-tuning the lower layer discrimaghatigads to rapid

overfitting which quickly makes the test error much higher than 5.0%.

6.7 Conclusions

Our results make a strong case for the use of generative modeling in tdgjegnition. The main two
points are:
1) Unsupervised, greedy, generative modeling can learn représastaf the input images that support
much more accurate object recognition than the raw pixel representation.
2) Including P(v|1) in the objective function for training the top-level model is much better than using
P(1]v) alone, or learning®(v, 1) using CD.

In future work we plan to factorize the third-order Boltzmann machine asritbes! in Taylor and
Hinton [2009] so that some of the top-level features can be sharessadlasses.



Chapter 7

Conclusions

7.1 Summary of the Thesis

The aim of the thesis was to show that generative/reconstructive modeia@és are useful for object
recognition. The thesis demonstrated this idea in four different wayscajporating complex domain
knowledge into the learning by inverting a synthesis model, 2) using the lategeirepresentations of
generative/reconstructive models for recognition, 3) optimizing a hylaigkative-discriminative loss
function, and 4) creating additional synthetic data for better training ofidigtative models. We end
with a summary of the key results in the thesis.

Chapter 3 presented the breeder learning algorithm for learning arsanalgdel given a synthesis
model and a set of images. We applied it to three different synthesis motilk generate images
of eyes, faces, and in chapter 4, handwritten digits. The results supmoobservations: 1) the input
variables of a synthesis model can be a sensible reconstructiveaefatisn for the class of images itis
designed to produce, and 2) empirically, breeder learning appeagsaienough to invert fairly differ-
ent synthesis models. Once an analysis model is learned, it becomes podsdifea neural network to
act as an emulator of the synthesis model. With such an emulator, inferringiiresis inputs from an
image becomes an iterative optimization problem that directly optimizes pixels&aotion error. As
the reconstruction results for face images showed, iterative inferévnes lgetter reconstruction error
than one-step inference.

Chapter 4 applied breeder learning to a physically-based model of higedwdigits. The model
consists of a simple mass-spring system in which the mass represents the gppehtiand the four
springs correspond to arm muscles. By varying the spring stiffnessedime, the mass can be made
to move along a particular trajectory. A digit image is then generated by apphkran the trajectory.
The resulting “motor program” representation’s usefulness for claasditis evaluated on the MNIST
dataset in three different ways. The first method assigns to a test imagjebenergies under class-
specific models, and uses them as input to a logistic regression classiarnwiEh orders of magnitude
fewer discriminatively trained parameters, this method still outperforms basebels such as a pixel-
based logistic regression classifier or a fully-connected feedfomeurdal network. The second method
creates more labeled training cases by corrupting the motor programs aigh®loMNIST training
images. These synthetic examples turned out to significantly improve thermarfoe of every type
of classifier we tried — kNN, fully-connected feedforward neural eks and convolutional neural
networks. The third method takes the features from the analysis modelshenitsn a neural network
classifier, and trains them discriminatively. When applied to a convolutiastalark and trained with
additional synthetic examples, this method resulted in a top-5 error rate orNHgMrediction task.

Chapter 5 looked at the problem of simultaneously learning a clustering afatiacand a cluster-
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specific latent representation. In particular, we proposed a new mixtuttelnmowhich the component
distributions are represented by RBMs. The traditional way of formulatich & model, with the mix-
ing proportions as explicit parameters and the component distributions s R8intractable because
the probability of a data vector under an RBM is intractable to compute. Swugiyisthis intractabil-
ity is avoided by letting the mixing proportions be implicitly defined by the paramefettseamodel.
The resulting mixture model can be trained with contrastive divergenceshéiged that such a model
is useful for learning cluster-specific features. By using the redpititiss of an image as input to a
logistic regression classifier, it is possible to outperform the same classafieed directly on pixels.

Chapter 6 presented an application of Deep Belief Networks to the NORBbitaecognition
task. We modified the original DBN model with a new type of top-level model amskw hybrid
generative-discriminative algorithm for training it. It produced results Were close to the state-of-
the-art performance given by a convolutional network that has krigelebout 2D image topology and
local translation invariance hand-coded into it. When we used semi-ss@étfearning — an advantage
our model has over purely discriminative models like convolutional netwenkgh unlabeled images
created by applying small global shifts to the original training images, our haatiéeved the current
best published result on the NORB dataset.

7.2 Limitations of Generative Models

While the thesis highlighted the advantages of generative/reconstructiesnthey also have a num-
ber of disadvantages. At a broad level, we can identify three basic limitations

1. Approximating the true generative distribution poorly: When we train a standard parametric
generative model (e.g. RBM) on real-world images with a limited number ohpeters and no
built-in domain knowledge, it usually learns only a crude approximation to thlegenerative
system that produced those images. For example, an RBM with say, 5@hhidds, trained on
handwritten digit images is unlikely to figure out the physics of hand musailes,iga very large
training setis used. The problem is that a generic model with a small numpararheters is not
expressive enough to represent the true image distribution.

One way to deal with this problem is to build into the model, by hand, detailed domeail&dge
about how the images are generated. Then the model may need only a smiadirraf learnable
parameters to approximate the real system well enough. Applicationseafdirkearning in chap-
ters 3 and 4 are examples of this approach. Breeder learning is espseiaiple when domain
knowledge already exists in the form of a realistic graphics program, inhadaise the additional
hand-engineering effort is small.

Alternatively, the generative model’s expressiveness can be imcégusing a larger number of
parameters and many layers of nonlinear features. This approach aigeptthle hand-designing
effort to a minimum and rely as much as possible on the data itself to build the modep D
Belief Nets and Deep Boltzmann Machines (Salakhutdinov and Hinton [2@@8]examples of
such large-scale, deep, generative models. With more parameters, omimizonconvex cost
function for learning becomes more difficult. The main advance of DBNs igriénedy layer-wise
learning strategy that is designed to find better solutions to the optimization probémn those
found by simultaneously updating all model parameters throughout learning

2. Need for segmented input: Generative models try to explagll the structure in their input,
regardless of whether that structure is directly relevant for the olgecignition task. This is a
disadvantage when objects are unsegmented and appear superimpssedtared background
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(e.g. faces in uncontrolled scenes collected off the web). A genematnel wastes capacity
trying to model the background structure, while a discriminative model camawgay without
segmentation by learning to detect only those differences across olgisst€ that are reliably
predictive of the label. The problem is that generative models need toirxgverything, and
without segmentation, there are too many things going on in the image to explain.

So for a generative model to be effective, it needs to be used in combinatib a reliable
image segmentation algorithm. Without it, applications of generative models will be dimite
mostly to datasets that have no structured background, such as MNi#SToemalized-uniform
NORB. Unfortunately, segmentation itself is a difficult unsolved problem. is ¢bntext, the
ability of discriminative models to ignore background clutter is an advantagiea€Bsegmentation
algorithms improve, the importance of this advantage will decline.

3. Intractable model evaluation: Given two generative models, deciding which one is a better fit
to the data is done by computing the probability each of them assigns to somaubeket-of data.
This computation is intractable for many interesting classes of generativdsnéae example,
computing the probability of a data vector under an RBM (and similar enexggeb models)
requires computing the partition function, which involves summing an expohenimaber of
terms. The sum is intractable for all but small, toy RBMs.

Salakhutdinov and Murray [2008] have used Annealed Importance |Bamp approximate the
partition function of an RBM, but it can give an estimate with a large error witldicating
that the estimate is unreliable. In the absence of a direct estimate, evenerboppd on the
partition function can be useful, as it gives a lower bound on the probadbiléydata vector. Then
the lower bound for two models can be compared for a partial indication ahwdne may be
better. But computing a strict upper bound on the partition function is alsciabke.

Not being able to directly measure a generative model’s quality is a disadearstad perhaps
the main obstacle to developing better generative models. In practice, it meanbdteis no
objective way to decide, e.g., whether an RBM with 100 hidden units is betteoti@with 200.
Discriminative models do not have this disadvantage since they can be eadilgted by their
classification error on a held-out set. When training RBMs and DBNs ondmame can try to
assess progress during training by computing the model’s squared @ixelstruction error, or
visually checking whether the filters learned by the model look sensiblehBsi are at best very
indirect indicators of the quality of the model. For example, an RBM learned®@tltan show a
deceptively large improvement in pixel reconstruction error during trgisimply by getting the
Markov chain to not mix well. There is clearly a need for better ways of edgg RBMs, and
generative models in general.

7.3 Looking Ahead

As these limitations show, learning good generative models is a long-terarchaendertaking rather
than a solved problem. Nevertheless, the results in this thesis have hopefulinced the reader that
generative modeling has immediate applications to object recognition, andittterfadvances will
lead to better results. Unlabeled images are becoming easier to collect in legttigs from the
internet. GPUs, multi-core CPUs and cheaper RAM are making it more and tragtable to train
much larger scale models than those currently being used. In this conteidolhand ideas presented
here will only increase in their importance.

Going forward what we need are better generative models with better efdysning them and
performing inference with them. Recent developments like DBNs are a steptimlitection. With
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more such advances, eventually it should become practical to learn a cotapige-scale generative
model that approximates the true underlying generative process muclciose than current models
do. Once that happens, the full potential of generative modeling angpanssed learning for object
recognition will be achieved, and computer vision systems will approach iiewal performance at

object recognition.
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Appendix A

Datasets

Al MNIST

The dataset contains images of handwritten digits belonging to ten diffdeesses (0 to 9). The digits
are size-normalized and centred withirz& x 28 image. Examples are shown in figure A.1. The
training-test split of the dataset is pre-specified by its creators, soithameambiguity about how to
measure performance. The training set has 60,000 images in total andttbet tess 10,000 images.
The pixels are real-valued and lie in the interjall], with most values at the extremes of the interval.
The dataset can be downloaded from http://yann.lecun.com/exdb/mnist/.

Figure A.1: Randomly selected examples from the MNIST training set.

A.2 NORB

NORB contains stereo-pair, grayscale images of toy objects under Bedtlighting conditions and

viewpoints. The five object classes amimals humans planes trucks andcars The dataset comes

in two versionsnhormalized-uniformandjittered-cluttered In this thesis we only use thermalized-

uniform version, which shows objects at a normalized scale and position with a minifackground.

The dimensions of each image in the stereo-paifére 96. Examples are shown in figure A.2(a).
There are 10 different instances of each object class, imaged uridenihations and 162 view-

points (18 azimuth values 9 elevation values). The instances are split into two disjoint sets (pre-

specified in the database) of five each to define the training and testaibtgontaining 24,300 cases

(5 object typesx 5 instancesx< 6 illuminationsx 162 viewpoints). So at test time a trained model has
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to recognizeunseen instancesf the same object classes. Figure A.2(b) shows the training (left) and
test instances of each class in one row. Figure A.3 shows the variousoiigs/from which each object

is photographed. Figure A.3 shows the various lighting conditions. For deiegls, see LeCun et al.
[2004]. The dataset is available at http://www.cs.nyu.eglglab/data/norb-v1.0/.
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Figure A.2: (a) Randomly selected examples from the NORB training setddiv different classes.
Each row corresponds to one class. (b) All ten instances of eachwvaidsenly one image from the
stereo-pair, shown in the same lighting condition.
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Figure A.3: The viewpoints from which each object in NORB is photogrdpfdiere are 9 elevation
values (one per row) and 18 azimuth values (one per column) for a tatélofiewpoints.
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Figure A.4: The six lighting conditions in NORB.



