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Visual object recognition is one of the key human capabilities that we would likemachines to have.

The problem is the following: given an image of an object (e.g. someone’s face), predict its label

(e.g. that person’s name) from a set of possible object labels. The predominant approach to solving the

recognition problem has been to learn a discriminative model, i.e. a model of theconditional probability

P (l|v) over possible object labelsl given an imagev.

Here we consider an alternative class of models, broadly referred to asgenerative models, that learns

the latent structure of the image so as to explain how it was generated. This is incontrast to discrimi-

native models, which dedicate their parameters exclusively to representing the conditional distribution

P (l|v). Making finer distinctions among generative models, we consider a supervised generative model

of the joint distributionP (v, l) over image-label pairs, an unsupervised generative model of the dis-

tribution P (v) over images alone, and an unsupervisedreconstructivemodel, which includes models

such as autoencoders that can reconstruct a given image, but do notdefine a proper distribution over

images. The goal of this thesis is to empirically demonstrate various ways of using these models for

object recognition. Its main conclusion is that such models are not only useful for recognition, but can

even outperform purely discriminative models on difficult recognition tasks.

We explore four types of applications of generative/reconstructive models for recognition: 1) in-

corporating complex domain knowledge into the learning by inverting a synthesis model, 2) using the

latent image representations of generative/reconstructive models for recognition, 3) optimizing a hybrid

generative-discriminative loss function, and 4) creating additional synthetic data for training more ac-

curate discriminative models. Taken together, the results for these applications support the idea that

generative/reconstructive models and unsupervised learning have a key role to play in building object

recognition systems.
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Chapter 1

Introduction

Among the human capabilities that we would like machines to have, the ability to recognize objects
visually ranks high on the list. We can look around us and recognize familiar objects without much
trouble. Getting a computer with a camera connected to it to do the same is the main goal of computer
vision research. The holy grail is a general-purpose artificial vision system that can rapidly recognize
instances of objects from a large catalogue of object types in a real-worldscene.

Such a system does not currently exist, but if it did, it would have no trouble finding a wide variety of
applications. Face recognition is perhaps the most well-known application, where the task is to identify
a person from the image of his or her face. Here the ‘objects’ are the faces of different people currently
known to the recognition system. Given the image of some scene as input, it hasto decide whether
any instances of the known faces appear within it. Other applications includebetter searching of image
databases, robot navigation, improved image/video compression, automatedsurveillance, and so on.
There are simply too many to list – by definition, any task that can make use of someone looking at a
scene and identifying the objects in view is a potential application. Since machines are usually much
cheaper than humans and do not get bored or tired, artificial systems will be much more widely useful
than their human counterparts.

Despite their advantages, artificial vision systems are not yet in widespread use as they are far from
matching the accuracy, speed and generality of human vision. Object recognition is hard because the
appearance of the object can vary with lighting, viewpoint, changes in shape, occlusion etc. For example
consider two images of the same person’s face, one taken indoors and theother outdoors. If we examine
the numerical values of the pixels in the two images, they can be very different. But an accurate object
recognition system must still report the same face identity in both settings. More generally, the output
of the system must beinvariant to any changes in the input pixels that do not correspond to a change in
object identity, while at the same time being sensitive to those that do. Solving the invariance problem
has turned out to be extremely difficult for computers, even though our visual system seems to solve it
without apparent effort.

The thesis will focus on the problem of visual object recognition. We consider a specialized version
of the problem where an object has already been localized within a larger scene, and only its identity
remains to be decided. So the input to the recognition system is a fixed-size image with the object
roughly centred at a standard scale. There is a pre-specified set of object types from which the system
chooses a label to assign to its input image. This formulation in effect reduces object recognition to
image classification. The problem of localizing an object within a scene, i.e.segmentation, is also
important and cannot be avoided when building a practical recognition system. But the core challenge
of visual invariancestill remains, so one can make useful progress just by concentrating on the image
classification task in isolation.

1



CHAPTER 1. INTRODUCTION 2

Classification strictly requires only a model of the conditional probability of theobject labell given
an imagev. The standard approach to recognition has been to define a parameterized discriminative
modelP (l|v, θd), where the parameter vectorθd is estimated by maximum likelihood learning on a set
of image-label pairs. Alternatively one can define agenerative modelP (v, l|θg) representing the joint
distribution and estimateθg, again by maximizing likelihood. At test time, the conditional probability
P (l|v, θg) is given by:

P (l|v, θg) =
P (v, l|θg)

∑

l′ P (v, l′|θg)
. (1.1)

It is not immediately obvious why the generative approach for estimating the conditional probability
is useful. Fitting distributions to high-dimensional data (such as images) by maximum likelihood is
analytically intractable for all but the simplest models. Discriminative models on theother hand can
often be trained using the exact gradient of the log-likelihood. So the added difficulty of learning the
joint distribution appears unnecessary at first glance.

Going a bit further, we can consider an unsupervised generative modelthat represents the distri-
bution P (v) over images alone, without the labels. It is even less clear what role such amodel can
play since the required conditional probability cannot be computed from it. Similarly, we can consider
non-probabilistic counterparts like PCA and nonlinear autoencoders, which do not define a distribution
over images but can be used to reconstruct a given input image. Suchreconstructivemodels also cannot
be used directly to compute the conditional probability and initially appears useless for recognition.

The main goal of this thesis is toempirically demonstrate various ways of using generative and
reconstructive models of images for object recognition. The overall conclusion that comes out of it is that
these models are not only broadly useful for recognition, but can even outperform purely discriminative
models on difficult recognition tasks. This may sound counter-intuitive in the context of the above
arguments, but the results presented in the upcoming chapters provide convincing support for it. The
thesis also serves a secondary purpose as a collection of tricks for building better recognition systems
using generative/reconstructive models. So even the pragmatic engineerwith no ideological interest
in generative models and unsupervised learning will hopefully find some tricks in here that are worth
adding to his or her toolkit.

We first summarize the different applications of generative/reconstructive models demonstrated in
the thesis. The applications are not all new or unique to the thesis, but we listthem here to emphasize
that these models are useful for recognition, and that they are useful inmore than just one way.

1. Incorporating complex domain knowledge into the learning:Consider a graphics program that
can synthesize realistic images of objects by manipulating a set of input variables. For example, it
may be a physically-based model of handwritten digits with inputs like muscle stiffnesses, thick-
ness of the pen, ink darkness etc. Given these inputs, the program internally simulates the physics
of the arm trajectory to output a digit image. By using such a forward model inan analysis-by-
synthesis loop, we can define a reconstructive representation of digits that exploits the knowledge
built into the graphics program. Discriminative models allow limited forms of domain knowledge
into the learning, e.g. sharing parameters in a convolutional network basedon the 2D topology
of images (LeCun et al. [1998]), and enforcing known invariances that the classification func-
tion should satisfy (Simard et al. [1996]). But much richer domain knowledge can be expressed
naturally as a synthesis model, which can then be used for recognition by learning its ‘inverse’.

2. Recognition based on image representations learned by unsupervised models: The hidden
representation inferred by an unsupervised model compactly describesan image such that it can
be reconstructed from that description. When used as part of a discriminative model, such a rep-
resentation can give better recognition accuracy than the raw pixels. Unsupervised models are
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less susceptible to overfitting than purely discriminative ones. There are tworeasons for this:
first, informally we can think of unsupervised learning as a large multi-task learning problem in
which the model simultaneously predicts many variables (as many as there are inputs), while dis-
criminative learning involves predicting just one (the label). Secondly, typical object recognition
problems have many more unlabeled training cases available than labeled ones. Both of these
factors allow unsupervised learning to put more constraints on the model parameters, and support
more parameters and richer representations without overfitting.

One way to take advantage of this property is to rely on unsupervised learning to do most of the
heavy-lifting when training an object recognition model, and use the small number of labeled
cases for discriminative training in a more limited way. For example, unsupervised learning
can be used to extract a large set of features, with the role of discriminative training limited to
learning a low-capacity classifier on top of those features or to just fine-tuning those features
discriminatively (instead of learning them from scratch). Deep Belief Nets (Hinton et al. [2006])
are a good example of this approach.

3. Optimizing a hybrid generative-discriminative objective function: As described earlier, a dis-
criminative model is optimized to represent the conditional distributionP (l|v), while a supervised
generative model is optimized to representP (v, l). One can consider using a hybrid objective
function that is a weighted sum of the above two objectives. A number of papers (e.g. Bouchard
and Triggs [2004], Holub and Perona [2005], Raina et al. [2003]) have tried this idea and empir-
ically shown it to give better accuracy than optimizing either one of the individual objectives in
isolation. The results in the thesis lend more support to this idea.

Although simply taking a weighted sum may seem ad hoc, Bishop and Lasserre[2007] have
shown that it can be interpreted as a principled way of compensating for model mis-specification
when learning a model ofP (v, l). From the point of view of discriminative learning, the advan-
tage of the hybrid objective is that it allows unlabeled images to be included into the learning,
which has a strong regularizing effect.

4. Creating extra training images for discriminative models: This is perhaps the simplest way
to use generative/reconstructive models for object recognition. Take existing labeled training
images, infer their hidden representations under an unsupervised model,randomly perturb those
representations, and compute the images corresponding to them. The reasoning is that small
random changes in feature space are likely to correspond to semantically meaningful changes
in pixel space that do not change the class. The resulting synthetic images can then be used as
additional examples for training a discriminative model with better accuracy.

1.1 Contributions of the thesis

As a whole, the thesis provides empirical support for the idea that generative models and unsupervised
learning are useful for object recognition. This is its main contribution. Themore specific ones are
listed below:

1. We present a new algorithm calledbreeder learningfor inverting a given synthesis model and
obtaining its corresponding analysis model. The algorithm allows a pre-existing synthesis model
to be used as part of an analysis-by-synthesis loop.

2. We describe a physically-based synthesis model for images of handwritten digits that simulates
the actual hand-drawing process to generate the images. This model is inverted using breeder
learning, and the resulting analysis-by-synthesis system is used for classifying digit images.
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3. Maximum likelihood learning of a mixture model whose components are Restricted Boltzmann
Machines is intractable because of the need to compute the probability of a datavector under a
component RBM. We show how by defining the mixture model such that the mixingproportions
are implicitly determined by the model parameters (rather than treating them as explicit parame-
ters), it becomes tractable to learn a mixture of RBMs using Contrastive Divergence.

4. We introduce a new type of top-level model for Deep Belief Networks (DBNs) that allows separate
sets of features to be learned for each object class.

5. We show how optimizing a hybrid generative-discriminative objective function avoids the poor
Markov chain mixing that affects a top-level RBM model for a DBN. It gives better results than a
purely generative top-level model on a difficult 3D object recognition task.

1.2 Outline of the thesis

We end this chapter with a short summary of each of the upcoming chapters:

1. Chapter 2: Approaches to Learning Visual Invariance for Object Recognition We give a
brief review of some of the existing approaches to solving the invariance problem.

2. Chapter 3: Analysis-by-Synthesis by Learning to Invert a Black Box Synthesis ModelThis
chapter introduces the breeder learning algorithm and shows how it can be used as part of an
analysis-by-synthesis approach to modeling images. We present some proof-of-concept type re-
sults. The material in this chapter is based on Nair et al. [2008].

3. Chapter 4: Inverting a Physically-Based Synthesis Model of Handwritten Digit ImagesThis
chapter is a detailed application of breeder learning for a recognition task.We consider the prob-
lem of classifying handwritten digit images. The synthesis model simulates the physics of an arm
trajectory drawing a digit. The corresponding analysis model is learned using breeder learning.
Various ways of applying the learned model to the recognition task are considered. The material
in this chapter comes from Hinton and Nair [2006].

4. Chapter 5: An Implicit Mixture of Restricted Boltzmann Machines This chapter shows how
a seemingly intractable mixture of RBMs can be learned if we are willing to give upon having
mixing proportions as explicit parameters. We also consider a simple way of using such a model
for recognition. The material in this chapter first appeared in Nair and Hinton [2008].

5. Chapter 6: 3D Object Recognition with Deep Belief NetworksThis chapter presents a new
top-level model for a DBN, as well as a hybrid generative-discriminativealgorithm for training it.
We apply the new model to a 3D object recognition task that requires invariance to pose, lighting,
and intra-class shape variations. We also consider a semi-supervised version of the task and show
how unlabeled data improves discriminative performance. The material in this chapter will appear
in Nair and Hinton [2009].



Chapter 2

Approaches to Learning Visual Invariance

This chapter reviews various methods described in the literature for solvingthe visual invariance prob-
lem. The main ones considered are Lie group-based methods, slow featureanalysis, multi-stage Hubel-
Wiesel architecture, interest region descriptors, and higher order models, such as higher order Boltz-
mann machines and multilinear extensions of PCA and ICA.

2.1 Introduction

Learning invariant image representations is one of the most basic problems incomputer vision. The
human visual system has the ability to recognize common objects at different positions, scales, orien-
tations, viewpoints, illuminations etc. Giving artificial vision systems similar capabilities is a difficult
problem.

There are two types of learning problem we can consider regarding visual invariance. In the first
type, a set of transformations is pre-specified based on prior knowledge, and the goal is to learn a model
that is invariant to these known transformations of the image input. This is the problem that is addressed
by the vast majority of papers on visual invariance. In many real-world applications there is much prior
knowledge about which transformations the model should be invariant to. So learning algorithms that
are designed to use pre-specified transformations are very useful in practice.

In the second type of problem, the invariant transformations arenot pre-specified. Instead, trans-
formation invariance of the learned model comes through generalization. This is a much harder prob-
lem, and fewer papers have attempted it (Hinton [1987], Memisevic and Hinton[2007]). For example,
Memisevic and Hinton [2007] describe a model that learns to represent transformations between pairs
of images without any built-in knowledge about specific transformations. This type of learning is more
general and potentially more useful.

The rest of the chapter describes a number of learning approaches that have been proposed for
solving the visual invariance problem.

2.2 Learning invariance to Lie transformation groups

Consider an image transformationtα, parameterized byα. For exampletα could be translation on a
pixel grid, whereα is a 2D vector that specifies the number of pixels for horizontal and vertical trans-
lation. The set of transformationstα corresponding to all possible values ofα form agroup if (1) the
composition of any two transformations is another transformation in the same set(closure), (2) the com-
position order does not matter (associativity), (3) there is a uniqueidentitytransformation, and (4) every
transformation in the set has a uniqueinversetransformation. Typical image transformations, such as

5



CHAPTER 2. APPROACHES TOLEARNING V ISUAL INVARIANCE 6

translation with wrap-around across image boundaries, satisfy the aboveconditions. For example, as-
suming wrap-around, two translations can be composed into another translation, the order in which two
translations are applied does not matter, zero translation corresponds to identity, and every translation
tα can be undone byt−α.

A Lie transformation groupsatisfies the additional condition thattα is differentiable with respect to
α. This means that applyingtα (α ∈ ℜm) to an imageI ∈ ℜn produces anm-dimensional (typically
nonlinear) manifold in image space.

The main advantage of Lie transformation groups is that they provide a mathematically convenient
way of modeling many image transformations that are of practical relevance.Sincetα is a continuous
function ofα, it becomes possible to consider infinitesimally small transformations. If we express the
effect oftα onI as a Taylor series, then an infinitesimal transformation can be representedby truncating
all the terms in the series that are higher than first-order. The result is an image representation that is
linear inα. Therefore, infinitesimally small transformations ofI lie on anm-dimensional plane in image
space, and this plane is tangent to the manifold of transformed images atI. As a result, in practice, Lie
groups allow small discrete transformations to be modeled approximately using standard linear algebra.

Another advantage of Lie transformation groups is that, under certain assumptions, it is possible to
derive a closed form expression for the entire Taylor series (i.e. without truncating any terms). The basic
idea is to first define a model for infinitesimally small transformations. Given thismodel, arbitrarily large
transformations can be created by composing infinitely many small transformations. Then a closed form
expression for this infinite composition is derived based on the model for small transformations. So Lie
groups can be used to define mathematically convenient models of arbitrarily large transformations as
well.

Note that discrete image transformations (e.g. pixel-wise translation) do not form Lie groups be-
cause they do not satisfy the differentiability condition. But we can alwaysconvert a discrete pixel
image into a smooth, differentiable mapping fromℜ2 (the 2D pixel coordinates) toℜ (pixel values) by
convolving it with a 2D Gaussian filter. Then it becomes sensible to consider infinitesimally small trans-
lations, rotations etc. applied to the continuous version of the original image. Some transformations are
inherently non-smooth (e.g. reflection) and does not have an equivalent continuous version, so they do
not form Lie groups as well.

An example of applying Lie groups to learning invariant image representations is the work by
Simard et al. [1996]. They propose two different approaches for learning an image classifier that is
approximately invariant to a set of pre-specified transformations, (1)tangent distanceand (2)tangent
propagation. Let s(I, α) denote the image generated by applying the transformationtα to I (I ∈ ℜn,
α ∈ ℜm, as before). Also, letα = 0 correspond to the identity transformation, i.e.s(I, 0) = I.
Computing the Taylor series expansion ofs(I, α) with respect toα and truncating all terms higher than
first-order gives

s(I, α) ≈ I + Jα, (2.1)

whereJ = ∂s(I,α)
∂α |α=0 is the Jacobian matrix ofs. (The expression for computingJ depends on the

set of invariant transformations that we pre-specify, and can be derived analytically for many common
types of transformations, as shown in Simard et al. [1996].) This is them-dimensional tangent plane
that approximates the manifold in the vicinity ofI.

The basic idea of tangent distance is the following: given two imagesI1 andI2, compute the tangent
planes for both of them, and then let the tangent distance between the images to be the distance between
their corresponding planes. Note that, by definition, any two images that lie onthe same tangent plane
will have zero tangent distance between them. This makes it approximately invariant to small transfor-
mations because images generated by such transformations would lie on (or very close to) the tangent
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plane. The results on the MNIST classification task show that a nearest neighbour classifier using tan-
gent distance significantly outperforms Euclidean distance. Examples of transformations that were used
in this task are translation, rotation, scaling, and thickening.

Tangent propagation is a way of incorporating approximate transformationinvariance into a classi-
fier learned by gradient-based optimization. In addition to the usual cost function that is used to learn
the classifier, an extra regularizing cost is added to enforce approximateinvariance of the classifier to
a set of pre-specified transformations. SupposeGw(I) is the function being learned (parameterized by
the vectorw) using a training set ofN imagesI1, ..., IN . We want it to be approximately invariant to
the transformationtα of its input for smallα. In other words, we wantGw to have approximately zero
gradient along the directions in image space in which the transformations tend topush a training image.
The extra costEr added to the usual training cost function is:

Er =
N
∑

i=1

∣

∣

∣

∣

∂Gw(s(Ii, α))

∂α

∣

∣

∣

∣

2

α=0

.

The main insight from tangent propagation is that it shows how the differentiability property of Lie
transformation groups can be exploited to incorporate invariance in gradient-based learning methods.
The alternative is to apply a large, discrete set of small transformations to thetraining images, include
these synthetic images in the training set with the same label as the original images,and then train
a classifier as usual. Tangent propagation achieves the same effect in amuch more direct manner by
taking advantage of the differentiability of the transformations.

Another way of using the tangent plane approximation to the continuous transformation manifold is
proposed in Hinton et al. [1997]. They train a mixture of factor analyzerswith an additional term in the
cost function that penalizes poor reconstructions of tangent vectors at each training image. The result
is that the model learns to reconstruct not only the training images, but also the transformed versions
of those images produced by a set of pre-specified continuous transformations. So the overall model
consists of a set of local, linear models that together form a global, nonlinear model of the image data.

Papers by Rao and Ruderman [1999], and Miao and Rao [2007], are other examples of learning
visual invariance using Lie group theory. (The latter is mostly a longer version of the former.) Unlike
Simardet al., they do not truncate the Taylor series expansion ofs(I, α) (as in equation 2.1). So their
model can handle arbitrarily large transformations. But they assume that thegradient of the transforma-
tion s(I, α) (with respect toα) at an imageI depends linearly onI. In other words, each column of the
Jacobian matrixJ = ∂s(I,α)

∂α |α=0 is a linear function ofI:

J = [G1I | G2I | ... | GmI] ,

whereGi is ann× n matrix. If we substitute this assumption into the vector form of the Taylor series,
we get:

s(I, α) =
∞
∑

j=0





1

j!
(

(

m
∑

i=1

αiGi

)j

s(I, α′)





α′=0

=





∞
∑

j=0





1

j!

(

m
∑

i=1

αiGi

)j






 I, (2.2)

= e(
P

m

i=1
αiGi)I. (2.3)

So the linear gradient assumption results in a closed form expression for the Taylor series in terms of
the matrix exponential. We can think of equation 2.3 as defining a generative model in which the latent
representation consists of a “normalized” imageI and a transformationα, and the model parameters are
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the matricesGi. Given particular values forI andα, the observed image is generated by transforming
I according toα usings(I, α).

To learn this model, Rao and Ruderman [1999] note that for infinitesimally small values ofα, we
can truncate the higher order terms in the Taylor series. The resulting generative model isbilinear in I
andα. (Bilinear models are discussed in more detail in section 2.9.) So

s(I, α) ≈ I + Jα = I +

(

m
∑

i=1

αiGi

)

I = I +

(

n
∑

k=1

m
∑

i=1

αiIkGik

)

,

whereαi is theith component ofα, Ik is thekth pixel of I, andGik is thekth column of the matrixGi.
They first learn this bilinear model using pairs of images that are related by an unknown, infinitesimally
small, transformation. Once the matricesGi are learned this way, they simply substitute them into
equation 2.3 to obtain the model for arbitrarily large transformations. So the assumption of infinitesimal
transformations is used only for training, just to learn the model parameters.Since the same parameters
are used in the large-transformation model, there is no need for such an assumption at test time.

The observed imageI ′ is assumed to be generated bys(I, α) and then corrupted by additive Gaus-
sian noise with an identity covariance matrix. The maximum likelihood solution is given by minimizing
the squared error between the observed image and its reconstruction by the model. The training images
are generated by taking small natural image patches and applying small transformations to them (e.g.
subpixel translations). At training time, the latent “normalized” imageI is assumed to be given (it’s
the original, un-transformed patch), andα is inferred by gradient descent on the squared error between
the artificially transformed image and its reconstruction by the model. WithI andα both known, the
model parametersGi are updated by the negative gradient of the squared reconstruction error. At test
time, I andα are inferred by coordinate descent on the squared error between thetest image and its
reconstruction by the large-transformation model in equation 2.3.

The later paper by Miao and Rao [2007] apply the above model to video sequences, where they
assume that two consecutive frames undergo a transformation that is small enough for the bilinear model
to hold approximately. This is a more realistic application than the previous one because the transformed
images are not generated synthetically. However, the video sequence they use is fairly simple (a camera
undergoing 1D translation above a toy town scene). Their results show that “temporal slowness” can
be used to correctly learn a transformation model (at least for a simple sequence) without an explicit
supervisory signal specifying what the transformations are.

2.3 Slow feature analysis

Temporal slowness is the idea that high level visual representations of a scene should vary more slowly
over time than the low level sensory inputs. For example, as a person moves about a room, the identities
of the (stationary) objects in the room should remain constant even though theretinal input is changing
dramatically. In the case of Miao and Rao [2007], they assume that the latentimageI stays constant
across two consecutive frames, and the changes between the frames can be explained as a transformation
of I. This idea was proposed by Hinton [1989] as a general principle for learning invariant visual
representations without a teacher. An early example of an actual implementation of the idea is the paper
by Foldiak [1991].

Here we look at a more recent paper by Wiskott and Sejnowski [2002].They propose an algorithm
for learning a slowly-varying latent representation of temporal signals. The representation is linear, and
the cost function used for learning is the time-averaged magnitude of the latent representation’s temporal
derivative. In the following description, we use the same notation as in the original paper.



CHAPTER 2. APPROACHES TOLEARNING V ISUAL INVARIANCE 9

The input is a time-varyingJ-dimensional vectorx(t). The goal is to learn aJ-dimensional rep-
resentationy(t) such that the temporal derivativesdyj/dt (for j ∈ 1, ..., J) are small.y(t) is assumed
to be a linear, instantaneous function ofx: i.e., y(t) = Wx(t), whereW is aJ × J matrix. Thejth

column ofW , wj , is computed such that it minimizes〈(dyj/dt)2〉 under the following constraints:

〈yj〉 = 0,

〈y2
j 〉 = 1,

〈yj′yj〉 = 0 ∀j′ < j.

(The symbol〈〉 denotes time-averaging.) The first constraint is used only to simplify the expressions
for the other two constraints and is not essential. The second constraint of unit variance excludes the
trivial constant solutionyj(t) = 0. The third constraint of decorrelated components fory(t) excludes
solutions where the components are simply replicas of each other.

Assume that the inputx(t) is whitened (zero mean, identity covariance). Using the relationship
yj = wT

j x the above constraints can be re-written as

〈yj〉 = wT
j 〈x〉 = 0,

〈y2
j 〉 = wT

j 〈xxT 〉wj = wT
j wj = 1,

〈yj′yj〉 = wT
j′〈xxT 〉wj = wT

j′wj = 0 ∀j′ < j.

These constraints specify that the matrixW must be orthogonal. In addition, itsjth column must
minimize

〈(dyj/dt)2〉 = wT
j′〈

dx

dt

dx

dt

T

〉wj .

Such a matrixW is given by the eigenvalue decomposition of〈dxdt
dx
dt

T
〉. (In practice the temporal

derivative is approximated by finite differences.) So the columns ofW are the eigenvectors of〈dxdt
dx
dt

T
〉.

The components ofy(t) can be ranked from slowest to fastest by sorting their corresponding eigenvalues
from smallest to largest.

This particular formulation of slow feature analysis by Wiskott and Sejnowski does not maximize the
likelihood of the training data. So it is not clear in what sense the learned representation is meaningful
other than that it varies slowly in time. Slowness alone need not produce meaningful representations
of the input signal. For example, simply lowpass filtering the input signal can produce an uninteresting
slow representation. Such a solution is avoided in this formulation by forcingy(t) to depend only on
the value ofx for time t. Even with such restrictions, it is not obvious why the learned representation
should be interesting.

Also, the above approach cannot be directly applied to a model with a learnable nonlinearity. (The
authors mention using afixed nonlinearity on the inputs, which of course is always possible.) The
reason is based on an insight from methods that learn a nonlinear similarity metric between data vectors
(Salakhutdinov and Hinton [2007]). One way to learn a similarity metric is to train aparametric mapping
from the high dimensional data space to a low-dimensional output space in which Euclidean distance is
semantically meaningful. Suppose the mapping is trained to maximize the mutual information between
the outputs of two similar data vectors. Computing entropy exactly is expensivefor multi-dimensional
real-valued outputs. A tractable approximation is to assume Gaussian distributed outputs and compute
the entropy as the log determinant of the Gaussian’s covariance matrix. Butthis approximation allows a
trivial solution in which a sufficiently flexible nonlinear mapping makes the individual output entropies
arbitrarily large (by making the log determinant large), while keeping the joint output entropy not much
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larger than any of the individual entropies, thus making the mutual informationarbitrarily large. The
approximation can be safely used only to learn a linear mapping, because a linear mapping cannot
simultaneously achieve large individual entropies, an identity covariance matrix, and a joint entropy
that is not much larger than any one individual entropy. Using a nonlinearmapping, it is possible
to satisfy all three of these constraints. The same argument applies to the above formulation of slow
feature analysis.

2.4 Models based on discretized transformations

If the set of transformations that a model should be invariant to is discrete and small, then a brute-force
approach to invariance might be practical. For example, many face detectionsystems do an exhaustive
search for faces in an image at a discrete set of scales and positions. These systems consist of a local,
fixed-scale face detector which is applied to local patches in the image at all possible scale-position
combinations. So the idea is to build a transformation-normalized face model and then add on invariance
by exhaustively applying all possible transformations to the normalized model. This is a general method
for achieving invariance to a discrete set of pre-specified transformations. It can be seen as a special
case of the “normalize first and then recognize” strategy where the number of possible transformations
is small, so it is feasible to run the recognizer on all possible normalizations.

The advantage of the above approach is that the transformations can be arbitrary – unlike in other
approaches, they need not be continuous or small. The disadvantage is that if there are different types
of transformations (translation, rotation, scaling etc.), then all possible combinations of them need to be
considered, and so the set of transformations grows exponentially with thenumber of types. Forn types
of transformations, withm of each type, there aremn possible combinations. Even a modest number of
transformation types can be too expensive computationally.

Frey and Jojic [2000] present a set of models based on the above approach. They treat transfor-
mation as a discrete latent variable, and model the transformation-normalized image by (1) a Gaussian,
(2) a mixture of Gaussians, (3) a factor analyzer, and (4) a mixture of factor analyzers (Ghahramani
and Hinton [1996]). The pre-specified transformations are implemented byfixed permutation matrices
(one matrix per transformation). So the observed image vector is related linearly to the transformation-
normalized image vector. Once the discrete latent variables (the transformation and the mixture compo-
nent) in a model are clamped, it reduces to a standard linear-Gaussian model.The discrete variables can
be marginalized out by brute-force summation over all their possible settings. Assuming the summation
is tractable, all four models can be trained unsupervised with EM, without any labels specifying which
transformations are observed in the training images.

The transformed Gaussian modeluses a Gaussian distribution over the transformation-normalized
image and a multinomial distribution over the transformations. It tries to model the data as various
transformed versions of a single prototype image. Thetransformed mixture of Gaussians modelis an
extension in which each mixture component is a transformed Gaussian model. So instead of one proto-
type, now there are multiple prototypes, each of which are transformed according to prototype-specific
transformation probabilities. Thetransformed component analysis(TCA) model is the same as the
transformed Gaussian model, except the distribution over the normalized imageis given by a factor
analyzer. Themixture of TCA(MTCA) model uses a TCA model as its component distribution. In
all these models the normalized image’s distribution is shared across all transformations, which signifi-
cantly reduces the number of parameters compared to, say, a mixture model that has one component per
prototype-transformation pair.

A modification of the MTCA model makes it possible to combine the local, tangent plane approxi-
mation to the continuous transformation manifold with the global, nonlinear approximation to the man-
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ifold given by the discrete set of transformations. (This is assuming that allthe transformations being
considered are continuous.) The trick, suggested in Hinton et al. [1997], is to replace each factor loading
matrix in MTCA with a matrix that contains the tangent vectors computed at the corresponding mixture
component’s mean. This fits a plane which approximates the transformation manifold locally at the
component’s mean. The overall model then consists of a set of locally linear models that together form
a nonlinear model of the transformation manifold.

2.5 Invariance in face detectors

Almost all recent face detectors described in the literature are translation and scale invariant. A standard
approach is to first train a classifier to discriminate between faces and non-faces. The face patches used
to train this classifier are pre-segmented and normalized (e.g., the eye locations are forced to have the
same pixel coordinates across all face patches). So the classifier itself isnot explicitly designed to have
translation and scale invariance with respect to its input. At test time, the input tothe face detector is an
image that contains an unknown number of faces in it. The faces (if any) are detected by independently
applying the binary classifier to local windows in the image at all possible locations and scales. When
a local window matches the position and the scale of a face in the image, the binary classifier outputs
the face class label, and the window is then taken to be a detected face. The search over locations and
scales must be done over a sufficient range of values and with enough resolution to make sure that none
of the legitimate faces in the input image are missed.

The same brute-force approach can potentially be applied to achieve invariance to facial pose. The
binary classifier can, in principle, be trained on faces in all possible poses. But, as explained in Jones
and Viola [2003], in practice it is difficult to train such a single classifier accurately. For some non-
frontal poses (e.g. profile views), the face image will contain a significantamount of background. So
the problem of segmentation becomes much more important than in the case of onlyfrontal poses. Also,
standard methods for normalizing the training faces (such as placing the eyes at fixed pixel coordinates)
are no longer meaningful when all poses are considered together.

Rowley et al. [1997] build a rotation-invariant face detector using a classifier trained on faces in the
frontal, up-right pose. The system can only deal with in-plane rotations of faces, which unfortunately
rules out a large number of poses that produce out-of-plane rotations.Their detector consists of a neural
network that is trained to estimate the rotation angle of a face. They first applythis network to a local
image window. The estimated angle is used to rotate the local image patch so that the(presumed) face
becomes up-right. The binary classifier is then be applied to the rotation-normalized face. In the case of
a non-face patch, the rotation estimator will output a meaningless angle, and rotating the patch by that
angle is unlikely to hurt the subsequent classification step.

Jones and Viola [2003] propose a similar system, but instead of training a single classifier on up-
right faces, they discretize the entire range of orientations into a small number of classes and train one
classifier per orientation class. A decision tree classifier is used to assign an image patch to one of these
orientation classes. Although the underlying task is regression, they treatit as classification. Then the
face/non-face classifier trained for that orientation class is used to decide whether the patch is a face.
The drawback of the general detection strategy adopted by both Rowley et al. [1997] and Jones and
Viola [2003] is that if the orientation estimator fails, then the face detector will fail as well. So the
detector can only be as good as the orientation estimator itself.

The original Viola-Jones face detector (Viola and Jones [2001]) has only scale and position in-
variances, but they are implemented in an interesting way. The face/non-face classifier has a cascade
structure, with each stage of the cascade being a stricter test for a face than the earlier stages. A stage
can reject an image patch as a non-face, in which case no further processing is done on that patch. But
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a patch which is labeled as a face by one stage is passed on to the next stagefor further checking. Only
those patches that pass through all the stages are reported as detected faces. So only the very first stage
of the classifier is applied exhaustively at all scale-position combinations. The first stage contains a
small number of low-level features, making it somewhat like alearnedlow-level interest region detec-
tor for faces. The results show that, in practice, even a simple, fast test inthe first stage can rule out vast
regions of the input image as non-face. Therefore most of the work forscale and position invariance is
done through low-level processing that is fast and efficient.

Osadchy, Miller and LeCun (Osadchy et al. [2004]) present anotherapproach to pose-invariant face
detection. They train a convolutional neural network to simultaneously perform face/non-face classifi-
cation and 3D pose estimation. Instead of representing the pose with 3 numbers, they overparameterize
it with a 9D representation. (The mapping from the pose to the 9D representation is specified by hand.)
Since specifying the pose requires only three degrees of freedom, the valid poses form a 3D manifold
in the 9D output space. A convolutional neural network is trained to take a face image patch as input
and compute its corresponding correct 9D pose representation as output, while for a non-face patch, the
network is trained to compute a 9D vector that is far away from the 3D manifold of valid poses. At test
time, a patch is classified by first inferring its 9D pose representation using the convolutional network.
This 9D vector is then projected on to the 3D manifold of valid poses. If the distance between the
original 9D vector and its projection is greater than a threshold, then the patch is classified as non-face.
Otherwise it is classified as a face with the pose given by the projection. Theresults show that training
the network to do the two tasks simultaneously results in better accuracy for both of them than indepen-
dently training a separate network for each task. The trick here is to train a face/non-face classifier with
labels that are much more informative than binary labels. The extra informationprovided by the pose
label results in a much better classifier.

2.6 The Multi-stage Hubel-Wiesel Architecture

This is a class of models for invariant pattern recognition that is based on thefollowing approach:
(1) Replicate local image features by applying various amounts of whatevertransformation the recogni-
tion needs to be invariant to. For example, to achieve rotational invariance,a local feature is replicated
by applying various amounts of rotation to it.
(2) Pool the activations of the replicas over a small range of transformations into a single activation that
is invariant to which of the replicas in the pool is active. For example, a poolis considered active if any
one of the rotated versions of a feature in that pool is active. So its activation is invariant to rotation.
Then learn features on these pooled activations to produce ‘features of features’.
(3) Gradually build up invariance by repeating the above two steps over many layers of features.
The above strategy is inspired by experimental results from neuroscience about the mammalian visual
cortex. Position and scale invariances seem to be built up hierarchically in the ventral stream using
transformed replicas of features, and the receptive field size tends to increase with the hierarchy level.
The namemulti-stage Hubel-Wiesel architecturewas suggested in Ranzato et al. [2007]. Examples of
models that have this architecture are convolutional neural networks (LeCun et al. [1998]), Neocog-
nitron (Fukushima [2007]) and HMAX (Riesenhuber and Poggio [1999]). They differ mostly in the
details of how the three steps are implemented.

Convolutional neural networks learn local features that are replicatedacross all possible pixel posi-
tions via convolution. Features over a small local neighbourhood are pooled together by an average. This
makes a second level feature invariant to changes in the positions of the first level features within its own
pool, because the averaging operation is invariant to permutations of its inputs. Similarly, the second
level features are replicated by convolution and pooled to form the inputs tothe third level features, and
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so on. As more levels are added, the features become increasingly positioninvariant. A fully connected
network is usually applied on the activations of the highest-level convolutional features to compute the
final output of the network (e.g. a class label), and the entire hierarchy istrained simultaneously, end-
to-end. A feedforward pass through a convolutional network is computationally efficient because image
convolution is a fast operation in modern CPUs. This makes translation invariance relatively cheap to
implement. Incorporating other types of invariances can be more expensive: for example, rotational
and scale invariance can be included by first generating various rotatedand scaled versions of the input
image and then applying the convolutional filters to them. But the large number ofcombinations of
transformations makes this approach expensive.

HMAX 1 is meant to be a model for theoretical neuroscientists studying object recognition in the
human visual cortex. The pooling of feature activations is done by a max operation. So among all the
feature activations in a pool, the largest one is picked to be the pool’s activation. Also, learning is done
only at the highest level of the network, and the lower level features arehand-coded. The features in
the lowest level are oriented bar and edge detectors. The learned component of the architecture is a
Gaussian Radial Basis Function network that simply stores the top-level feature activations for all the
training images and trains a linear network from the feature activations to the desired output (e.g. the
pose of an object) by supervised learning. The idea is that the same, fixed, set of feature layers are
used for many different visual inference tasks, and task-specific learning occurs only at a high level, to
convert the top-level feature activations into desired outputs.

One limitation of the above models is that they are limited to producing invariance to only small,
local transformations in the image because allowing larger invariances will reduce the discriminative
power of the features. Two different objects containing the same featurebut at different positions cannot
be discriminated by a fully translation-invariant detector for that feature. One way to get around this
limitation is to explicitly model not just the “what” information, but the “where” information as well.

It is easy to explicitly retain the “where” information in the HMAX model simply by storing which
feature in a pool produced the maximum activation. Ranzato et al. [2007] incorporate this idea into
learning an autoencoder-type network with convolutional kernels that are essentially “movable parts” of
objects. The trick is to learn the kernels by backpropagating gradients onlyfrom the image locations
where they fired most strongly, rather than from all locations in the image (aswould be done in a
standard convolutional network). This can be done by setting the featuremap of a kernel (i.e. the output
of convolving the kernel with the image) to zero everywhere except at thelocation of the maximum
activation. The kernel parameters are then updated using gradients computed only for that location. So
if two different objects have the same local feature (“part”) but at different positions, the model can learn
a single feature for that part and still discriminate between the two objects by itslocation of maximum
activation.

The learning algorithm used in Ranzato et al. [2007] is an extension of an earlier unsupervised
learning algorithm for training an encoder-decoder architecture (Ranzato et al. [2006]). As in the ear-
lier algorithm, the main steps are: (1) infer a hidden representation, or code, for the input image by
forward propagation through the encoder, (2) optimize the code with respect to reconstruction error by
backpropagation through the decoder, (3) update the encoder parameters with the optimized code as its
target output, and (4) update the decoder parameters with the optimized codeas its input and the image
as the target output. The new algorithm uses modified versions of the same steps. For an encoder with
a convolutional architecture, the code now includes the pixel coordinatesof the maximum activation
location for each kernel. This extended part of the code is kept fixed in step 2. The feature maps are
set to zero at all locations except those corresponding to the maximum activation (one location per fea-
ture map). Steps 3 and 4 remain unchanged. Results in Ranzato et al. [2007] show that applying this

1HMAX stands for “Hierarchical Model and X” (http://riesenhuberlab.neuro.georgetown.edu/hmax.html)
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algorithm to MNIST produces kernels that resemble “movable parts” for handwritten digit images.
The strategy used in this paper to make the features translation-invariant is practical only because

there is a simple method for estimating the position of a local feature within an image. But it is not
clear how this approach can be extended to other types of transformations, such as rotation. Also, the
assumption here is that a particular part/feature can appear only once in animage, because only a single
location in the feature map is kept. This seems like a strong assumption.

2.7 Local interest region detectors and descriptors

An important class of algorithms for invariant visual recognition is based onthe idea of first detecting a
set of local regions in an image that are “interesting” in some sense2, and then computing descriptions
of those regions. Both thedetectionanddescriptionsteps are designed to be approximately invariant to
common image transformations (e.g. affine transformations). The hope is thatthe same descriptors can
be reliably re-computed from a transformed version of the original image so that the two images can
be matched even under large transformations. A well-known example of this type of algorithm is SIFT
(Scale Invariant Feature Transform) by Lowe [2003].

What makes the local descriptor approach different from other approaches to invariance is that it is
purely low level. The algorithms for detecting and describing the local regions have no built-in notion
of objects or any such high level image representations. Instead, they are simply trying to find image
patches that are highly re-detectable under various transformations thatare of interest in typical vision
applications (e.g. affine transformations, illumination changes etc.). The generic, low level nature
of these algorithms makes them a useful front end for a wide variety of applications, such as object
recognition, image retrieval, and visual SLAM (simultaneous localization and mapping).

A large number of algorithms have been proposed for both region detectionand description. A
review and performance evaluation of these methods is presented in Mikolajczyk and Schmid [2005].
It considers five region detection methods and ten region descriptors. The region detectors are all based
on similar ideas and differ only in the computational details, so only the particularmethod used by
SIFT is described here. (Not surprisingly, one of the conclusions of Mikolajczyk and Schmid [2005]
is that the choice of the region detector does not significantly affect a descriptor’s performance.) There
is more variety in the ideas for region descriptors, although many of the bestperformers are essentially
variants of the one used by SIFT (e.g. shape context (Belongie et al. [2002]), and gradient location and
orientation histogram, or GLOH (Mikolajczyk and Schmid [2005])).

SIFT’s region detector aims to find patches in the input image that are likely to bere-detectable
across scale changes of the image. It performs a brute-force searchover all possible positions in various
scaled versions of the image. At each scale, the response of a difference-of-Gaussian (DoG) filter
is computed for all image positions. A scale-stable region is taken to be centredat a pixel location
that produces a local extremum in the DoG responses across scales. The intuition is this: consider an
idealized image containing a white circle on a black background. A DoG filter that starts off with a small
receptive field and gradually gets scaled up will produce its maximum (or minimum,if pixel colours
are flipped) response when the on-centre part of its receptive field fully fits the circle, regardless of the
scale of the circle. Therefore the circle can be detected at any scale by locating an extremum in the filter
response as a function of scale. In real images, this criterion tends to findblob-like homogenous regions.
Note that the detector is invariant to scaling and rotation of the image, but not tomore general affine
transformations. Affine-invariant alternatives have been proposed (Mikolajczyk and Schmid [2005]),
but in practice, the invariances in the region descriptor can compensate for the detector’s lack of affine

2“Interesting” typically means that it is possible to extract a description of theregion that is stable over a range of viewing
conditions.
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invariance (Lowe [2003]).
Once the scale-stable image locations are identified, descriptors are computed for the pixel neigh-

bourhoods centred on those locations. Each location has a scale associated with it. The descriptor for
a location is computed using a16 × 16 pixel patch from the original image rescaled by the location’s
scale. So a16 × 16 neighbourhood may correspond to a much larger neighbourhood in the original
image. The region is then assigned an orientation by computing a histogram of local image gradient
orientations (discretized into 36 bins) from the16× 16 patch. The bin with the most mass is selected to
be the region’s orientation. If many bins have significant mass, then multiple regions are created at the
same location, but each with a different orientation.

So each region has its own location, scale and orientation, which together define a region-specific 2D
coordinate system. The region’s descriptor is computed with respect to this coordinate system. As long
as a region’s axes are estimated correctly from a transformed version ofthe original image, its descriptor
will remain the same. This is in effect the low level version of the object recognition approach that first
estimates an object-centric reference frame and then describes the objectrelative to that reference frame.

The descriptor consists of histograms of gradient orientations computed from the16 × 16 patch.
Gradient orientation is discretized into 8 bins. The16 × 16 patch is divided into 16 non-overlapping,
smaller patches, each of which is4 × 4. One gradient orientation histogram (8 numbers) is computed
per smaller patch to produce a16 ∗ 8 = 128 dimensional, real-valued descriptor for the region. The
histogram-based representation provides invariance to the specific spatial configuration of the gradients.
The 128-D feature vector is normalized to unit length for approximate illuminationinvariance.

One approach to object recognition using SIFT is based on nearest neighbour matching of descrip-
tors. Given a test image containing an unknown set of objects and background clutter, the descriptors
computed from the image are compared to descriptors computed from a database of reference images of
known objects. Euclidean distance is used to measure the similarity between two feature vectors. Since
the SIFT features in the test image need not all be produced by objects, there has to be a way of rejecting
some of them as background clutter. One method is to reject a test image feature as ‘background’ if it
matches multiple features in the database with similar distances as its nearest database feature. In other
words, for a feature to be considered ‘foreground’, it has to match to asingle database feature much
better than to any other database feature. Once a set of test image features is tentatively matched to a
particular object in the database, each of them provides an independentprediction for the position, scale
and orientation of that object in the test image. If the predictions are in reasonable agreement, then the
object is taken to be present in the image. The biggest advantages of this approach to recognition is
that (1) there is no need for a pixel-wise segmentation of the image, and (2) by using local features,
recognition is possible even under occlusion.

The constellation model by Fergus et al. [2003] is another approach to object recognition using local
image descriptors. It uses the Kadir-Brady region detector, which is similarto the one used by SIFT. At
each pixel location in the image, the detector computes the entropy of the histogram of pixel intensities
in a circular region of various scales (i.e. radii) centred at that location. Treating the entropyH(s) as a
function of scales, image locations that produce a local maximum ofH(s) (over some fixed range of
scales) are selected as interesting. This detector tends to find blob-like regions in the image.

In the constellation model, interest regions are used as candidates for parts of objects. Each object
consists of a set of parts, and an object-specific model specifies distributions for the relative locations
and appearances of those parts. Given a test image containing at most one object, the region detector is
applied to the image to find interest regions. All possible assignments of interest regions to the parts of an
object are considered (including not assigning any regions to a part, which allows for occlusions). Any
region not assigned to an object belongs to the background. A particularassignment of the regions to
the parts of an object in effect defines an object-based reference frame to explain those regions. Relative
to that reference frame, the probability of the regions being produced bythe object is computed. This
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allows the recognition system to decide whether an object is present in the image and if so, which
object it is. Here the segmentation problem is solved in a brute force way by considering all possible
interpretations of the detected regions as belonging to the object or the background. This is practical
only because the number of parts in an object model and the number of detected regions in an image
are both restricted to be small. The approximate scale invariance of the regiondetector makes the
recognition less sensitive to scale changes in the objects.

2.8 Perceptrons and SVMs

Minsky and Papert [1988] consider the invariance properties of perceptrons. Theirgroup invariance
theoremshows that the perceptron can only implement simple transformation invariant classifiers that
check whether the area occupied by the active pixels in a binary image is greater than some threshold.
It cannot implement a classifier that, for example, distinguishes two different characters with the same
number of active pixels regardless of where they appear in the image. Thisis not surprising since
transformation invariant classification of two different input patterns would require nonlinear features
of the input image. Perceptrons can be made more powerful with higher order units that combine many
input units into one (i.e. make the inputs nonlinear features of the pixels). Forexample, Giles and
Maxwell [1987] show that it is possible to handcraft features for a translation invariant perceptron by
multiplying together pairs of input units to produce a higher order input for the perceptron.

The impossibility results for the perceptron no longer apply once nonlinear hidden units are in-
cluded in a neural network. Hinton [1987] showed that a feedforwardneural network with hidden units
can learn to do translation invariant classification of different input patterns. The network is trained
to discriminate among sixteen patterns, each of which is allowed to undergo 1D translation (with wrap
around) without changing the class label. The training set contains only a subset of all possible combina-
tions of patterns and translations, so the network cannot simply memorize eachpattern at every possible
position. The results show that it is able to generalize correctly to familiar patterns appearing in novel
positions. This work is one of the few examples in the literature where a model learns invariance to a
transformation without having it pre-specified and built into the model by hand.

A number of methods have been proposed for incorporating invariancesinto support vector ma-
chines. DeCoste and Scholkopf [2002] describe two simple methods: (1)virtual support vectorsand (2)
thekernel jittering. The virtual support vector method has three steps: (1) train an oridinary SVM on the
training set, (2) expand the training set with artificial examples generated byapplying the desired trans-
formations on the support vectors of the trained SVM, and (3) train a new SVM on the expanded training
set. Steps 2 and 3 can be repeated if necessary. The main advantage of this approach is that the training
is computationally cheaper than applying the transformations toall training cases and then learning on
the resulting (much larger) set. Since the learning computational cost for SVMs grows quadratically
with the number of training cases, the savings can be large. This approachhas been shown to do well
on the MNIST classification task, with an error rate of0.56% (DeCoste and Scholkopf [2002]). Its
drawback is the assumption that the transformed versions of only the support vectors are needed to learn
an invariant classifier. For example, a training case that is originally not a support vector may turn into
one once a transformation is applied to it. The virtual support vector method ignores this possibility.

Kernel jittering uses an ordinary kernel which may not have the desired invariances, to define a
new kernel that does have them. The output of the new kernel for a pairof vectors is computed by
(1) applying all desired transformations to one of the vectors, (2) evaluating the ordinary kernel on
the resulting vector pairs, and (3) outputting the result for only the nearest pair of vectors (nearest
according to the oridinary kernel). Under some assumptions, this new “jittered” kernel satisfies Mercer’s
conditions and can be used in an SVM. Decoste and Scholkopf mention that inpractice, the conditions
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are almost always satisfied. The main drawback of this approach is that kernel evaluations become
expensive if the set of possible transformations is large.

Scholkopf et al. [1998] suggest another approach that incorporates approximate local invariance by
modifying the dot product between two data vectors. Consider a modified linear SVM classifier of the
form

f(x) = sgn(
l
∑

i=1

αiyi(Bx ·Bxi) + b), (2.4)

wherex is the input vector,f(x) is the binary classification function,{(x1, y1), . . . , (xl, yl)} is the
training set,αi are the learned multipliers, andb is a scalar bias. The matrixB is a linear pre-processor
applied to the classifier’s input. We want to chooseB such that the resulting classifier is approximately
invariant to a pre-specified transformation (e.g. translation of the input). OnceB is determined some-
how, the modified SVM is learned in the usual way by maximizing the following expression:

l
∑

i=1

αi −
1

2

l
∑

i,k=1

αiyiαkyk(Bxi ·Bxk), (2.5)

subject to the constraintsαi ≥ 0,
∑l

i=1 αiyi = 0.
B is selected as follows. Letg(x) =

∑l
i=1 αiyi(Bx ·Bxi) + b, sof(x) = sgn(g(x)). Transfor-

mation invariance ofg(x) is sufficient to make the classifier invariant. (This is not a necessary condition
because even if a transformation changesg(x), but not its sign, it will not affect the classifier output.)
We can enforce local invariance ofg(x) to a differentiable, 1-parameter transformationLt by making
sure thatg(Ltx) does not vary with respect tot at the identity transformation, taken to be att = 0. So
we need to minimize the following regularizer:

1

l

l
∑

i=1

(

∂g(Ltxi)

∂t

∣

∣

∣

∣

t=0

)2

. (2.6)

Substituting the expression forg(x) into equation 2.6 gives
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. (2.7)

After some manipulations, this can be re-written as

l
∑

i,k=1

αiyiαkyk(Bxi ·BCBT Bxk), (2.8)

where

C =
1

l

l
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i=1

(

∂Ltxi
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∣

t=0

)(
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∣
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)T

. (2.9)

Note that the tangent vectors∂Ltxi

∂t

∣

∣

∣

t=0
have zero mean since the transformation gradient is evaluated

at the identity transformation (t = 0). ThereforeC is a sample covariance matrix of tangent vectors.
The simplest way to include the regularizer (equation 2.8) in the SVM objectivefunction (equation

2.5) is to pickB such thatBCBT = I. Then the regularizer becomes identical to the second term
of the objective function, and maximizing the objective makes the regularizationterm small, as we
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want. BCBT can be made equal to identity with the choiceB = C−1/2. If C is invertible, its inverse
square root exists becauseC is a non-negative matrix. IfC is not invertible, then it is replaced by
Cλ = (1 − λ)C + λI for 0 < λ ≤ 1. Cλ is invertible and non-negative becauseC is a non-negative
matrix. Scholkopf et al. [1998] call it thetangent covariance matrix.

We can think of the linear pre-processing done byB as a form of transformation-specific whitening.
C (or Cλ) is positive definite, so it can be decomposed asC = SDST , whereS is an orthogonal matrix
containing the eigenvectors ofC, andD is a diagonal matrix containing the corresponding eigenvalues.
SoB = C−1/2 = SD−1/2ST . Since the dot product is not affected by an orthogonal transformation,
we get thatBxi · Bxk = (D−1/2ST )xi · (D

−1/2ST )xk. Computing the dot product of the vectors
pre-processed byB is equivalent to first projecting each input vector onto the eigenvectors of C, scaling
the components of this projection by the inverse square root of the eigenvalues, and then computing the
dot product of the scaled projection vectors. The eigenvectors ofC with the biggest eigenvalues are
the directions in input space along which the transformation gradient has thehighest variance. Those
components of the projected vector are scaled down by the square root of the corresponding eigenvalues,
as done in whitening. As a result, the dot product after pre-processingby B is less sensitive to the
transformation than the dot product in the original input space. This makesthe linear SVM classifier
approximately invariant to the transformation.

2.9 Higher order models

Many of the standard methods for learning models of image data use a single set of hidden factors
to explain the observed data (e.g. PCA, ICA, RBM). One way to extend these models is to use two
different sets of hidden units and form three-way cliques containing onevisible unit and two hidden
units, one from each of three sets of units. If the hidden units in one of the sets are clamped to a
particular configuration, the model reduces to the original form with a single(unclamped) set of hidden
units modeling the visible units. But now the parameters of this reduced model are a function of the
clamped hidden configuration, instead of being constant as in the original form. So the new model is a
higher order version of the original one. In general, the number of different sets of hidden units can be
arbitrarily large.

The main attraction of higher order models is that the activities of one set of hidden units can
modulate the interaction between the remaining sets of hidden units and the visible units. A model with
only one set of hidden units also has this property, but in a much weaker sense. For example, clamping a
hidden unit in an RBM also produces a different model over the remaining hidden units and the visible
units by changing the biases into the visible units. But a higher order Boltzmannmachine allows much
richer ways of modulating the model. A third order Boltzmann machine with two sets of hidden units
and three-way cliques (a clique contains one unit from each of three sets) can use one set of hidden units
to modulate anentire RBM between the other set of hidden units and the visible units. This is more
powerful than just changing the biases into the visible units.

Higher order models are useful for learning invariant representations. Consider a third order Boltz-
mann machine trained on images in such a way that one set of hidden units represents shape and the
other represents viewpoint3. Then at test time, given an image, the shape and viewpoint representa-
tions can be inferred by prolonged Gibbs sampling that alternatively updates the two sets of hidden
units with the visible units clamped. So a viewpoint representation is inferred simultaneously with a
shape representation that is normalized for that viewpoint. This model implements the idea of doing
invariant recognition by imposing a view-specific reference frame on the object and interpreting shape

3For example, during training constrain the activities of the shape units to be the same for images containing the same
shape but different viewpoints, and constrain the viewpoint units similarly.
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with respect to that frame. However, unlike other works thatfirst infers a viewpoint andtheninfers the
shape with respect to that viewpoint, this model infers both simultaneously. The idea of simultaneous
viewpoint-shape inference by iterative settling in a three-way model was originally suggested by Hinton
[1981], although that paper did not use higher order Boltzmann machinesto implement the idea.

One of the main drawbacks of higher order models is that the number of parameters grows expo-
nentially with clique size. Suppose that there arem separate sets of units, each containingn units. If we
restrict them-way cliques so that a clique contains exactly one unit from each set (the same restriction
an RBM has in its 2-way cliques), then there arenm possible cliques. Allowing one free parameter
per clique, which is the most obvious way of extending a basic model to higherorder, will requirenm

parameters. For example, a model with three sets of 1000 units each has a billion parameters in it, so a
massive training set is needed to fit it.

The alternative is to regularize the model so that its effective number of degrees of freedom is much
smaller thannm. One way is to allow only one free parameterper unit in each set, and then define
the parameter for anm-way clique as the product of the parameters of them units in that clique. It
is equivalent to taking the fullm-dimensional array of parameters and factoring it as the outer product
of m vectors, each onen-dimensional. So in the case ofm = 2, the matrix of parameters is given by
the outer product of twon-dimensional vectors. In the case ofm = 3, the 3D array of parameters is
given by the outer product of threen-dimensional vectors, and so on. With this factorization strategy,
the number of free parameters is onlyn · m, so the exponential growth with respect tom is avoided.
In general, one can define the parameter array to be the sum ofk such separate factorizations, which
allowsn ·m · k free parameters. For them = 2 case this corresponds to representing the full parameter
matrix as the product of two rank-k matrices.

A possible disadvantage of factorization is that optimizing the model parameterscan be difficult. A
model defined in terms of the product of two scalar parameters has the following degeneracy: multiply-
ing one parameter by a constant and dividing the other parameter by the sameconstant results in the
same model. This can be a problem for gradient-based optimization since any particular setting of the
parameters has an infinite number of equivalent settings in its vicinity. But with appropriate regulariza-
tion (such L2 weight cost), the degeneracy can be removed. Another trick mentioned in the literature is
coordinate descent: in a set of parameters that are multiplied together, optimizeonly one of them at a
time and keep the remaining parameters in the product fixed.

The rest of this section will describe various types of higher order models and how they are used for
learning invariant visual representations. We first explain higher order Boltzmann machines, and then
look at higher order extensions of PCA and ICA.

2.9.1 Higher order Boltzmann machines

Higher order Boltzmann machines were first described in Sejnowski [1986]. Memisevic and Hinton
[2007] describe the first application of such a model to real data. They use a third order Boltzmann
machine to learn a model of transformations between pairs of images. It consists of two sets of visible
unitsx andy, and one set of hidden unitsh. It represents the conditional distributionp(y,h|x), defined
as follows:

p(y,h|x) =
exp(−E(y,h;x))

∑

y,h exp(−E(y,h;x))
, (2.10)

where
E(y,h;x) = −

∑

i,j,k

Wijkxiyjhk. (2.11)

Wijk is the 3D array of parameters for the model. The array is not factorized, so it has one free parameter
per three-way clique.
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Oncex is clamped to a particular configuration, the model reduces to an RBM withy as the visible
vector andh as the hidden vector. But the parameters of that RBM are a function ofx. As can be seen
in equation 2.11, a particular setting of thexi’s will add various slices of the 3D array together to define
the weight matrix of the RBM. Sincex is assumed to be always observed, inference and learning steps
conveniently become identical to those of an RBM. This is possible only for thespecial case in which
two of the three sets of units are observed. In the case of two sets of hiddenunits and one set of visible
units, inference is much more expensive because it requires prolongedGibbs sampling between the two
sets of hidden units.

2.9.2 Bilinear models

Tenenbaum and Freeman [2002] use a bilinear model to decompose data intotwo factors correspond-
ing to what they callstyleandcontent. They consider two kinds of bilinear models,symmetricand
asymmetric. In the symmetric model, ak-dimensional data vectory is given by

y =
∑

i,j

wija
s
i b

c
j , (2.12)

where the vectoras represents style,bc represents content, andwij arek-dimensional basis vectors. So
the data vector is generated as a linear combination of basis vectors where the combination coefficients
are given by the outer product of the style and content representations. This model treats both style and
content symmetrically, i.e. mathematically there is no distinction between the style and content vectors.

In the asymmetric model, the data vectory is given by

y =
∑

j

ws
jb

c
j , (2.13)

wherews
j are style-specific basis vectors andbc is the content representation. So the data vector is

generated by linearly combining the style-specific basis vectors using the components of the content
vector as the coefficients. Here there is a distinction, or asymmetry, betweenstyle and content in that
style determines the basis functions while content determines how they are combined. The asymmetric
model can be derived from the symmetric one by combining the style-specific terms in equation 2.12 as
follows:

ws
j =

∑

j

wija
s
i . (2.14)

Both models are learned by minimizing the sum of squared errors between the training data vectors
and their reconstructions. For the asymmetric model, learning is particularly simple and can be done
with the basic matrix SVD. The training cases are assumed to be column vectors labeled by their (dis-
crete) style and content classes. (The number of training cases for all possible style-content pairs are
assumed to be the same. If there are multiple examples per style-content pair, they are averaged together
to form a single training case.) The entire training set is arranged as a matrix such that each column
contains a single content class, with the vectors corresponding to multiple styles concatenated together
as one long column vector. So there are as many columns as content classes, and the number of rows is
given by the product of the number of style classes and the dimensionality ofthe data vector. Let this
matrix beȲ . It can be decomposed as

Ȳ = WB, (2.15)
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where the columns ofW contain the style-specific bases and the columns ofB are the coefficients for
combining the bases. This decomposition can be computed by applying SVD toȲ

Ȳ = USV T , (2.16)

and settingW = US andB = V T . By throwing out the columns ofW and rows ofB corresponding
to the smallest singular values inS, the dimensionality of the content representation can be reduced.

For the symmetric model, the learning is more complicated and involves multiple iterationsof SVD.
The basic idea is to compute the style and content representations for the training cases by alternatively
keeping one of them fixed and optimizing for the other. Each such optimization step can be done using
SVD. This iterative procedure is guaranteed to converge to a local minimum of the squared reconstruc-
tion error. Once the style and content representations are computed, the only unknown in equation 2.12
are the basis vectorswij , and they can be solved for analytically.

To describe the learning algorithm, first we define thevector transposeof a matrix. Consider the
matrix Ȳ as defined before, where each column is a concatenation of column vectors from the same
content class but in different styles. Thevector transposēY V T of such a matrix is created by horizon-
tally concatenating the column vectors from the same content class, as separate columns, rather than
vertically as a single long column vector (see figure 5 in Tenenbaum and Freeman [2002]). The vector
transpose is analogous to the ordinary transpose if we viewȲ as a 2D array whose elements are col-
umn vectors – the vector transpose re-arranges those column vectors in the same way as the ordinary
transpose re-arranges the scalar elements of a matrix.

Re-writing equation 2.12 in matrix form, we get that

Ȳ = [W V T A]V T B, (2.17)

Ȳ V T = [WB]V T A. (2.18)

The iterative learning is initialized by first computingB from the SVD ofȲ (just as in the asymmetric
model learning). SinceB is orthogonal,B−1 = BT , and therefore[Ȳ BT ]V T = W V T A. So thenA can
be estimated from the SVD of[Ȳ BT ]V T . A is orthogonal as well, which gives[Ȳ V T AT ]V T = WB.
Now B can be re-estimated from the SVD of[Ȳ V T AT ]V T , and the whole procedure is repeated again.
Once the iterations converge,W can be solved for analytically.

Grimes and Rao [2005] describe a variant of the style-content bilinear model where the style and
content representations are assumed to be sparse. They use the same cost function (sum of squared
reconstruction error) as in Tenenbaum and Freeman’s symmetric model given by equation 2.12, with
two extra additive terms to enforce sparsity of the two factors. Instead of using SVD, they train the
model by gradient descent.

Grimes and Rao describe some interesting problems that they ran into while tryingto make the
learning algorithm work. Optimizing the squared reconstruction error (without any sparsity costs) by
gradient descent did not work and got stuck in poor local minima. Including the extra sparsity costs
caused the style and content representations to shrink to 0 in magnitude (thusachieving low sparsity
cost) while making the weights extremely large so that the reconstructions haveroughly the same nu-
merical scale as the training data. To prevent this, they scale down the weights at each learning iteration
by a gain factor so as to maintain a desired variance level for the activities ofthe style and content units
in the model. Another problem is that the style and content representations can be multiplied and di-
vided, respectively, by a constant without changing the output of the model. This is because the output
depends only on the product of the style and content activities, not on their individual values. As a
result, the parameter space contains many points near each other that all have exactly the same cost,
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making optimization difficult. The problem is solved by minimizing the cost function withrespect to
one factor until near convergence while keeping the other factor fixed (basically coordinate descent).

Their training data consists of natural image patches. Translations are applied to these patches (e.g.
±3 pixels both horizontally and vertically), and the model is trained on the resulting patches so that
the content representation remains invariant to translation while the style representation remains invari-
ant to different patches undergoing the same translation. This is achievedby first inferring the content
representation of a set of training patches that havenot been translated (i.e., the zero-translation view
is the canonical view of the patches). Then the content representation is kept clamped while the input
patches are translated, and the style representations are inferred. To keep the style representation in-
variant to translation, the style vectors for thesametranslation butdifferentpatches are adapted towards
their mean. The cost function gradient is computed using the resulting style and content vectors, and
the parameters are updated. The results show that the model manages to learn localized features that are
translation-invariant.

2.9.3 Multilinear models

Vasilescu and Terzopoulos [2002] present an algorithm for learning amultilinear model of data. They
extend PCA to arbitrary order by defining a higher order version of SVD. The training data is now
assumed to be arranged as a multi-dimensional array.

The higher order SVD decomposes theN th-order data arrayD into the product of acore tensor
(analogous to the matrix of singular values in ordinary SVD) and a set of orthogonal matrices, one for
each dimension ofD. Multiplication of a multi-dimensional array and a matrix is defined by a new
operation called thetensor product. Its exact definition is not necessary to understand the high-level
idea. Roughly, the higher order SVD is computed by “re-shaping” theN -dimensional arrayD as a
matrix in N different ways, and then applying ordinary SVD to each of thoseN matrices. The results
of theseN runs of SVD are then combined to define the decomposition of the data tensor.

More specifically, given anN th-order arrayD, a higher-order SVDcan be defined as follows: for
each of theN dimensions of the array, construct an ordinary matrix by collecting the set of vectors
obtained by varying that dimension while keeping all other dimensions fixed, and arranging them as
column vectors. Compute the ordinary SVD of this matrix, and keep only the orthogonal basis for the
column space from the result (the matrixU in USV T ). This procedure producesN matrices,U1, ..., UN .

Once the matricesU1, ..., UN have been computed, it is straightforward to use them along withD to
solve for the core tensor. The result is a decomposition ofD in terms of the core tensor andN matrices.
This decomposition is called theN -mode SVD. Since there are many ways to define the notions of rank
and orthogonality for tensors, this is not the only way to define a higher-order generalization of SVD.
N -mode SVD becomes identical to the ordinary SVD when applied to a a matrix.

Unfortunately, one of the most important properties of ordinary SVD doesnot carry over to its
higher-order generalization. It isnot the case that truncating the lower corner of the core tensor ofD
produces the best low rank approximation (in the squared error sense)of D. (See an example of this in
Lathauwer et al. [2000].) But in practice truncating the core tensor tendsto produce good approxima-
tions to the data tensor.

More recent work by Vasilescu and Terzopoulos [2005] extends the above ideas to derive a mul-
tilinear version of independent component analysis as well. If we treat whitening as a pre-processing
step for ICA, then ICA can be seen as an extension of PCA. Once the datais whitened, the mixing
matrix that ICA is trying to estimate must be orthogonal (assuming the data was trulygenerated by an
ICA model). So the ICA solution can be computed by modifying the PCA solution withan unknown
rotation matrix. Analogously, we can define a multilinear version of ICA by modifying the multilinear
PCA solution described above.
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First, theN -mode SVD is computed as before. For each of theU1, ..., UN matrices given by the
N -mode SVD, the corresponding rotation matricesW1, ..., WN are computed by doing ordinary ICA
on the data matrix given by flattening the multi-dimensional array along each of itsN dimensions.
Then the solution found byN -mode SVD is modified by replacingUi by UiW

−1
i Wi = CiWi. Then

the matricesWi are absorbed into the core tensor fromN -mode SVD to produce a new tensor product
decomposition of the multi-dimensional array.



Chapter 3

Analysis-by-Synthesis by Learning to
Invert a Black Box Synthesis Model

In this chapter we describe a new way of learning to infer reconstructiverepresentations of data. Its
advantage is that it can incorporate into the learning complex domain knowledge about how the data
was generated. This potentially allows the representation to capture the true degrees of freedom in the
data better than those learned by generic models like PCA or autoencoders.

Briefly, the premise of the chapter is this: we can often express knowledgeabout the underlying
generative process of the data in the form of asynthesis model. For example, if the data is generated
by a well-understood physical process, the model may be a simulation of it. The simulation may be
controlled by a set of variables that can be smoothly changed to produce different data vectors, and
these variables form the inputs to the synthesis model. By learning the correspondinganalysis model,
i.e. a mapping from a data vector to the synthesis inputs, it becomes possible to use the inputs as a
reconstructive representation. Such a representation takes advantage of the domain knowledge built into
the model.

Learning the analysis model is difficult – in a typical application, we only havethe inputs to the
function (data vectors) and not their corresponding target outputs (theinputs to the synthesis model that
would reconstruct those data vectors). We describe a way of training a feedforward neural network that
starts with just one labeled case (input-output pair) and uses the synthesismodel to “breed” more labeled
cases. As learning proceeds, the training set of input-output pairs evolves and the target output vectors
that the analysis model assigns to unlabeled data vectors converge to the correct values of the control
variables.

The explanation of the algorithm and its results are spread over two chapters. This chapter presents
the algorithm and shows two simple applications of it, just to verify that it does work. The next chapter
presents a more extensive application where we consider different ways of using the reconstructive
representation for recognition.

3.1 Introduction

“Analysis-by-synthesis” is the idea of explaining an observed data vector (e.g. an image) in terms of
a compact set of hidden causes that generated it. Asynthesis modelspecifies how the hidden causes
produce the data vector. Ananalysis modelis the inverse mapping – it infers the causes from a given
data vector. In coding terms, the analysis and synthesis models are the encoder and decoder, respectively,
and the hidden causes represent acode vector. The composite of the two models should implement the
identity function: inferring the code vector from a data vector followed by synthesizing from the code

24
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vector should reconstruct the original data vector.
Here we consider the following problem: given a training set of data vectors and a synthesis model

for that data, learn the corresponding analysis model. We will assume that data vectors and code vectors
are both real-valued. For example, suppose that we have a face dataset and a graphics program that
can generate any realistic face image. This program may have a set of inputs (e.g. pose, lighting, facial
muscle activations) that can be smoothly varied to create any face. The taskis to learn an analysis model
that infers from a face image the graphics inputs that will accurately reconstruct that image. The inputs
to the synthesis model can be seen as a reconstructive representation ofthe data vector.

Note that this is anew type of problemthat existing learning algorithms are not designed to solve.
Here we assume that a synthesis model of the data is given as part of the problem, and the goal is to
learn the inverse of that particular model. In contrast, algorithms such as PCA, factor analysis, and ICA
simply assume specific parametric forms for the synthesis model and fit the parameters to the data. A
nonlinear autoencoder learns separate encoder and decoder models simultaneously by also assuming
them to be of a specific parametric form with an analytic gradient. As explainedlater, our problem is
more difficult than the ones solved by these standard methods.

3.2 Motivation

There are two main motivations for this work. First, it is a way to incorporate domain knowledge,
via a synthesis model, into the analysis-by-synthesis framework for modeling data. Synthesis models
are a natural way of expressing complex prior knowledge. For example,in modeling face images,
knowledge about facial muscles and skin and how they interact to produce different expressions can be
expressed as a physics-based graphics model. Having a simulation of the underlying physical process
built into the model gives its inputs (i.e. the code vector) useful semantics. This approach can help
mitigate the model mis-specification problem that affects simple generative or reconstructive models
whose parametric forms are not powerful enough to correctly capture the true generative process.

Second, solving the above problem is a way to directly take advantage ofexistingmodels from com-
puter graphics for learning representations of image data. Enormous effort has already been expended
on building graphics models (see e.g. face models by Lee et al. [1995], and Sifakis et al. [2005]),
and now they can be used for building better vision models. Successfully inverting realistic graphics
programs will result in image representations that can improve object recognition and image coding.

3.3 Overview of our approach

Our goal is to design one learning algorithm that can be used to invert many different synthesis models.
The algorithm we propose treats the synthesis model as a “black box” function that can be evaluated
as many times as necessary, but knowledge of its internal details is not directly available. In particular,
we assume that the gradient of the synthesis function is not known1. Decoupling the learning of the
analysis model from the specific design details of the synthesis model allows different synthesis models
to be inverted without changing the algorithm.

The learning problem as stated so far is very general. We do not solve thisgeneral version – instead,
we consider a restricted setting in which the distribution in data space is assumedto be the result of
combining aunimodal distribution in code spacewith a deterministic, nonlinear synthesis model. ICA
is somewhat similar in that it also assumes a simple distribution in code space and a deterministic
mapping to data space to explain the data distribution. Unlike ICA, here we do not assume that the

1In practice there may not be an analytic expression for the gradient of acomplex graphics program.
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components of the code vector are independent or that the synthesis mapping has a known parametric
form. Here we are given a set of samples from the data distribution, and access to the synthesis model
as a black box function. But we are not given any samples from the codedistribution, nor do we know
the exact form of this distribution to draw samples from it.

Whether the assumption of a unimodal code distribution is valid for a particular application depends
strongly on the synthesis model itself. Currently we do not have a formal description of the full set of
conditions on the synthesis model for its inverse to be learnable by our algorithm. This is one of the
limitations that needs to be addressed in future work. Consider the linear case in which the synthesis
model multiplies the input vector by an unknown matrix to produce the output vector. The elements of
the matrix can be discovered trivially by evaluating the synthesis function on the standard basis vectors.
So the problem is interesting only for the nonlinear case. The three synthesis models that we apply
the algorithm to (in this chapter and next) are nonlinear, and in all three cases, it successfully learns
an approximate inverse. While these results are encouraging, the generality of the algorithm and the
conditions under which it will work still need to be characterized formally.

The goal of the algorithm is to learn a regression mapping from data space tocode space. There are
three difficulties: first, only the regression function’s inputs (data vectors) are given for learning – the
corresponding target outputs are unknown2. If they were known, then the problem reduces to standard
supervised learning. For a complex synthesis model, we expect that inferring a high-dimensional code
vector for a given data vector is too hard to do “by hand”, ruling out the possibility of hand-labeling a
large set of data vectors with their target outputs.

Second, the black box’s gradient is unknown, so learning cannot be done by propagating the gradient
of the data reconstruction error through the black box. Estimating it numerically by finite differencing
is too inefficient. If the black box gradient were known, then learning becomes similar to that of an
autoencoder whose decoder part is pre-specified and fixed.

Third, codes corresponding to the real data occupy only a very small volume in code space. For
example, consider a face model that simulates muscles with springs. Humans cannot independently
control each facial muscle, so the muscle activations are dependent on each other. Therefore only a small
subspace of possible spring states correspond to valid facial configurations. This makes it impractical to
naively takeuniform random samplesfrom code space, generate data vectors from those samples using
the black box, and learn the recognition model from the resulting input-outputpairs. Such an approach
will waste almost all the capacity of the analysis model on “junk” training casesfar away from the real
data that we are interested in modeling.

Our approach addresses these three difficulties. We assume that we aregiven a single point in code
space, referred to as theprototype, near the mode of the (unknown) code distribution. Its purpose is to
restrict the learning to the relevant part of code space. The algorithm randomly perturbs the prototype to
compute a set of nearby code vectors from which their corresponding data vectors are generated using
the synthesis model. The analysis model is trained by standard supervised learning on the resulting
input-output pairs. In the subsequent learning iterations, codes even further away from the prototype
are sampled and the corresponding input-output pairs are trained on. Withmore learning the sampling
procedure produces code vectors from an increasingly broader distribution. The details are in section
3.4. As the algorithm “breeds” its own labeled training cases, we refer to it as breeder learning.

We use breeder learning to invert two different black boxes in this chapter, one for images of eyes
(section 3.5.1) and the other for faces (section 3.5.2). In the former case, we got the software for the
graphics model from its authors (Moriyama et al. [2006]) and simply used itas a black box subroutine
in our algorithm. This shows the usefulness of de-coupling the design detailsof the synthesis model

2This is the more likely scenario in practice – the data vectors are usually supplied without any extra quantitative informa-
tion about how they were generated, except for maybe class labels.



CHAPTER3. ANALYSIS-BY-SYNTHESIS BY LEARNING TO INVERT A BLACK BOX SYNTHESISMODEL27

Data vector

Code vector

Sigmoid 

hidden units

Matrix of weights 

from hidden to 
output units

Matrix of weights 

from input to 
hidden units

(a) Feedforward network with one hidden layer of
sigmoid units.

b

x1 x2 xn

y

w1 w2 wn

+

(b) A single sigmoid unit.

Figure 3.1: (a) Architecture of the analysis neural network used in all our applications. The output units
can be either sigmoid or linear, depending on the application. (b) A sigmoid unitis implemented using
the logistic functionas the squashing nonlinearity. So the overall function implemented by one such
unit isy = 1

1+exp(−b−
P

n

i=1
wixi)

wherex1, ..., xn are the inputs,w1, ..., wn are learnable weights on the

inputs, andb is a learnable scalar bias.y lies in the interval[0, 1].

from the learning.

3.4 Breeder learning

Breeder learning is not specific to any particular parametric form for the analysis model. But as we
will see, the set of input-output pairs is generated dynamically during training, so the model must be
learnable in an online manner. We choose a feedforward neural network with a single hidden layer (see
figure 3.1) to implement the analysis model.

When picking the prototype, we want to avoid outlying points far away from the high probability
region of the code space. So we pick the prototype to be a point that produces a “realistic” image even
under small random perturbations. Finding such a point by hand is assumed to be tractable. This of
course depends on the particular synthesis model being inverted, but for the three applications consid-
ered in the thesis, constructing the prototype has been straightforward.

Breeder learning relies on the analysis network itself, as it is being learned, to find new code vectors
to train on. To start off the search in the relevant part of the code space, the parameters (weights) of
the analysis network should be initialized such that its output is approximately theprototype early on
in training (regardless of which data vector it sees as its input). This can bedone by setting the biases
into the network’s output units to produce the prototype code vector and allother parameters to small
random values. As a result, early in training, the network’s output will be affected by its input only
weakly, and determined almost entirely by the output biases.

The complete set of inputs to the algorithm are 1) the synthesis model, 2) the prototype, and 3) a
training set of data vectors. The final output is an analysis model trained toaccurately infer from a data
vector its corresponding code vector.

Once initialized, the weights are updated iteratively. Each iteration has four main steps (see figures
3.2, 3.3 and 3.4):

1. Data vectors from the training set are input to the current analysis network to infer their corre-
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Figure 3.2: The main steps in a single iteration of the breeder learning algorithm.

sponding code vectors.

2. These codes are perturbed by adding zero-mean, spherical Gaussian noise with user-specified
variance. In the case where the components of the code vector are restricted to the interval[0, 1]
and are represented by logistic sigmoid units at the output layer of the analysis network, the noise
is added to theinput of the unit. So the perturbed codes will still be in the interval[0, 1]. If the
output units are linear (i.e. their values are in[−∞,∞]), the noise is added directly to their values.

3. The synthesis model is applied on the perturbed codes to produce their corresponding data vectors.
The noisy codes and the data vectors generated from them form a set ofinput-output pairs on
which the analysis network can be trained.

4. The weights are updated by the negative gradient of the squared error between the target code and
the network’s prediction.

Since the network weights are changing at each iteration, the codes inferred in step 1 for the same
data vectors in the training set will change from one iteration to the next. So theinput-output pairs that
are used to update the weights are also changing throughout training. These pairs are used only for a
single update and then thrown away. They are not re-used in future iterations.

Because of how the analysis network is initialized, it first learns to invert thesynthesis model in
a small neighbourhood around the prototype. The early noisy codes will be minor variations of the
prototype, so the input-output pairs will not be very diverse. At this point the network can correctly
infer the codes for only a small subset ofX, i.e., those that are near the prototype’s corresponding data
vector. Randomly perturbing the outputs allows the network to discover codes slightly farther away
from the prototype. Training on them expands the region in code space that the network can correctly
handle.

In subsequent iterations, the network will correctly infer the codes for afew more real data vectors.
Perturbing their codes generates new ones that are even farther fromthe prototype. As learning pro-
gresses, the training pairs become increasingly diverse, as the codes come from a larger region in code
space. The network eventually learns to handle the entire region of code space corresponding to the real
data vectors.
Some notes about the algorithm:
• The algorithm is not defined in terms of directly optimizing a loss function with respect to the training
data vectors (e.g. optimizing the squared reconstruction error loss over data vectors). But empirically,
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Figure 3.3: A cartoon summary of the main steps in a single iteration of the breeder learning algorithm.
The manifolds in both data space and code space are “fat” in the sense thatadding small amounts of
noise to a point do not typically take a point off the manifold. In step 1, the training data vectors
(squares), which come from all over the manifold in image space, are usedas inputs to the current
analysis network to infer some code vectors. Early on in training, these code vectors (circles) will be
close to the prototype (star). They are perturbed with noise in step 2 to produce new code vectors. In
step 3, the perturbed code vectors are used as input to the synthesis model to generate the corresponding
data vectors. In step 4, the analysis network’s weights are updated usingthe data vectors from step 3 as
inputs, and their corresponding code vectors as the target outputs.

the data reconstruction error drops almost monotonically during training. A formal analysis of what loss
function the algorithm is optimizing remains to be done.

• The algorithm is not doing a naive random search in code space. Instead, it uses the current anal-
ysis network itself to produce new codes to learn on. So the network’s abilityto correctly generalize
to previously unseen data vectors is being exploited in the search. Section 3.5shows that it allows the
algorithm to discover codes that correspond to real data vectors much more efficiently than a random
search. If the network generalizes incorrectly, the learning can becomeunstable and move away from a
good solution. We have observed this behaviour in a small minority of the runsof the algorithm.

• The amount of noise used to perturb the code vectors (i.e. the variance ofthe spherical Gaussian
noise) is set by trial-and-error. Too much noise makes the learning unstable, while too little makes it
slow. For the applications we have tried the algorithm on, setting the noise levelcorrectly was not diffi-
cult.

• The set of code-data pairs that the network learns on starts off mostly homogeneous, with all the
code vectors close to the prototype. With more learning, the code vectors become more diverse as they
start to come farther away from the prototype. Eventually the learning discovers the correct code vec-
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Algorithm for training an analysis network Aw parameterized by weight vectorw:

Given: Training setX of n data vectors{x1, x2, ..., xn}, a black box synthesis modelS, prototype code vector
p.

Initialization: Set output biases ofAw usingp, and the remaining weights to samples from a zero-mean Gaussian
with a small standard deviation.

Weight update computed using theith (unlabeled) training casexi:
Let yi be the code vector inferred fromxi using the current analysis networkAw.

1. yi = Aw(xi).

2. Perturbyi randomly to createy′

i.

3. x′

i = S(y′

i).

4. Supervised learning on(x′

i, y
′

i):

(a) y′′

i = Aw(x′

i).

(b) E = ‖y′

i − y′′

i ‖
2.

(c) w ← w − η ∂E
∂w

.

Figure 3.4: Summary of the breeder learning algorithm. Although the above description is in terms of
updatingw using a single input-output pair at a time, in practice we average the gradient estimates from
amini-batchof such pairs to compute a single update.

tors for all the data vectors in the original (unlabeled) training set. Once theanalysis network reaches an
approximately correct solution, it will stay there since it is being trained on small perturbations of the
correct code vectors and their corresponding data vectors.

• One underlying assumption is that Euclidean distance in code space is a more semantically meaning-
ful way of assessing similarity than any generic distance metric in data space.Therefore small random
perturbations in code space should produce semantically similar data vectorsthat may nevertheless have
a large Euclidean distance between them.

• It is possible to formulate a mixture version of the algorithm that can handle far-apart modes in code
space. It would require creating one prototype per mode. We have not yet tried this possibility.

• During training there is no attempt to filter out those synthetic data vectors (x′
i in figure 3.4) that

are highly dissimilar from the data vectors in the training set ({x1, x2, ..., xn} in figure 3.4). Generic
similarity metrics in data space can be highly misleading, and such filtering is likely to make the learn-
ing worse. Without filtering the network will occasionally learn on “junk” training cases. But if such
cases are rare, their effect on the network is small.

Relationship to wake-sleep algorithm:The wake-sleep algorithm (Hinton et al. [1995]) was proposed
for simultaneously learning two directed networks, one for analysis, orrecognition, and the other for
synthesis, orgeneration. (These networks consist of stochastic binary units, so both code and data
vectors are binary.) The recognition network first infers codes for thereal data vectors, which are then
applied as inputs to the generative network to produce synthetic data vectors. The input-output pairs of
one network are used to train the other in a supervised manner (with the rolesof the input and output
reversed).
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Our approach here is similar in spirit, except only the recognition network is learned. By solving this
more restricted problem we avoid the two drawbacks of wake-sleep. First,the wake-sleep recognition
network wastes capacity by learning to invert the generative network on data vectors with low probability
under the true data distribution. This is because early on in training the generative network is poor at
producing the real data vectors. We avoid the problem by using 1) a goodsynthesis model throughout
learning, and 2) a prototype to restrict the learning to the relevant part ofthe code space.

The second drawback of wake-sleep is ‘mode averaging’: if there aretwo different codes that can
generate the same data vector, then the recognition network learns to infer acode that is neither, but a
blend of the two. In our case the analysis network picks whichever code ithappens to see first while
training and learns to infer that code. The other code would simply be ignored. Based on similar
premises, a modified version of wake-sleep has been used successfullyin Deep Belief Nets (Hinton
et al. [2006]) as a way of fine-tuning recognition and generative networks after an initial pre-training
stage.
Random-code learning:A simpler alternative to breeder learning is to 1) sample an isotropic Gaussian
centred on the prototype code vector and with a fixed variance, 2) generate synthetic data vectors from
these samples, and 3) train the recognition network on the resulting pairs. Inour experiments (section
3.5) this alternative consistently performs worse than breeder learning. If the Gaussian’s variance is too
large, many of the sampled codes will correspond to junk data vectors. If itis too small, it will almost
never see valid codes that happen to be far away from the prototype. Sothe particular way in which
breeder learning creates new codes is crucial for its success and cannot be replaced by a naive random
search.

3.5 Results
The rest of the chapter describes two applications of breeder learning:inverting a synthesis model
for images of eyes (Moriyama et al. [2006]), and an active appearance model for faces (Cootes et al.
[2001]). In both cases we learn to infer a reconstructive representation for images by taking a synthesis
model from the literature and simply “plugging it in” as the black box into breeder learning. These
applications show our algorithm’s usefulness for exploiting an existing synthesis model to define a
compact representation of the data.

3.5.1 Inverting a 2D model of eye images

The black box is a 2D model of eye images proposed by Moriyama et al. [2006]. They use knowledge
about the eye’s anatomy to define a model parameterized by high-level properties of the eye, such as
gaze direction and how open the eyelid is. Since breeder learning does not need to know the model’s
internal details, we explain them only briefly here. See Moriyama et al. [2006] for a full description.

Based on its inputs, the synthesis model first computes a set of polygonal curves that represent the
2D shape of the sclera, iris, upper eyelid, lower eyelid, and the cornersof the eye. Once the shape is
computed, we use a simple texture model to generate a32× 64 grayscale image from it (see figure 3.5).
In total there are eight inputs to the black box, all scaled to be in the range[0, 1]. (These inputs affect
only the shape; the texture model is fixed.) Given this black box and a trainingset of real eye images,
we use breeder learning to learn the corresponding analysis model.

Dataset and training details: We use 1272 eye images collected from faces of people acting out
different expressions. We normalize all images to be32 × 64, and apply histogram equalization to
remove lighting variations. See the odd-numbered columns of figure 3.7 for example images. Since
the eye images come from faces with many different expressions and ethnicities, they contain a wide
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variety of shapes and represent a difficult shape modeling task. We select the prototype code to be the
vector with all components set to0.5, which is the midpoint of each code dimension’s range of possible
values. From the set of 1272 images, 872 are used for training, 200 forvalidation and 200 for testing.

The analysis network has 2048 input units (32 × 64 = 2048 pixels), 100 logistic sigmoid units in
the hidden layer, and 8 sigmoid units in the output layer. A code vector is randomly perturbed during
learning by adding zero-mean Gaussian noise with a standard deviation of0.25 to the total input of each
code unit. Training is stopped when the root mean squared error (RMSE)of the validation images is
minimized. The recognition network trained by breeder learning achieves its best performance on the
validation set after about 1900 epochs.

Figure 3.6 shows the RMSE achieved by breeder learning on the validation set as training proceeds.
Random-code learning is unable to improve the RMSE beyond a certain value and starts overfitting
because it only sees training cases from a limited region around the prototype. We tried various values
for the variance of random-code learning, and the results shown are for the one that gave the best
performance on the validation set.

Figure 3.7 shows examples of test images reconstructed by the recognition network trained with
breeder learning. The inferred boundaries of the sclera and iris regions are superimposed on the real
image. Notice that the network is able to correctly infer the codes for eyes withsignificantly different
shapes. This is despite the limited texture model used by the black box.

3.5.2 Inverting an active appearance model of faces

We now consider inverting an active appearance model (AAM) of face images (Cootes et al. [2001]).
The AAM is a popular nonlinear synthesis model that incorporates knowledge about facial shape and
texture to learn a low-dimensional representation of faces. Unlike the eye model, here the black box
itself is learned from data, but this difference is irrelevant from the pointof view of breeder learning.

Our implementation of the AAM follows Cootes et al. [2001]. Again, we only give a brief overview
of it here. It consists of separate PCA models for facial shape and texture, whose outputs are combined
via a nonlinear warp to generate the face image. As in Cootes et al. [2001],we apply PCA again to the
shape and texture representations of the training images to produce an “appearance” model of faces.

We first train the AAM using a set of face images, and then use it as afixedblack box for breeder
learning. The face images are of size30× 30, and the AAM’s appearance representation (i.e., the code
vector) is chosen to be 60-dimensional. So for the purposes of breederlearning, we treat the AAM as
a black box that takes 60 real-valued inputs and produces a30 × 30 face image as output. (Note that
the AAM learning procedure itself computes the codes for itstraining images as part of learning, so
they are known, but we do not use them when learning the recognition network. On the other hand the
correct codes for thetestimages are truly unknown.)
Dataset and training details: We use 400 frontal faces (histogram-equalized) containing different
expressions and identities. The dataset is split into 300 training images, 50 validation images, and 50
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Figure 3.5:The synthesis black box for eyes: shape model (left), texture model (table on the right), and the
image generated by applying the texture to the shape.
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Figure 3.6: Validation set RMSE (left graph) during
training, and test set RMSE (above table) after training,
for breeder and random-code learning algorithms on the
eye dataset.

test images. None of the identities in the test set appear in the training and validation sets, so at test
time, the recognition network has to generalize correctly to unseen identities (rather than unseen images
of familiar identities). Note that only the 300 training and 50 validation images are used in the learning
of the AAM itself.

The analysis network has 900 input units, a hidden layer of 100 logistic sigmoid units, and 60 linear
output units. We select the origin of the code space, corresponding to theface with the mean shape and
mean texture, as the prototype code. Since the network’s output units are linear, the code vectors are
perturbed during learning by adding zero-mean Gaussian noise (with0.1 standard deviation) directly
to the outputs. The analysis network trained by breeder learning achievesits best performance on the
validation set after slightly fewer than 3400 epochs.

Figure 3.8 shows the RMSE results. Interestingly, the best reconstructionerror achieved by breeder
learning on the validation set is below that of the AAM itself (dashed line in the graph). This means
that the net is able to find codes that are better in the squared pixel error sense than the ones found by
the AAM learning. Example reconstructions of test faces are shown in figure 3.9. In most cases, the
network reconstructs the face with approximately the correct expressionand identity. In contrast, the
reconstructions computed by the network learned with random-code learning are visually much worse
and most of them resemble the face corresponding to the prototype code.

3.6 Iterative refinement of reconstructions with a synthesis network

So far analysis, or inference, has been treated as a purelybottom-upcomputation. A key property of
analysis-by-synthesis is the use of top-down knowledge in the synthesis model to improve inference via

Figure 3.7: Test image reconstructions computed by the recognition networktrained with breeder learn-
ing. The odd columns show the eye images with the superimposed curves describing the shape inferred
by the recognition network. The even columns show the reconstructions computed by applying texture
to the inferred shapes. The images should be viewed on screen to see the colour of the curves properly.
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Figure 3.8: Validation set RMSE (left graph) during
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a feedback loop that minimizes an error measure in data space itself. In our case implementing such a
feedback loop requires knowing the gradient of the synthesis black boxand so it is not possible. But
once a fully-trained analysis network is available, an alternative approach becomes possible.

The idea is to approximate the function implemented by the black box with asynthesis neural net-
work (Jordan and Rumelhart [1992]). This network emulates the black box: it takes a code vector as
input and computes the corresponding data vector as output. Once such asynthesis network is trained,
an approximate gradient of the data reconstruction error with respect to the code can be computed ana-
lytically by backpropagation. As a result, analysis now becomes a gradient-based iterative optimization
problem that minimizes reconstruction error in data space.

Training the synthesis network is possible only because a fully-trained analysis model is already
available. It provides the synthesis network with approximately correct target codes for the training
images. Given these code-image pairs, training reduces to a standard supervised learning task. The
analysis network restricts the learning to the small part of data space that contains the real data, thus
making it practical. Without it, the synthesis network would have to be trained to emulate the black box
everywhere in code space, which is impractical.

Figure 3.10 shows the main steps of the closed loop inference procedure using the analysis and
synthesis networks (both fully trained). The initial code is computed by a bottom-up pass through the
analysis network as before. But unlike in open-loop recognition, this initialestimate is subsequently
refined by (approximate) gradient descent on the squared error between the data vector and its recon-
struction. The iterations continue until the squared error stops improving. The details of each step are
given in figure 3.11.

Figure 3.9:Test image reconstructions
computed using the analysis network
trained with breeder learning.



CHAPTER3. ANALYSIS-BY-SYNTHESIS BY LEARNING TO INVERT A BLACK BOX SYNTHESISMODEL35

Data vector  

Analysis 
network  

Initial code 
vector  

Refined code 
vector  

Synthesis 
model  

Reconstructed 
data vector  

Synthesis 
network  

Code
Error
 
 

∂
∂

Squared reconstruction error is backpropagated 

 via synthesis network to compute error gradient.  

Grad. descent to minimize 

 reconstruction error.  

Figure 3.10: The main steps of the iterative inference procedure using both the analysis and synthesis
networks. Note that the gradient computation proceeds in theoppositedirection of the connections in
the synthesis network.

Algorithm for closed-loop analysis of data vectorx:

Given: Synthesis black boxS, analysis networkAw, synthesis networkSw′ .

Initialization: y = Aw(x).

For each refinement iteration:

1. x′ = S(y).

2. E = ‖x− x′‖2.

3. Compute∂E
∂y

by backpropagation throughSw′ .

4. y ← y − η ∂E
∂y

.

Figure 3.11: The closed-loop analysis algorithm using a synthesis neuralnetwork.

We learned a synthesis network to emulate the AAM and then used it to refine thereconstructions
of faces. The average improvement in squared pixel error for the validation and test sets are 6.28% and
5.41%, respectively. It should be emphasized that the closed-loop analysis algorithm is used only as a
way of fine-tuning the initial open-loop code estimate, which is already a verygood solution. This side-
steps the issue of whether a generic distance metric such as Euclidean distance can be used to correctly
measure similarity in data space. Here we use Euclidean distance to measurelocal similarity only, i.e.
to decide how an already good reconstruction can be made a little bit better. Sominimizing Euclidean
distance can be sensible for fine-tuning, even if it is prone to get stuck in shallow local minima when
starting from a random solution.
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3.7 Conclusions

Breeder learning is a new tool for engineers building analysis models. By taking advantage of the
rich domain knowledge in a synthesis model, it can learn to infer better representations of data than
those learned by standard methods such as PCA or autoencoders. Inverting complex physically-based
synthesis models is an especially promising application of breeder learning. As the next chapter shows,
successfully inverting such models can result in representations that areuseful for object recognition.

Although the empirical results for breeder learning (including those in the next chapter) have been
very encouraging, we do not yet have a good theoretical understanding of the algorithm and the condi-
tions under which it can be expected to work. We have made some high-levelcomparisons to existing
methods like ICA and the wake-sleep algorithm, but a formal analysis of breeder learning would be
needed to make strong claims about its generality and usefulness. Such an analysis will be tricky be-
cause the model being learned itself is being used to decide what it will learn.



Chapter 4

Inverting a Physics-Based Synthesis
Model of Handwritten Digit Images

This chapter presents another application of breeder learning, this time forinverting a synthesis model
of handwritten digit images. Unlike the previous chapter, here we show howthe reconstructive repre-
sentation learned this way can be used for classification. The inversion problem is more difficult relative
to the applications we saw earlier, and the results bring into full view the usefulness of breeder learning,
and more generally, inverting synthesis models.

The synthesis model itself is interesting, so we describe it some detail even though breeder learning
does not need the internal details. The model numerically simulates the physical process of handwriting
as a highly idealized mass-spring system. This is not a new idea (e.g. Eden [1962], Hollerbach [1981]),
but our contribution here is to make the simulation realistic enough for it to be actually useful in learning
an accurate reconstructive representation of real handwritten digits.

We consider a number of different ways of using the learned representation for digit classification.
Results for the MNIST dataset (section A.1) show that inverting synthesis models can be very useful for
improving classification accuracy.

4.1 Introduction

One of the first proposed applications of the analysis-by-synthesis approach was the recognition of hand-
writing using a synthesis model that involved pairs of opposing springs. A parameterized simulation of
the motor acts that produce handwriting should provide a natural way of characterizing it. For example,
the images of twos in figure 4.1 are far apart in pixel space as measured byEuclidean distance, but they
are all produced by very similar motor acts. In fact, these images were generated by first inferring the
code vector (i.e. our synthesis model’s inputs) for the left-most image, and then applying small random
perturbations to it and generating from the perturbed codes. As we will see later, those inputs are a time
sequence of spring stiffnesses, but figure 4.1 makes it clear that they form a meaningful representation
of such images.

4.2 A Physics-based Synthesis Model for Handwritten Digits

The synthesis model relies on a simple physics-based description of how thearm moves when drawing a
digit. We approximate the motor act of drawing as an arm moving on top of a horizontal drawing surface
with a pen attached to its end. Inspired by arm movement models in the biomechanical literature, we

37
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Figure 4.1: An MNIST image of a two (leftmost image) and the additional images generated from it by
inferring its code vector and randomly perturbing that code. The pixel space representations are very
different, but they are all clearly twos.
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Figure 4.2: The mass-spring system we use to simulate the physics of drawinga handwritten digit.

use the mass-spring system shown in figure 4.2 to model the muscle forces exerted on the pen. The two
pairs of opposing linear springs represent antagonistic muscle pairs in thearm. The mass represents
the pen in contact with the drawing surface. The other end of each springslides without friction along
rails that mark out the boundaries of the drawing area. This allows us to treat the force vector generated
by an individual spring to be axis-aligned and one-dimensional, which simplifies the simulation of the
system.

There are two main steps in generating a digit: 1) simulating the the mass-spring system to compute
a pen trajectory, and 2) applying ink to the trajectory. We now describe the details of these steps.

4.2.1 Computing the pen trajectory

The stiffnesses of the four springs are varied over time so that a time-varying force is applied on the
mass. Each spring exerts a force (directed along an axis) on the mass according to Hooke’s law:

F (t) = k(t)(x(t)− x̄), (4.1)

whereF (t) is the force at timet, k(t) is the spring’s stiffness,x(t) is the (one-dimensional) position of
the end of the spring attached to the mass, andx̄ is the rest length.

The behaviour of the system is numerically simulated over a fixed number of discrete time steps. We
assume that the four spring stiffness values at each time step are given asinputs. In the very first time
step, the position of the mass is set to the equilibrium point determined by the initial stiffness values.
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This is the position at which the net force on the mass is zero, and itsx-coordinate is given as:

x[1] =
x̄1 · k1[1] + x̄2 · k2[1]

k1[1] + k2[1]
(4.2)

Here we use the square bracket notation[·] for the discrete time index. The expression for they-
coordinate is analogous. The mass is assumed to have zero velocity and acceleration at the first time
step.

At each subsequent time stepn, the acceleration, velocity, and position of the massm along the
x-axis, denoted byax[n], vx[n] andx[n] respectively, are computed as:

ax[n] =
k1[n] · (x̄1 − x[n− 1]) + k2[n] · (x̄2 − x[n− 1])

m
, (4.3)

vx[n] = (1− η) · vx[n− 1] + ax[n], (4.4)

x[n] = x[n− 1] + vx[n], (4.5)

whereη is a viscosity parameter. The expressions for the corresponding quantities along they-axis
are analogous. Therefore, given a sequence of stiffness values for the four springs as input, the above
computation produces a pen trajectory in the drawing area.

In our implementation, the drawing area has size 78 units on each side. The mass and viscosity are
set to fixed values selected by trial and error. It is possible to treat the mass and viscosity parameters as
externally specified inputs to the synthesis model, but using fixed values seems to work well enough.

To compute a digit’s complete pen trajectory, the simulation is carried out for a fixed number of
time steps. Different digit classes require different numbers of steps to draw. For example, a one can
be drawn with a quick, short stroke, while an eight has a circuitous trajectory that needs many temporal
variations in the force, which can be simulated only with a large number of steps. To accommodate such
differences, we use a different number of time steps per class. Most classes use 17 steps, but it can be
as low as 10 (for ones) and as high as 20 (for eights). Digit instances within the same class are drawn
using the same number of time steps.

4.2.2 Applying ink to the trajectory

We now describe one particular method for inking the trajectory. It is fast and generates fairly realistic-
looking ink. Inking is done in two steps: first, the trajectory is thinly traced outon a pixel grid. Then
the ink is given the desired thickness and brightness by convolving the trace image with a kernel. See
figure 4.3 for a summary of the main steps.

A 36 × 36 pixel grid is overlaid at the centre of the drawing area. Any part of the trajectory that
goes outside this grid is not inked. The sequence of pen positions is upsampled by linearly interpolating
three points between two consecutive points on the trajectory. We call the original trajectory points
‘coarse-grain’ points and the newly interpolated ones ‘fine-grain’.

The coordinates of the points are real-valued, so some kind of discretization is necessary to relate
them to pixel coordinates. This is done by applying ink on the four pixels nearest to each point on the
trajectory. A fixed amount of ink is split among the four pixels using bilinear interpolation (so the closer
a pixel is to the trajectory point, the greater the fraction of ink it gets). Coarse-grain points contribute 2
units of ink to their four nearest pixels. The fine-grain points also contribute ink the same way, except the
amount of ink they contribute is zero if they are less than one pixel apart and rises linearly to the same
amount as the coarse-grain points if they are more than two pixels apart. Thisprevents a large amount
of ink clumping in a small part of the image if the fine-grain points happen to fall closely together. The
result is a thin trace of the trajectory on the pixel grid.
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Figure 4.3: Main steps in applying ink to the trajectory.

The trace image is then convolved with a3 × 3 kernel to give the ink the desired thickness and
brightness. The entries of the kernel are computed based on two scalar inputs which determine the
brightness and thickness of the stroke. The pixel values in the convolutionoutput are clipped to lie in
the interval[0, 1]. Finally, a28 × 28 window is cropped from the middle of the36 × 36 pixel grid to
produce an image of the same size as those in the MNIST database.

This inking algorithm generates reasonably realistic output. In particular, the ink looks more realistic
than what can be generated by applying Gaussian blur to the trace image. Real images from the MNIST
database tend to have ink that sharply drops off in intensity at the edges, which cannot be created
correctly with Gaussian blur. One limitation of the current method is that the same brightness and
thickness parameters are used to ink the entire trajectory. So it is not possible to generate significant
variations in the ink brightness and thickness along the trajectory. This is a good approximation for most
real images, but in some cases such variations are useful.

To summarize, the complete set of inputs to the synthesis model are a) the sequence of stiffnesses
for the four springs (four scalars per time step), and b) two scalars forink thickness and brightness.
Given these inputs, the model first simulates the mass-spring physics to compute the pen trajectory.
Then it puts ink on the trajectory to produce a grayscale image as the final output. Viewed from outside,
the model’s full set of inputs is treated as simply one long vector. The sequence interpretation that its
components have inside the model is not exploited when the analysis network computes a code vector.
We refer to the code vector as amotor program, in the sense that it is a sequence of commands computed
to carry out a motor act.

As mentioned before, the number of time steps used in the simulation varies across digit classes.
Therefore the dimensionality of the code vector depends on the class, making it awkward to learn a
single analysis network for all classes. So we train a separate analysis network for each one. Keeping
the classes separate also makes it possible to incorporate some other class-specific attributes into the
synthesis model that are described next.

4.3 Class-specific modifications to the basic synthesis model

We now describe two enhancements of the synthesis model that apply only to some of the digit classes.
The basic model as described so far assumes that the pen always stays incontact with the drawing
surface and applies ink throughout its trajectory, which is inappropriate for certain digit classes. The
enhancements are meant to get around this problem.
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4.3.1 Lifting the pen off the paper

Drawing some instances of fours and fives requires temporarily lifting the pen off the paper. For both
classes, there are two different kinds of motor acts people commonly use to draw the digit: one that
requires lifting the pen, and another that does not. The former is more general as it can be used to
reconstruct an instance drawn by either method. We adapt the generative model to simulate the lifting
of the pen. The simplest way to do this is to turn off the ink for a fixed subset of time steps along
the trajectory. In the initial tracing of the trajectory on the pixel grid (section 4.2.2), both coarse- and
fine-grain points corresponding to a pre-determined subset of consecutive time steps do not contribute
any ink to the pixel grid. The subsequent convolution step is carried out just as before.

We use this trick to draw all instances of fours and fives. By placing the ‘inkless’ time steps of the
trajectory at the appropriate image locations, it is possible to accurately reconstruct any instance. The
reconstruction results in section 4.5 show that the analysis neural networkdoes learn to place the time
steps properly to produce convincing reconstructions.

4.3.2 Adding an extra stroke

People often draw an extra dash through the middle of sevens and at the bottom of ones. In the MNIST
database, about 2.2% of ones and 13% of sevens are dashed, so theyare too common to be simply
ignored. We model such images with an additional motor program that draws just the dash. Note that all
images contain the conventional version of the digit, with a small percentage containing an extra dash.
The problem here is different from the one we face with fours and fives: there are two distinct parts,
with one part appearing rarely. Learning a motor program for each part separately is easy, and then both
versions of the digit can be generated by deciding whether or not to run the motor program for the dash.

To generate the dashed version, first the trajectories of the main part of the digit (i.e. the ‘normal’
seven) and the dash are computed separately. They are then superimposed and traced out on the same
pixel grid, and the trace image is convolved with the same kernel.

4.4 Training a neural network to infer the motor program from an image

Trying to invert a synthesis model such as the mass-spring simulator makes it clear why an algorithm
like breeder learning is necessary. The training images do not come pre-labeled with their corresponding
correct motor programs or any other kind of quantitative measurements on how they were actually
generated. The alternative of autoencoder-style learning by minimizing the pixel reconstruction error
requires the gradient of the output image with respect to the code vector.

Training the analysis network is a straightforward application of breeder learning. Of the three
ingredients that the algorithm needs (synthesis model, training set of images,and prototype), we have
already described the first one. Details of the MNIST dataset are in section A.1. The method for creating
the prototype is described next.

4.4.1 Creating the prototype motor program

The prototype should be a point on or close to the manifold of motor programs for a digit class. Since
the mapping from a motor program to the image it generates is highly non-linear,it is difficult to create
a prototype by trial-and-error search for the stiffness values. We have created a graphical user interface
in Matlab (figure 4.4) that allows the user to interactively choose the stiffness values. The interface
contains four slider controls corresponding to the spring stiffnesses for a selected time step. When the
slider positions are changed, immediate visual feedback is produced by showing how the shape of the
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Figure 4.4: User interface for creating a prototype.

corresponding pen trajectory changes. This way the user can set the stiffness values ‘visually’ for all
the time steps in a few minutes. To further simplify the prototype creation, we use the mean image of a
class as the target shape for setting the stiffness values so that there is a clear visual goal. The user sets
the stiffness sliders such that the pen trajectory approximately traces out the mean image. The thickness
and brightness parameters are set conservatively to mid-range values.

4.4.2 Details of the learning

We train a separate analysis network for each digit class. The same learning algorithm is repeated for
each digit class with a training set that contains only images from that class. In all cases the network has
the three layer architecture shown in figure 3.1, with 784 pixels at the input layer, the motor program at
the output layer, and a hidden layer in between. Both the hidden and output layers use logistic sigmoid
units. The hidden layer contains 400 units. The dimensionality of the motor program depends on the
number of time steps in the mass-spring simulation, which can be different for different classes. The
general expression is4∗n+2 wheren is the number of time steps – there are 4 stiffness values per time
step, and two additional values specifying the ink thickness and brightness. Most classes use 17 steps,
so the dimensionality is 70 for those classes.

Dashed ones and sevens are treated effectively as two extra classes,with their own analysis networks
trained on datasets containing only the dashed cases. Both of these analysis networks consist of two sub-
networks: one for computing the motor program of the main part of the digit, and another for computing
the motor program of the dash. The former is initialized to the analysis network trained for the regular
version of the digit (i.e. dashless ones and sevens), and the latter is initialized randomly. The two
sub-networks are then trained simultaneously with breeder learning. Given a dashed image as input,
they both infer motor programs for their respective parts, which are then fed into the synthesis model
to produce a single image as output. The component network for computing themotor program of the
dash contains 100 hidden units. The other component starts off well-trained (its parameters have already
been trained on dashless images), so the subsequent training on the dashed cases modifies its parameters
only slightly.
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Altogether we train 12 separate analysis networks (0-9, dashed one, dashed seven). Except for
the training sets, prototypes, and the minor differences in the synthesis models, the overall learning
procedure is identical across all 12 networks.

The biases into the output units are initialized to the logits (inverse of the logistic) of the prototype
motor program. As explained in the previous chapter, this has the effect that if all other weights in the
network are set to zero, then its output will be exactly the prototype. The rest of the weights in the
network are initialized to independent samples from a zero-mean Gaussian with a standard deviation of
0.01.

For each class, we use a training set of 4400 images and a validation set of1000 images (except for
the two dashed digit classes, which have many fewer training cases). Thetraining set is split into ‘mini-
batches’ of 100 images, with one weight update done per mini-batch. Fully stochastic updates (i.e. one
update per training case) can be very noisy because the actual input-output pairs that the network learns
on are being dynamically generated and the distribution of those pairs is changing throughout training.

We measure training progress by computing the squared pixel reconstruction error the network
achieves on the validation set. Training is stopped once this error is minimized. For almost all classes,
training ends within 5000 epochs, which takes about 10 hours in Matlab on a3GHz Intel Xeon machine.

Figure 4.5 shows how reconstructions of some training images of eights change as the analysis
network is being trained. The reconstructions start off poor, but as training progresses, they improve
(see the figure caption for an explanation).

4.5 Reconstruction results

Figure 4.6 shows validation set images for all classes except fours and fives that are reconstructed from
the motor program inferred with their corresponding class-specific analysis network. Note that the motor
program representation is able to handle the wide variety of shapes and inkwithin a class and produce
qualitatively convincing reconstructions.

Figure 4.7 shows reconstruction examples of fours and fives from the validation set. Unlike for the
other classes, here the synthesis model lifts the pen off the paper at certain pre-specified time steps. The
reconstructions show how the analysis networks skillfully exploit this feature to good effect. They learn
to pace the pen so that when it gets lifted, it is at spots along the trajectory thatdo not require any ink.
Note that the same synthesis models can also be used to reconstruct even those fours and fives that do
not require lifting the pen.

Figure 4.8 shows examples of validation images of dashed ones and sevensreconstructed using the
extra stroke.

4.6 Iterative refinement of reconstructions with a synthesis network

As explained in the previous chapter, once the analysis network is trained,it becomes tractable to train
a synthesis network to act as a smooth, differentiable approximation of the black box synthesis model.
Then, using the gradient of the synthesis network, a motor program can be refined iteratively by mini-
mizing the squared pixel reconstruction error.

Under the iterative inference procedure, the motor program for an imageis initialized to its open-
loop estimate computed by the analysis network. The main steps for refining this estimate are summa-
rized below:

Repeat until the pixel reconstruction error converges:

1. Reconstruct from the current estimate of the motor program using the black box synthesis model.
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(a) Initial reconstructions (b) 50 epochs (c) 100 epochs

(d) 150 epochs (e) 200 epochs (f) 1000 epochs
Figure 4.5: The image sequence shows how the analysis network for the digit class eight improves
as learning progresses. Each step in the sequence shows MNIST training cases of eights in red, with
the reconstructions in green computed using the analysis network after different number of epochs of
training. (Since red + green = yellow, images that are reconstructed well should consist almost entirely
of yellow pixels.) Before training begins, the motor program inferred by theanalysis network for any
input image will be close to the prototype. This is why at the beginning the reconstructions look almost
identical regardless of which image is at the input. As breeder learning progresses, it produces code
vectors that are increasingly farther away from the prototype and trainsthe analysis network on the
corresponding input-output pairs. As a result the analysis network caninfer different motor programs
far away from the prototype for different input images. The final step inthe sequence (after 1000 epochs
of training) shows that the network is eventually able to reconstruct a wide variety of input images well.

2. Compute the gradient of squared pixel error with respect to the motor program by backpropagation
through the synthesis network.

3. Update the current estimate of the motor program in the direction of the negative gradient to get
a new estimate.

We train twelve synthesis networks, one each for the ten classes, dashedones, and dashed sevens.
Learning is supervised since the analysis networks can be used to label the training images with their
approximately correct motor programs. Figure 4.9 shows an example of howclosed-loop inference
improves squared pixel reconstruction error. Iterative inference also helps to improve classification
error significantly, as we will see in the next section.
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Figure 4.6: Examples of validation set images reconstructed by their corresponding model. In each case
the original image is on the left and the reconstruction is on the right. Superimposed on the original
image in colour is the pen trajectory. The dots along the trajectory indicate the time steps. (These
images should be viewed on the screen to see the colour properly.)

4.7 Improving the synthesis model with additional learning

One of the drawbacks of the current synthesis model is that the ink it produces has constant thick-
ness along the pen trajectory and the texture tends to be too smooth. This approximation is poor for
the many MNIST images in which the thickness varies noticeably along the trajectory and the texture
is jagged. Allowing separate thickness and brightness valuesper time stepcan partially address the
problem. The motor program representation is extended to now have six numbers (4 stiffness values,
thickness, brightness) per time step. The new analysis network for predicting the extended motor pro-
gram can be initialized using the weights of the old one so that it starts off by predicting the same
thickness and brightness values at each time step. Further training of the weights will then let the values
vary with time. We have not yet tried this extension of the synthesis model.

More generally, the issue here is how to improve on a synthesis model that does not always produce
completely realistic images. One solution is to train a neural network to predict thepixel difference
between the input image and its reconstruction computed by the analysis-by-synthesis loop. This net-
work takes the digit image as input, and computes the pixel residual as output.The residual can then be
added to the reconstruction computed by the analysis-by-synthesis loop to produce the final reconstruc-
tion. The purpose of the residual network is to capture whatever aspectsof the image that the synthesis
model is incapable of generating correctly. We can think of the hidden units of the residual network as
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Figure 4.7: Reconstructions of validation set 4’s and 5’s with the synthesismodel allowed to lift the
pen off the paper at fixed time steps. When drawing 4’s, the ink is turned off for timesteps9 and10.
For 5’s ink is turned off for timesteps13 and14. The pen trajectory for 5’s starts with the downward
vertical stroke, does the open loop at the bottom, moves back up to the top with the pen lifted, and finally
finishes with the top horizontal stroke. (These images should be viewed on the screen to see the colour
properly.)

Figure 4.8: Examples of dashed ones and sevens reconstructed using asecond stroke. The pen trajectory
for the dash is shown in blue, superimposed on the original image. (These images should be viewed on
the screen to see the colour properly.)

an extension of the original code vector. And its hidden-to-output weightscan be seen as alearnable
extension of the original, fixed, synthesis model. Note that the residual network can potentially use the
original code vector itself as an extra input to predict the residual. The analysis and residual networks
can be trained jointly to minimize the pixel reconstruction error. This is a general way of improving any
synthesis model within the breeder learning framework.

4.8 Evaluating the usefulness of the motor program representation for
classification

The reconstruction results in the previous section represent one way ofevaluating whether motor pro-
grams are sensible for modeling handwritten digits. Another way is to use them for a high-level infer-
ence task such as classification. Many standard learning algorithms have been evaluated on the MNIST
classification task, which makes it a useful benchmark for evaluating new algorithms.
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Initial squared pixel error = 33.8 10 iterations, error = 15.2 20 iterations, error = 10.5 30 iterations, error = 9.3

Figure 4.9: An example of how iterative refinement improves reconstruction. The image sequence above
shows an MNIST image with its inferred trajectory superimposed on it. As more iterations of closed-
loop inference are done, the trajectory fits the shape of the digit better. After 30 iterations, the squared
pixel error is almost a quarter of its initial value. (These images should be viewed on the screen to see
the colour properly.)

We have tried three different ways of building a classifier:

1. Energy-based approach:Use the motor program representation to assign to a test image a small
set of scores, or ‘energies’, that measure the ‘badness-of-fit’ ofthe image under each class-specific
model. Then feed the energies as input to a logistic regression classifier which converts them into
a distribution over the ten class labels. The logistic regression parameters are the only ones trained
discriminatively in the overall system and make up only a small fraction of all theparameters.

2. Synthetic data approach: New synthetic training images are generated by randomly perturb-
ing the motor programs inferred from the MNIST images. These images can then be used as
additional training cases for improving the performance of any discriminative model.

3. Feature pre-training approach: Take the features from all the class-specific analysis networks,
use them to initialize the features in the first layer of a fully-connected feedforward neural net-
work classifier, and train the classifier. This is an example of ‘pre-training’ features as part of a
reconstructive model first, followed by discriminative fine-tuning.

The details of each of these approaches and their results are explained next. For the energy-based and
synthetic data approaches, we use the iterative, closed-loop inferencemethod of section 4.6 to compute
the code from an image. In the former case, the energy values for a test image are computed after doing
closed-loop inference on it. In the latter case, the codes that are perturbed to generate synthetic images
are computed using closed-loop inference.

4.8.1 Energy-based approach

Given a test image, we want to use the ten class-specific models to predict its label. A simple way to
do that is to ask each model to reconstruct the image, and then pick the class with the smallest pixel
reconstruction error. We can use a more general version of this idea bycomputing multiple energy values
(one of which can be reconstruction error) for the image under each model. Each energy measures how
poorly the image fits under a model, with the correct class model hopefully having lower energies than
the other models.

When there are multiple energies per class, picking the class with the ‘lowest energy’ is no longer
straightforward. The proper method is to convert the energies into probabilities (by exponentiating
the negative energy and dividing by the partition function), and then combine the probabilities into a
conditional probability over labels. But computing the partition function involves a sum over all possible
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images, so that’s intractable. A tractable, but less proper, alternative is to use the energies as input to a
logistic regression classifier. The classifier can learn to combine the energies and reconcile their different
units in such a way that the classification accuracy is optimized.

We use three types of energies: 1) pixel reconstruction error, 2) energy under a Restricted Boltzmann
Machine (RBM) model of the trajectory for a class, and 3) energy undera PCA model of the image
residual (the difference between an image and its reconstruction) for a class. Each type contributes ten
scores, one for each class, for a total of thirty values per test image. The classifier then computes the
distribution over ten classes from its 30D input. It has a total of 310 parameters (30× 10 + 10 biases
into the output units).

Note that for ones and sevens, we reconstruct the image using both the dashed and dashless models
and pick the one with the lower reconstruction error (rather than keeping both). The trajectory model
only uses the trajectory for the main part of the digit and ignores the dash, so there is only one model
for both types. The image residual model is also shared between the dashed and dashless versions. That
is why there are only ten energies per type rather than twelve.

We use the reconstruction computed from the motor program refined using the iterative inference
procedure, instead of the one computed from the initial motor program inferred by the analysis net-
work. Using the refined reconstruction reduces classification error ofthe energy-based approach by
approximately22%.

Image reconstruction energy:Sum of squared differences is used to measure the quality of the image
reconstruction computed from the motor program. However, the simpleL2 distance between the image
and its reconstruction is sensitive to even small alignment differences between the two shapes being
compared. We take advantage of the inferred trajectory to make the comparison less sensitive to such
problems.

The idea is to check whether locally shifting ink patches along the pen trajectory can improve the
match between the image and its reconstruction. At each time step along the trajectory, a5× 5 window
is placed on the reconstructed image centred at the pen coordinates for that time step. The patch covered
by this window is then shifted up, down, left, and right, and at each position,the sum of squared
differences is computed between the original image and the (now modified) reconstruction. The patch
position that results in the lowest error is selected and the reconstructed image is modified to use that
patch position. The same procedure is repeated for each of the remaining timesteps. In effect, a greedy
local search is done by wiggling the ink along the trajectory to find a reconstruction with a lower sum
of squared differences. This method improves classification accuracy over using naiveL2 distance by
approximately18%.

Free energy under an RBM model of trajectories:When an analysis network is used to reconstruct an
image outside of its own class, it tends to produce a contorted pen trajectory inan effort to explain as
much of the ink as possible. For example, figure 4.10 shows how the two network and the three network
reconstruct a two image. The three network achieves a better sum of squared pixel error by generating a
highly contorted trajectory. The contortion can become even more pronounced with iterative refinement
using the synthesis network. Since such contortions are not typical of thenetwork’s class, they provide
useful information about the true class of the image.

We fit an RBM to the trajectories inferred for the images in each class by the correct class-specific
analysis network. Once trained, it can be used to assign an energy to a test image’s trajectory computed
for that class. A highly unusual trajectory will be assigned a high energy, which can be useful for
predicting the class label. Since the pen coordinates are real-valued, we use Gaussian visible units
Hinton and Salakhutdinov [2006] to model them. We use 100 binary-valued hidden units. Training is
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Squared error = 24.9,   Shape prior score = 31.5 Squared error = 15.0,   Shape prior score = 104.2

Figure 4.10: Results of reconstructing the same MNIST digit by two different class models. Within
each pair of digits shown above, the MNIST digit is shown on the left of the pair and its reconstruction
on the right. The digit pair on the left shows the two-model’s reconstruction results, and the pair on
the right shows the three-model’s result. The inferred trajectory is superimposed on the original image.
The three-model sharply bends the bottom of its trajectory to better explain theink and achieves a better
pixel reconstruction error, but such bending is highly unusual for threes. An RBM model of trajectories
can penalize an unusual trajectory by assigning it a high free energy. (These images should be viewed
on the screen to see the colour properly.)

done using the Contrastive Divergence algorithm (Hinton [2002]).
Let v be the vector of visible units, andh be the vector of hidden units. For an RBM with unit-

variance Gaussian visible units and binary hidden units, the energy function is given by:

E(v,h) =
∑

i

(vi − bi)
2

2
−
∑

j

bjhj −
∑

i,j

vihjWij , (4.6)

wherevi is theith visible unit,hj is thejth hidden unit,Wij is the weight betweenvi andhj , andbi and
bj denote the biases for thevi andhj units respectively.E(v,h) is defined only for a full configuration
of units that specifies the values of bothv andh. For apartial configuration in which only the values
of the units inv are given, we can define an analogous quantity calledfree energy:

F (v) =
∑

i

(vi − bi)
2

2
−
∑

j

(P (hj |v)tj + P (hj |v) log(P (hj |v)) + (1− P (hj |v)) log(1− P (hj |v))),

(4.7)
wheretj is the total input into thejth hidden unit. LikeE(v,h), F (v) can also be interpreted as mea-
suring ‘badness’, but for a partially observed configurationv. F (v) takes into account the distribution
induced byv over the unobserved unitsh.

Energy under a PCA model of residual images:For each digit class, we fit a PCA model to the arithmetic
difference between an image and its reconstruction by the correct class-specific motor program. This
can be thought of as fitting a simple linear model to the leftover image structure not captured by the
motor program. There is one such model per class.

At test time we project the residual image computed for each class onto the relevant PCA hyperplane
and compute the squared distance between the residual and its projection. The distance is an additional
energy value that assesses how well a class-specific model explains thetest image.

The thirty energy values computed this way for a test image form the input to a logistic regression
classifier. Its output unit is a discrete variablel that uses 1-of-K encoding to representK different
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Model # of discriminatively % Test error
trained parameters

Logistic regression on pixels 7850 7.28
Fully-connected
neural network 636010 1.60

(800 sigmoid hidden units)
Energy-based approach 310 1.50

Table 4.1: MNIST test classification error rate of the energy-based approach compared to two baseline
discriminative models.

labels. Given an input vectorx consisting of the thirty energies, the probability ofkth class is:

P (lk = 1|x) =
exp(bk +

∑

j Wjkxj)
∑K

k′=1 exp(bk′ +
∑

j Wjk′xj)
, (4.8)

where the matrix of weightsW and the biasesbk are the learnable parameters of the classifier. The
parameters are trained to minimize the cross entropy between the predicted andtrue distributions over
the labels for a training case (the true distribution assigns probability 1 to the correct label, 0 for all
others).

The energy-based approach to classification has a 1.50% error rate onthe MNIST test set. This result
is significantly worse than a number of discriminative models (e.g. a convolutional neural network has
an error rate of only 0.89% (Ranzato et al. [2007])), but as table 4.1 shows, it is still better than some
baseline models with many more parameters.

4.8.2 Synthetic data approach

We create new images in the same way breeder learning creates new samples totrain on, by corrupting
motor programs of MNIST images with noise. Initially we used the inking algorithm described in
section 4.2.2. However, the classification results of the synthetic data approach improve significantly
when using an alternative inking algorithm described next.

The ink generated by 2D convolution has smoother texture than real images.We get around this
problem with a method inspired by work on patch-based generative models ofimages, such as image
quilting (Efros and Freeman [2001]) and epitomes (Jojic et al. [2003]). It ‘stitches’ together patches
from real MNIST images to produce new images. However, the problem here is somewhat simpler than
the one solved by image quilting and epitomes because the patches are restricted to lie along the pen
trajectory, which is inherently one-dimensional.

Figure 4.11 provides an overview of the algorithm. The input is a pen trajectory and the output is a
28× 28 image with ink applied to that trajectory. The basic idea is to apply ink over shortspans of the
trajectory by copying ink segments from the corresponding spans along the trajectories of real MNIST
images. A source image is selected based on 1) a trajectory with similar shape asthe input trajectory
over the current span being inked, and 2) an ink segment in that span that has good ‘continuity’ with
segments previously placed on the input trajectory.

We use a span of 9 time steps for applying a single ink segment to the input trajectory. The longer
this time span, the more realistic the ink will look in the output image since more of the inkcomes from
the same source image. But a longer span may also result in a worse match between the shapes of the
input trajectory and a real image’s trajectory. So it is necessary to keep the time span short. But if it
is too short, the ink can look choppy and ragged. By ‘ink segment’ we mean the set of pixels that are
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within a5× 5 neighbourhood of all the coarse and fine grain points on the trajectory within a particular
time span.

We now describe the steps for selecting a single ink segment to place on the input trajectory. Shape
similarity between two trajectories over a particular time span is measured by the sum of squared differ-
ences between the pen position coordinates at corresponding time steps. Both trajectories are aligned to
have the same coordinates for the first time step of the span so that the shapecomparison is translation
invariant. Only MNIST images from the same class as the image being generatedare considered for
this comparison. A subset of MNIST images (e.g. 100) is initially selected based on shape similarity as
candidate ‘sources’ for the current ink segment.

One source image is then selected based on continuity of the current ink segment with the previous
segment. To make the transition between consecutive ink segments appear smooth, we use a 50%
overlap between two consecutive time spans. The selected image is the one withthe smallest sum of
squared pixel differences between the second half of the previous segment in the output image and
the first half of the current segment in the source image. Since the very first segment of the input
trajectory has no continuity constraint, an image is selected randomly from the subset. Once a source
image is selected, pixels from its segment are copied over to the corresponding pixel locations in the
output image. Note that each segment is selected greedily, based on how well it overlaps with only the
immediately preceding ink segment. The greedy approach is computationally efficient.

The new inking algorithm is used to generate 1.2 million synthetic images by adding zero-mean
Gaussian noise with standard deviation0.1 to the logits of the motor programs of 50,000 MNIST images.
(The remaining 10,000 images are set aside as a validation set, so they are not used to generate synthetic
images.) Each of the 50,000 images is perturbed 24 times to create the full set.

Classification results: We consider three types of classifiers: 1) k-nearest neighbour (kNN) classifier,
2) fully-connected neural network, and 3) convolutional neural network. Since kNN with 1.2 million
extra images is very slow, we only use half of them. For the fully-connected net, we use a single
hidden layer of 800 hidden units with a 10-way softmax unit at the output. For the convolutional net,
the architecture is as follows: the first convolutional layer contains 25 kernels each of size5 × 5, the
second convolutional layer has 50 kernels also of size5 × 5, followed by a fully connected layer with
200 sigmoid units, and finally a 10-way softmax unit at the output. The parameters in both types of
networks are initialized randomly and trained to minimize the cross entropy loss.

In addition to the 1.2 million ‘motor-distorted’ images, we have also tried small, random affine
transformations on the MNIST images to generate more images. Training on such ‘affine distortions’

Figure 4.11: The patch-based inking algorithm cuts out ink segments from MNIST images and stitches
them together to put ink on a new trajectory and generate a synthetic image (top row, right).
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k-Nearest Neighbour models
Classifier details Synthetic data % Error

L2 distance None 3.09
L3 distance None 2.83
L2 distance 600K motor distortions 2.43
L3 distance 600K motor distortions 2.24

Fully-connected feedforward neural networks
None 1.60

Single hidden layer, 0.5 million affine distortions 0.97
800 hidden units, 1.2 million motor distortions 0.75

logistic nonlinearity 0.5 million affine + 1.2 million motor distortions 0.65
1.7 million affine distortions 0.98

Convolutional neural networks
Ranzato et al. [2007] None 0.89

Convolutional net 0.5 million affine + 1.2 million motor distortions 0.73
(25-50-200-10)

Table 4.2: MNIST test classification error rate for various discriminative models when trained with extra
data generated from motor programs and affine distortions.

is a commonly used trick for improving classifier performance. Some of our results suggest that motor
distortions are more useful and contain information that cannot be produced through random affine
transformations, but we have not done an extensive comparison between the two types of distortions.
We use 500,000 affine-distorted images (10 draws of random affine transformations per image× 50,000
training images), so in total there are 1.7 million synthetic images.

Table 4.2 shows the test error rates for the three types of classifiers. The motor distortions improve
the performance in every single case for all three classifiers, even a sophisticated one like the convo-
lutional net which already performs well without any extra data. For fully-connected nets, using only
affine distortions does not perform as well as using only motor distortions,even when more of the for-
mer are used. But when the two are combined, the error rate is lower than what is achieved with either
one in isolation. The 65 test mistakes made by the best net in table 4.2 are shownin figure 4.12.

When a network (both fully-connected and convolutional) is trained on the synthetic images, mini-
batches are created by using an equal number of real and synthetic images(e.g. a mini-batch of 1000
images will contain 500 MNIST images and 500 synthetic ones). Therefore the relative influence of the
real and synthetic images on the parameters is equal even though the synthetic images outnumber the
real ones roughly by a factor 30.

4.8.3 Feature pre-training approach

Finally, we consider taking the features learned by the analysis networks and plugging them into a
classifier. This is an example of first learning features using an unsupervised algorithm and then fine-
tuning them with a supervised one.

We use the 4000 features from the ten class-specific analysis networks (400 features per network,
excluding the networks for dashed ones and sevens) to initialize the first layer of a fully-connected
feedforward net. These features then connect to a softmax unit at the output. The parameters in the
output layer are randomly initialized. They are updated 100 times while keepingthe pre-trained features
fixed. After that, all the parameters are updated together.



CHAPTER4. INVERTING A PHYSICS-BASED SYNTHESISMODEL OFHANDWRITTEN DIGIT IMAGES53

  

Figure 4.12: 65 errors on the MNIST test set made by the net with 800 hidden units and trained on 1.7
million synthetic training cases, in addition to the original MNIST training set. Above each image, we
show the true label (left of the arrow) and the predicted label. Some of the cases are arguably errors in
the human labeling.

We also consider using the same 4000 features to initialize the first layer of a convolutional net. One
difficulty here is that the kernels typically used in the first layer tend to be muchsmaller than the image
itself (e.g.5× 5 in the previous section’s net), while features of fully connected nets havethe same size
as the input image. The solution we have tried is to select, from each28× 28 feature, the5× 5 window
with the largestL2 norm and use it as a kernel. In other words, select the5 × 5 window that has the
strongest influence on a feature’s output and ignore the rest.

Now we end up with 4000 kernels. A typical convolutional net has only tensof kernels in the
first layer. We use the following heuristic to select a subset of the 4000: we go through the kernels in
descending order ofL2 norm, and pick one if it has a cosine distance greater than some threshold (set
by hand) from all the previous picks. (The first kernel is always selected by default.) If the minimum
distance condition is not met, the kernel is not kept. Using this rule, 25 kernels are selected for the first
layer. The remaining layers of the net are of the same size as those in the previous section (50 kernels in
the second layer, followed by a fully-connected layer of 200 units, and then a softmax output unit) and
they are initialized randomly. To see how high the performance of a convolutional net can be pushed,
we combine both pre-training and synthetic data to train it. The 25 kernels picked by the above heuristic
are shown in figure 4.13.

The results are shown in table 4.3. The error rate for the fully-connectednet should be compared to
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Figure 4.13: Pre-trained kernels.

Classifier with pre-trained features Synthetic data % Error
in the first layer

Fully-connected feedforward net
with a single hidden layer of None 0.91
4000 logistic sigmoid units.

Convolutional net 0.5 million affine + 1.2 million motor distortions 0.53
(25-50-200-10)

Table 4.3: MNIST test classification error rate for a fully-connected netand a convolutional net when
the first layer is initialized using pre-trained features from the ten class-specific analysis networks.

the 1.60% obtained without either pre-training or synthetic data. The0.53% result for the convolutional
net would tie for the fourth best error rate (as of September 2009) amongthe long list of results for a
variety of models shown on the MNIST webpage1. It should also be compared to a convolutional net
without pre-training or synthetic data (0.89% by Ranzato et al. [2007]), and without pre-training but
with synthetic data (0.73% from table 4.2).

As a final result, figure 4.14 shows a subset of the features of the fully-connected net before and
after discriminative fine-tuning. These are the 100 features with the biggest L2 distance between the
‘before’ and ‘after’ versions. Qualitatively they still look very similar, which supports the idea that the
discriminative part of the learning does not need to significantly modify the result of pre-training to
achieve high accuracy.

4.8.4 Further ideas for using the motor program representation

Another possible use of the motor program representation for classification is as a regularizer that en-
courages the classifier to be invariant to small changes in the motor program.This idea is inspired by
the tangent propagation algorithm (see section 2.2), which proposed adding to the usual loss function
an extra regularizer term that penalizes the norm of the gradient of the classifier output with respect to
certain transformations (e.g. translation, rotation etc.) of the input image. Thepenalty encourages the
classifier to be invariant to small such transformations.

Similarly, we propose a regularizer that penalizes theL2 norm of the gradient of the classifier output
with respect to the motor program of the input image. The intuition is that small changes in the motor
program should not affect the class label, so ideally the gradient’s normshould be 0. The penalty on the
norm enforces it as a soft constraint.

To implement the regularizer, we need its gradient with respect to the classifier parameters. The

1http://yann.lecun.com/exdb/mnist/
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synthesis networks define a mapping from motor programs to images, and the classifier is the mapping
from an image to the label. So the composite mapping from a motor program to the label is just a fully-
connected feedforward neural net. The first and second derivatives of this function are straightforward
to compute, and from those the gradient of the regularizer can be computed. The implementation is left
as future work.

4.9 Conclusions

The results in this chapter show that inverting a synthesis model can be useful for object recognition.
They also show that breeder learning works well enough to learn the approximate inverse of a non-trivial
synthesis model like the mass-spring model. Even though the empirical behaviour of the algorithm is
sensible, more work needs to be done to understand it better theoretically.

  

(a) Before

  

(b) After

Figure 4.14: Features before and after fine-tuning.



Chapter 5

Implicit Mixtures of Restricted Boltzmann
Machines

We present a mixture model whose components are Restricted Boltzmann Machines (RBMs). This
possibility has not been considered before because computing the partitionfunction of an RBM is in-
tractable, which makes learning a mixture of RBMs by maximum likelihood intractableas well. How-
ever, when formulated as a third-order RBM, such a mixture modelcan be learned tractably using
Contrastive Divergence. The energy function of the model captures three-way interactions among vis-
ible units, hidden units, and a single hidden discrete variable that represents the cluster label. The
distinguishing feature of this model is that, unlike other mixture models, the mixing proportions are not
explicitly parameterized. Instead, they are defined implicitly via the energy function and depend on all
the parameters in the model. We present results for the MNIST and NORB datasets showing that the
implicit mixture of RBMs learns clusters that reflect the class structure in the data.

5.1 Introduction

Our main motivation is to develop a model that can simultaneously learn aclusteringof the data as well
as acluster-specific latent representation. This can be useful if the dataset consists of several subsets
that require very different features to describe. For example, as shown in section 5.4, when we apply
a mixture of two RBMs to unlabeled images of handwritten two’s and three’s from MNIST, it discov-
ers clusters that correspond to those classes and learns class-specific features entirely unsupervised.
Mixture of Factor Analyzers (MFA) (Ghahramani and Hinton [1996]) is another model that learns a
clustering and a latent representation together. In that case learning is a straightforward application of
the Expectation Minimization (EM) algorithm because all the quantities required by EM are tractable to
compute. This is not the case for a mixture of RBMs, as explained next. Also,MFA is adirectedmodel,
while the model we propose isundirected.

A typical mixture model is composed of a number of separately parameterized density models each
of which has two important properties:

1. There is an efficient way to compute the probability density (or mass) of a datapoint under each
model.

2. There is an efficient way to change the parameters of each model so asto maximize or increase
the sum of the log probabilities it assigns to a set of datapoints.

The mixture is created by assigning a mixing proportion to each of the component models and it is
typically fitted by using the EM algorithm that alternates between two steps. The E-step uses property 1

56
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to compute the posterior probability that each datapoint came from each of thecomponent models. The
posterior is also called the “responsibility” of each model for a datapoint. The M-step uses property 2
to update the parameters of each model to raise the responsibility-weighted sum of the log probabilities
it assigns to the datapoints. The M-step also changes the mixing proportions of the component models
to match the proportion of the training data that they are responsible for.

Restricted Boltzmann Machines (Hinton [2002]) model binary data-vectorsusing binary latent vari-
ables. They are considerably more powerful than mixture of multivariate Bernoulli models1 because
they allow many of the latent variables to be on simultaneously so the number of alternative latent
state vectors is exponential in the number of latent variables rather than being linear in this number as
it is with a mixture of Bernoullis. An RBM withN hidden units can be viewed as a mixture of2N

Bernoulli models, one per latent state vector, with a lot of parameter sharingbetween the2N component
models and with the2N mixing proportions being implicitly determined by the same parameters. It
can also be viewed as a product ofN “uni-Bernoulli” models (plus one Bernoulli model that is imple-
mented by the visible biases). A uni-Bernoulli model is a mixture of a uniform and a Bernoulli. The
weights of a hidden unit define theith probability in its Bernoulli model aspi = σ(wi), and the bias,
b, of a hidden unit defines the mixing proportion of the Bernoulli in its uni-Bernoulli as σ(b), where
σ(x) = (1 + exp(−x))−1.

The modeling power of an RBM can always be increased by increasing thenumber of hidden units
(Roux and Bengio [2008]) or by adding extra hidden layers (Sutskever and Hinton [2008]), but for
datasets that contain several distinctly different types of data, such as images of different object classes,
it would be more appropriate to use a mixture of RBM’s. The mixture could be used to model the raw
data or some preprocessed representation that has already extracted features that are shared by different
classes. Unfortunately, RBM’s cannot easily be used as the componentsof mixture models because they
lack property 1: It is easy to compute theunnormalizeddensity that an RBM assigns to a datapoint,
but the normalization term is exponentially expensive to compute exactly and even approximating it is
extremely time-consuming (Salakhutdinov and Murray [2008]). There is also no efficient way to modify
the parameters of an RBM so that the log probability of the data is guaranteed toincrease, but there are
good approximate methods (Hinton [2002]) so this is not the main problem. This chapter describes a
way of fitting a mixture of RBM’s without explicitly computing the partition function ofeach RBM.

Our approach in effect trades off one intractable problem – computing the partition function of
an RBM – for another – exact maximum likelihood learning of an RBM. Nevertheless, it is a good
trade because we know how to deal with the latter using a tractable, well-testedapproximation, i.e.
Contrastive Divergence (Hinton [2002]). One side-effect of the trade is that we no longer have mixing
proportions as explicit parameters. But, as the results show, this does notappear to make the mixture
model any less useful.

5.2 The model

We start with the energy function for an RBM and then modify it to define the implicit mixture of
RBMs. To simplify the description, we assume that the visible and hidden variables of the RBM are
binary. The formulation below can be adapted to other (non-binary) typesof variables (e.g., see Welling
et al. [2005]).

The energy function for an RBM is

E(v,h) = −
∑

i,j

WR
ij vihj , (5.1)

1A multivariate Bernoulli model consists of a set of probabilities, one per component of the binary data vector.
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Figure 5.1: The Implicit Mixture of Restricted Boltzmann Machines.(a) Every clique in the model
contains a visible unit, hidden unit, and label unit.(b) Our shorthand notation for representing the
clique in (a). (c) A model with two of each unit type. There is one clique for every possible triplet of
units created by selecting one of each type. The “restricted” architectureprecludes connections between
units of the same type.(d) Our shorthand notation for representing the model in (c).(e) The 3D array
of parameters for the model in (c).

wherev is a vector of visible (observed) variables,h is a vector of hidden variables, andWR is a
matrix of parameters that capture pairwise interactions between the visible and hidden variables. We
omit biases for clarity. Now consider extending this model by including a discrete variablel with K
possible states, represented as aK-dimensional binary vector with 1-of-K activation. Defining the
energy function in terms ofthree-way interactionsamong the components ofv, h, andl gives

E(v,h, l) = −
∑

i,j,k

W I
ijkvihjlk, (5.2)

whereW I is a3D array of parameters. Each slice of this array along thel-dimension is a matrix that
corresponds to the parameters of each of theK component RBMs. The joint distribution is

P (v,h, l) =
exp(−E(v,h, l))

ZI
, (5.3)

where
ZI =

∑

u,g,y

exp(−E(u,g,y)) (5.4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in theusual
mixture model form gives

P (v) =
∑

h,l

P (v,h, l) =
K
∑

k=1

∑

h

P (v,h|lk = 1)P (lk = 1). (5.5)
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Equation 5.5 defines the implicit mixture of RBMs.P (v,h|lk = 1) is the kth component RBM’s
distribution, parameterized by thekth slice ofW I along thel-dimension. Unlike in a typical mixture
model, the mixing proportionP (lk = 1) is not a separate parameter in our model. Instead, it isimplicitly
defined via the energy function in equation 5.2. Figure 5.1 gives a visual description of the implicit
mixture model’s structure.

5.3 Learning

Given a set ofN training cases{v1, ...,vN}, we want to learn the parameters of the implicit mixture
model by maximizing the log likelihoodL =

∑N
n=1 log P (vn) with respect toW I . We use gradient-

based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, l)

∂W I

〉

P (v,h,l)

−
N
∑

n=1

〈

∂E(vn,h, l)

∂W I

〉

P (h,l|vn)

, (5.6)

where〈〉P () denotes an expectation with respect to the distributionP (). The two expectations in equa-
tion 5.6 can be estimated by sample means if unbiased samples can be generated from the corresponding
distributions. The conditional distributionP (h, l|vα) is easy to sample from, but sampling the joint dis-
tributionP (v,h, l) requires prolonged Gibbs sampling and is intractable in practice. We get around this
problem by using the Contrastive Divergence (CD) learning algorithm Hinton [2002], which has been
found to be effective for training a variety of energy-based models (e.g. Roth and Black [2005], Roth
and Black [2007], Welling et al. [2005], He et al. [2004]).

Sampling the conditional distributions: We now describe how to sample the conditional distributions
P (h, l|v) andP (v|h, l), which are the main operations required for CD learning. The second case is
easy: givenlk = 1, we select thekth component RBM of the mixture model and then sample from its
conditional distributionPk(v|h). The bipartite structure of the RBM makes this distribution factorial.
So theith visible unit is drawn independently of the other units from the Bernoulli distribution

P (vi = 1|h, lk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (5.7)

SamplingP (h, l|v) is done in two steps. First, theK-way discrete distributionP (l|v) is computed
(see below) and sampled. Then, givenlk = 1, we select thekth component RBM and sample from its
conditional distributionPk(h|v). Again, this distribution is factorial, and thejth hidden unit is drawn
from the Bernoulli distribution

P (hj = 1|v, lk = 1) =
1

1 + exp(−
∑

i W
I
ijkvi)

. (5.8)

To computeP (l|v) we first note that

P (lk = 1|v) ∝ exp(−F (v, lk = 1)), (5.9)

where thefree energyF (v, lk = 1) is given by

F (v, lk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (5.10)
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If the number of possible states ofl is small enough, then it is practical to compute the quantityF (v, lk =
1) for everyk by brute-force. So we can compute

P (lk = 1|v) =
exp(−F (v, lk = 1))

∑

k′ exp(−F (v, lk′ = 1))
. (5.11)

Equation 5.11 defines theresponsibilityof thekth component RBM for the data vectorv.

Contrastive divergence learning:Below is a summary of the steps in the CD learning for the implicit
mixture model.

1. For a training vectorv+, pick a component RBM by sampling the responsibilities
P (lk = 1|v+). Let m be the index of the selected RBM.

2. Sampleh+ ∼ Pl(h|v+).

3. Compute the outer productD+
m = v+hT

+.

4. Samplev− ∼ Pm(v|h+).

5. Pick a component RBM by sampling the responsibilitiesP (lk = 1|v−). Let q be the index of the
selected RBM.

6. Sampleh− ∼ Pq(h|v−).

7. Compute the outer productD−
q = v−hT

−.

Repeating the above steps for a mini-batch ofNb training cases results in two sets of outer products for
each componentk in the mixture model:S+

k = {D+
k1, ...,D

+
kM} andS−

k = {D−
k1, ...,D

−
kQ}. Then the

approximate likelihood gradient (averaged over the mini-batch) for thekth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

Q
∑

j=1

D−
kj



 . (5.12)

Note that to compute the outer productsD+ andD− for a given training vector, the component RBMs
are selected throughtwo separate stochastic picks. Therefore the setsS+

k andS−
k need not be of the

same size because the choice of the mixture component can be different for v+ andv−.

Scaling free energies with a temperature parameter:In practice, the above learning algorithm causes
all the training cases to be captured by a single component RBM, and the other components to be left
unused. This is because free energy is an unnormalized quantity that canhave very different numerical
scales across the RBMs. One RBM may happen to produce much smaller freeenergies than the rest
because of random differences in the initial parameter values, and thus end up with high responsibilities
for most training cases. Even if all the component RBMs are initialized to the exact same initial param-
eter values, the problem can still arise after a few noisy weight updates. Aheuristic to get around this
problem is to use a temperature parameterT when computing the responsibilities:

P (lk = 1|v) =
exp(−F (v, lk = 1)/T )

∑

k′ exp(−F (v, lk′ = 1)/T )
. (5.13)

By choosing a large enoughT , we can make sure that random scale differences in the free energies do
not lead to the above collapse problem. One possibility is to start with a largeT and then gradually
anneal it as learning progresses. In our experiments we found that using a constantT works just as well
as annealing, so we keep it fixed. Note that this is not equivalent to simply dividing the weights of all
the RBMs by a factor ofT .
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Figure 5.2: Features of the mixture model with two component RBMs trained on unlabeled images of
handwritten two’s and three’s from MNIST. Those for the “two-RBM” are on the right. The features
resemble what one would get if two RBMs are trained separately, one on twos only and the other on
threes only. But this requires knowing the labels of the images.

5.4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST and NORB. Details of both of these
datasets can be found in section A.2. We use MNIST mainly as a sanity check,and most of our results
are for the more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is not
possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing the log
probability of a test set under the model. Recently it was shown that Annealed Importance Sampling
can be used to tractably approximate the partition function of an RBM (Salakhutdinov and Murray
[2008]). While this is an attractive option to consider in future work, for now we use the less direct but
computationally cheaper approach of evaluating the model by using it in a classification task.

A reasonable evaluation criterion for a mixture modeling algorithm is that it should be able to find
clusters that are mostly ‘pure’ with respect to class labels. That is, the setof data vectors for which a
particular mixture component has high responsibilities should have the same class label. So it should
be possible to accurately predict the class label of a given data vector from the responsibilities of the
different mixture components for that vector. Once a mixture model is fully trained, we evaluate it by
training a classifier that takes as input the responsibilities of the mixture components for a data vector
and predicts its class label. The goodness of the mixture model is measured bythe test set prediction
accuracy of this classifier.

5.4.1 Results for MNIST

Before attempting to learn a good mixture model of the whole MNIST dataset, we tried two simpler
modeling tasks. First, we fitted an implicit mixture of two RBMs with 100 hidden units each to an
unlabeled dataset consisting of 4,000 twos and 4,000 threes. As we hoped, almost all of the twos were
modeled by one RBM and almost all of the threes by the other. Figure 5.2 shows the features learned by
each RBM (the one that models twos is on the right). These features are sensible for detecting the kind
of strokes that appear in images of handwritten twos and threes.

On 2042 held-out test cases of twos and threes, there were only 24 classification errors when an
image was assigned the label of the most probable RBM. This compares veryfavorably with logistic
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Figure 5.3: Features of the mixture model with five component RBMs trained onall ten classes of
MNIST images.

regression which needs 8000 labels in addition to the images and gives 36 errors on the test set even
when using a penalty on the squared weights whose magnitude is set using a validation set. Logistic
regression also gives a good indication of the performance that could beexpected from fitting a mixture
of two Gaussians with a shared covariance matrix, because logistic regression is equivalent to fitting
such a mixture discriminatively.

We then tried fitting an implicit mixture model with only five component RBMs, each with25
hidden units, to the entire training set. We purposely make the model very small so that it is possible to
visually inspect the features and the responsibilities of the component RBMsand understand what each
component is modeling. This is meant to qualitatively confirm that the algorithm can learn a sensible
clustering of the MNIST data. (Of course, the model will have poor classification accuracy as there are
more classes than clusters, so it will merge multiple classes into a single cluster.) The features of the
component RBMs are shown in figure 5.3 (top row). The plots in the bottom row show the fraction
of training images for each of the ten classes that are hard-assigned to each component. The learning
algorithm has produced a sensible mixture model in that visually similar digit classes are combined
under the same mixture component. For example, ones and eights require manysimilar features, so they
are captured with a single RBM (leftmost in fig. 5.3). Similarly, images of fours,sevens, and nines are
all visually similar, and they are modeled together by one RBM (middle of fig. 5.3).

We have also trained larger models with many more mixture components. As the number of com-
ponents increase, we expect the model to partition the image space more finely, with the different com-
ponents specializing on various sub-classes of digits. If they specialize ina way that respects the class
boundaries, then their responsibilities for a data vector will become a better predictor of its class label.

The component RBMs use binary units both in the visible and hidden layers. The image dimen-
sionality is 784 (28× 28 pixels). We have tried various settings for the number of mixture components
(from 20 to 120 in steps of 20) and a component’s hidden layer size (50, 100, 200, 500). Classification
accuracy increases with more components, until 80 components. Additionalcomponents give slightly
worse results. The hidden layer size is set to 100, but 200 and 500 also produce similar accuracies. Out
of the 60,000 training images in MNIST, we use 50,000 to train the mixture model andthe classifier,
and the remaining 10,000 as a validation set for early stopping. The final models are then tested on a
separate test set of 10,000 images.

Once the mixture model is trained, we train a logistic regression classifier to predict the class la-
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Logistic regression % Test
classifier input error

Unnormalized 3.36%
responsibilities

Pixels 7.28%

Table 5.1: MNIST test set error rates when a logistic regression classifier is trained on the unnormalized
responsibilities of the implicit mixture model versus on the raw pixels.

bel from the responsibilities2. It has as many inputs as there are mixture components, and a ten-way
softmax over the class labels at the output. With 80 components, there are only80 · 10 + 10 = 810
parameters in the classifier (including the 10 output biases). In our experiments, classification accuracy
is consistently higher whenunnormalizedresponsibilities are used as the classifier input, instead of the
actual responsibilities. These unnormalized values have no proper probabilistic interpretation, but they
allow for better classification, so we use them in all our experiments.

Table 5.1 shows the classification error rate of the resulting classifier on theMNIST test set. As a
simple baseline comparison, we train a logistic regression classifier that predicts the class label from the
raw pixels. This classifier has7850 parameters and yet the mixture-based classifier has less than half
the error rate. The unnormalized responsibilities therefore contain a significant amount of information
about the class labels of the images, which indicates that the implicit mixture model has learned clusters
that mostly agree with the class boundaries, even though it is not given anyclass information during
training.

5.4.2 Results for NORB

NORB is a much more difficult dataset than MNIST because the images are of very different classes
of 3D objects (instead of 2D patterns) shown from different viewpoints and under various lighting
conditions. The pixels are also no longer binary-valued, but instead span the grayscale range[0, 255].
So binary units are no longer appropriate for the visible layer of the component RBMs. Gaussian
visible units have previously been shown to be effective for modeling grayscale images (Hinton and
Salakhutdinov [2006]), and therefore we use them here. See Hinton and Salakhutdinov [2006] for
details about Gaussian units (or see equation 4.6 in the previous chapter for the energy function of an
RBM with Gaussian visible units with unit variance and binary hidden units). Asin that paper, the
variance of the units is fixed to 1.

Empirically, learning an RBM with Gaussian visible units has been found to require a greater num-
ber of weight updates than an RBM with binary visible units. This problem becomes even worse in our
case since a large number of RBMs have to be trained simultaneously. We avoid it by first training a
single RBM with Gaussian visible units and binary hidden units on the raw pixel data, and then treating
the activities of its hidden layer as pre-processed data to which the implicit mixture model is applied.
Since the hidden layer activities of the pre-processing RBM are binary, the mixture model can now be
trained efficiently with binary units in the visible layer3. Once trained, the low-level RBM acts as a fixed
pre-processing step that converts the raw grayscale images into binary vectors. Its parameters are not
modified further when training the mixture model. Figure 5.4 shows the components of the complete

2Note that the mixture model parameters are kept fixed when training the classifier, so the learning of the mixture model is
entirely unsupervised.

3We actually use the real-valued probabilities of the hidden units as the data, and we also use real-valued probabilities
for the reconstructions. On other tasks, the learning gives similar resultsusing binary values sampled from these real-valued
probabilities but is slower.



CHAPTER 5. IMPLICIT M IXTURES OFRESTRICTEDBOLTZMANN MACHINES 64

Binary 

data

Gaussian visible units 

(raw pixel data)

i

j

Pre-processing 

transformation 

Wij

Hidden units

Wjmk

1-of-K 

activation m

k

Figure 5.4: Implicit mixture model used for MNORB. A pre-processing transformation converts the raw
pixels, represented by Gaussian visible units, into the activation probabilitiesof stochastic binary units.
The mixture model is trained on the real-valued probabilities rather than binaryactivities of the units.

model.

A difficulty with training the implicit mixture model (or any other mixture model) on NORB isthat
the ‘natural’ clusters in the dataset correspond to the six lighting conditions instead of the five object
classes. The objects themselves are small (in terms of area) relative to the background, while lighting
affects the entire image. Any clustering signal provided by the object classes will be weak compared
to the effect of large lighting changes. So we simplify the dataset slightly by normalizing the lighting
variations across images. Each image is multiplied by a scalar such that all imageshave the same
average pixel value. This crude normalization significantly reduces the interference of the lighting on
the mixture learning4. Finally, to speed up experiments, we subsample the images from96 × 96 to
32 × 32 and use only one image of the stereo pair. We refer to this dataset as ‘Modified NORB’ or
‘MNORB’. It contains 24,300 training images and an equal number of test images. From the training
set, 4,300 are set aside as a validation set for early stopping.

We use 2000 binary hidden units for the preprocessing RBM, so the inputdimensionality of the
implicit mixture model is 2000. We have tried many different settings for the number of mixture com-
ponents and the hidden layer size of the components. The best classification results are given by 100
components, each with 500 hidden units. This model has about100 · 500 · 2000 = 108 parameters, and
takes about 10 days to train on an Intel Xeon 3Ghz processor.

Table 5.4.2 shows the test set error rates for a logistic regression classifier trained on various input
representations. As mentioned earlier, Mixture of Factor Analyzers (MFA) is similar to the implicit
mixture of RBMs in that it also learns a clustering while simultaneously learning a latent representation
per cluster component. But it is a directed model based on linear-Gaussianrepresentations, and it
can be learned tractably by maximizing likelihood with EM. We train MFA on the raw pixel data of
MNORB. The MFA model that gives the best classification accuracy (shown in table 5.4.2) has 100
component Factor Analyzers with 100 factors each. (Note that simply makingthe number of learnable
parameters equal is not enough to match the capacities of the different modelsbecause RBMs use binary
latent representations, while FAs use continuous representations. So it isnot easy to strictly control for

4The normalization does not completely remove lighting information from the data. A logistic regression classifier can still
predict the lighting label with 18% test set error when trained and tested on normalized images.
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Logistic regression classifier input % Test error

Unnormalized responsibilities computed 14.65%
by the implicit mixture of RBMs

Probabilities computed by the transformationWij in 16.07%
fig 5.4 (i.e. thepre-processed representation)

Raw pixels 20.60%
Unnormalized responsibilities of an MFA model 22.65%

trained on the pre-processed representation in fig 5.4
Unnormalized responsibilities of an MFA 24.57%

model trained on raw pixels
Unnormalized responsibilities of a Mixture of
Bernoullis model trained on the pre-processed 28.53%

representation in fig 5.4

Table 5.2: MNORB Test set error rates for a logistic regression classifier with different types of input
representations.

capacity when comparing these models.)
A mixture of multivariate Bernoulli distributions (seee.g.section 9.3.3 of Bishop [2006]) is similar

to an implicit mixture model whose component RBMs have no hidden units and onlyvisible biases as
trainable parameters. The differences are that a Bernoulli mixture is a directed model, it has explicitly
parameterized mixing proportions, and maximum likelihood learning with EM is tractable. We train this
model with 100 components on the activation probabilities of the preprocessing RBM’s hidden units.
The classification error rate for this model is shown in table 5.4.2.

These results show that the implicit mixture of RBMs has learned clusters that reflect the class
structure in the data. By the classification accuracy criterion, the implicit mixtureis also better than
MFA. The results also confirm that the lack of explicitly parameterized mixing proportions does not
prevent the implicit mixture model from discovering interesting cluster structure in the data.

5.5 Conclusions

We have presented a tractable formulation of a mixture of RBMs. That such aformulation is even
possible is a surprising discovery. The key insight here is that the mixture model can be cast as a third-
order RBM, provided we are willing to abandon explicitly parameterized mixing proportions. Then it
can be learned tractably using contrastive divergence. As future work, it would be interesting to explore
whether these ideas can be extended to modeling time-series data.



Chapter 6

3D Object Recognition with Deep Belief
Nets

We introduce a new type of top-level model for Deep Belief Nets and evaluate it on a 3D object recogni-
tion task. The top-level model is a third-order Boltzmann machine, trained using a hybrid algorithm that
combines both generative and discriminative gradients. Performance is evaluated on the NORB database
(normalized-uniformversion), which contains stereo-pair images of objects under differentlighting con-
ditions from different viewpoints. Our model achieves 6.5% error on the test set, which is close to the
best published result for NORB (5.9%) using a convolutional neural net that has built-in knowledge of
translation invariance. It substantially outperforms shallow models such as SVMs (11.6%). DBNs are
especially suited for semi-supervised learning, and to demonstrate this we consider a modified version
of the NORB recognition task in which additionalunlabeledimages are created by applying small trans-
lations to the images in the database. With the extra unlabeled data (and the same amount of labeled
data as before), our model achieves 5.2% error.

6.1 Introduction

Recent work on DBNs (Larochelle et al. [2007], Lee et al. [2009]) has shown that it is possible to learn
multiple layers of nonlinear features that are useful for object classification without requiring labeled
data. The features are trained one layer at a time as an RBM using CD, or assome form of autoencoder
(Vincent et al. [2008], Ranzato et al. [2007]), and the feature activations learned by one module become
the data for training the next module. After a pre-training phase that learnslayers of features which
are good at modeling the statistical structure in a set of unlabeled images, supervised backpropagation
can be used to fine-tune the features for classification (Hinton and Salakhutdinov [2006]). Alternatively,
classification can be performed by learning a top layer of features that models the joint density of the
class labels and the highest layer of unsupervised features (Hinton et al. [2006]). These unsupervised
features (plus the class labels) then become the penultimate layer of the deep belief net (Hinton et al.
[2006]).

Early work on deep belief nets was evaluated using the MNIST dataset of handwritten digits (Hinton
et al. [2006]) which has the advantage that a few million parameters are adequate for modeling most of
the structure in the domain. For 3D object classification, however, many moreparameters are probably
required to allow a DBN with no prior knowledge of spatial structure to capture all of the variations
caused by lighting and viewpoint. It is not yet clear how well DBNs performat 3D object classification
when compared with shallow techniques such as SVMs (Vapnik [1998], DeCoste and Scholkopf [2002])
or deep discriminative techniques like convolutional neural networks (LeCun et al. [1998]).
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In this chapter, we describe a better type of top-level model for deep belief nets and show that if
the top-level model is trained using a combination of generative and discriminative gradients (Hinton
[2006], Kelm et al. [2006], Larochelle and Bengio [2008]) there is noneed to backpropagate discrim-
inative gradients to fine-tune the earlier layers of features. We evaluate the model on NORB (LeCun
et al. [2004]), which is a carefully designed object recognition task thatrequires generalization to novel
object instances under varying lighting conditions and viewpoints. Our modelsignificantly outperforms
SVMs, and it also outperforms convolutional neural nets when given additionalunlabeleddata produced
by small translations of the training images.

We use RBMs trained with one-step contrastive divergence as our basicmodule for learning layers
of features. These are fully described elsewhere (Hinton et al. [2006], Bengio et al. [2007]) and the
reader is referred to those sources for details.

6.2 A Third-Order Restricted Boltzmann Machine as the Top-Level Model

Until now, the only top-level model that has been considered for a DBN is an RBM with two types
of visible units (one for the label, another for the penultimate feature vector)and a hidden layer, with
bipartite connections between the visible and hidden layers. We now consider an alternative model for
the top-level joint distribution in which the class label multiplicatively interacts withboth the penulti-
mate layer units and the hidden units to determine the energy of a full configuration. It is the same as
the implicit mixture model introduced in the previous chapter, except now the discrete (cluster) label
variable is no longer hidden, and the number of components in the model is fixed to be the number of
object classes. Changing the label variable from hidden to observed affects the inference and learning
procedures. As explained before, the model is a Boltzmann machine with three-way cliques, each con-
taining a penultimate layer unitvi, a hidden unithj , and a label unitlk. See the figure in the previous
chapter (figure 5.1) for a summary of the architecture.

We quickly review the energy function and the probability model of the third-order RBM. Consider
the case where the components ofv andh are stochastic binary units, andl is a discrete variable with
K states represented by 1-of-K encoding. The model can be defined in terms of its energy function

E(v,h, l) = −
∑

i,j,k

Wijkvihjlk, (6.1)

whereWijk is a learnable scalar parameter. (We omit bias terms in all expressions for clarity.) The
probability of a full configuration{v,h, l} is then

P (v,h, l) =
exp(−E(v,h, l))

Z
, (6.2)

whereZ =
∑

v′,h′,l′ exp(−E(v′,h′, l′)) is the partition function. Marginalizing overh gives the dis-
tribution overv andl alone.

The main difference between the new top-level model and the bipartite one used in earlier DBNs is
that now the class label multiplicatively modulates how the visible and hidden units contribute to the
energy of a full configuration. If the label’skth unit is 1 (and the rest are 0), then thekth slice of the
3D array determines the energy function. In the case of soft activations(i.e. more than one label has
non-zero probability), a weighted blend of the array’s slices specifies the energy function. The earlier
top-level (RBM) model limits the label’s effect to changing the biases into the hidden units, which
modifies only how the hidden units contribute to the energy of a full configuration. There is no direct
interaction between the label and the visible units. Introducing direct interactions among all three sets
of variables allows the model to learn features that are dedicated to each class. This is a useful property
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when the object classes have substantially different appearances thatrequire very different features to
describe. Unlike an RBM, the model structure is not bipartite, but it is still “restricted” in the sense that
there are no direct connections between two units of the same type.

Note that the third-order model is not the same as training a separate RBM foreach class. A
collection of independently trained class-specific RBMs represents the distribution P (v|l), while the
third-order model represents the joint distributionP (v, l) = P (v|l)P (l). This distinction will become
important later when we consider the hybrid generative-discriminative learning algorithm.

6.2.1 Inference

The distributions that we would like to be able to infer areP (l|v) (to classify an input), andP (v, l|h)
andP (h|v, l) (for CD learning). Fortunately, all three distributions are tractable to samplefrom exactly.
The simplest case isP (h|v, l). Oncel is observed, the model reduces to an RBM whose parameters
are thekth slice of the 3D parameter array. As a resultP (h|v, l) is a factorized distribution that can be
sampled exactly.

For a third-order RBM model withNv visible units,Nh hidden units andNl class labels, the distri-
butionP (l|v) can be exactly computed inO(NvNhNl) time. This result follows from two observations:
1) settinglk = 1 reduces the model to an RBM defined by thekth slice of the array, and 2) the negative
log probability ofv, up to an additive constant, under this RBM is the free energy:

Fk(v) = −

Nh
∑

j=1

log(1 + exp(

Nv
∑

i=1

Wijkvi)). (6.3)

The idea is to first computeFk(v) for each setting of the label, and then convert them to a discrete
distribution by taking the softmax of the negative free energies:

P (lk = 1|v) =
exp(−Fk(v))

∑Nl

k=1 exp(−Fk(v))
. (6.4)

Equation 6.3 requiresO(NvNh) computation, which is repeatedNl times for a total ofO(NvNhNl)
computation.

We can use the same method to computeP (l|h). Simply switch the role ofv andh in equation 6.3
to compute the free energy ofh under thekth RBM. (This is possible since the model is symmetric with
respect tov andh.) Then convert the resultingNl free energies to the probabilitiesP (lk = 1|h) with
the softmax function.

Now it becomes possible to exactly sampleP (v, l|h) by first sampling̃l ∼ P (l|h). Supposẽlk = 1.
Then the model reduces to itskth-slice RBM from whichṽ ∼ P (v|h, l̃k = 1) can be easily sampled.
The final result{ṽ, l̃} is an unbiased sample fromP (v, l|h).

6.2.2 Learning

Given a set ofN labeled training cases{(v1, l1), (v2, l2), ..., (vN , lN )} , we want to learn the 3D
parameter arrayW for the third-order model. When trained as the top-level model of a DBN, the
visible vectorv is a penultimate layer feature vector. We can also train the model directly on images as
a shallow model, in which casev is an image (in row vector form). In both cases the labell represents
the Nl object categories using 1-of-Nl encoding. For the same reasons as in the case of an RBM,
maximum likelihood learning is intractable here as well, so we rely on ContrastiveDivergence learning
instead. CD was originally formulated in the context of the RBM and its bipartite architecture, but here
we extend it to the non-bipartite architecture of the third-order RBM model.
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An unbiased estimate of the maximum likelihood gradient can be computed by running a Markov
chain that alternatively samplesP (h|v, l) andP (v, l|h) until it reaches equilibrium. Contrastive diver-
gence uses the parameter updates given by three half-steps of this chain, with the chain initialized from
a training case (rather than a random state). As explained in section 6.2.1, both of these distributions are
easy to sample from. The steps for computing the CD parameter updates are summarized below:

Contrastive divergence learning ofP (v, l):

1. Given a labeled training pair{v+, l+k = 1}, sampleh+ ∼ P (h+|v+, l+k = 1).

2. Compute the outer productD+
k = v+h+T .

3. Sample{v−, l−} ∼ P (v, l|h+). Let m be the index of the component ofl− set to 1.

4. Sampleh− ∼ P (h|v−, l−m = 1).

5. Compute the outer productD−
m = v−h−T .

Let W·,·,k denote theNh × Nv matrix of parameters corresponding to thekth slice along the label
dimension of the 3D array. Then the CD update forW·,·,k is:

∆W·,·,k = D+
k −D−

k , (6.5)

W·,·,k ←W·,·,k + η∆W·,·,k, (6.6)

whereη is a learning rate parameter. Typically, the updates computed from a “mini-batch” of training
cases (a small subset of the entire training set) are averaged together intoone update and then applied
to the parameters.

6.3 Combining Gradients for Generative and Discriminative Models

In practice the Markov chain used in the learning ofP (v, l) can suffer from slow mixing. In particular,
the labell− generated in step 3 above is unlikely to be different from the true labell+ of the training case
used in step 1. The chain has a tendency to stay “stuck” on the same state forthe label variable, even
if it is run for a large number of steps. This is because in the positive phasethe hidden unit activities
are inferred with the label clamped to its true value. So the hidden activities contain information about
the true label, which gives it an advantage over the other labels. We have observed that empirically, the
label rarely changes from its original setting even after many Markov chain steps.

Consider the extreme case where we initialize the Markov chain with a training pair {v+, l+k = 1}
and the label variableneverchanges from its initial state during the chain’s entire run. In effect, the
model that ends up being learned is a class-conditional generative distributionP (v|lk = 1), represented
by thekth slice RBM. The parameter updates are identical to those for trainingNl independent RBMs,
one per class, with only the training cases of each class being used to learnthe RBM for that class. Note
that this is very different from the model in section 6.2: here the energy functions implemented by the
class-conditional RBMs are learned independently and their energy unitsare not commensurate with
each other.

Alternatively, we can optimize thesameset of parameters to represent yet another distribution,
P (l|v). The advantage in this case is that theexactgradient needed for maximum likelihood learning,
∂logP (l|v)/∂W , can be computed inO(NvNhNl) time. The gradient expression can be derived with
some straightforward differentiation of equation 6.4. The disadvantage is that it cannot make use of
unlabeled data. Also, as the results show, learning a purely discriminative model at the top level of a
DBN gives much worse performance.
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However, now a new way of learningP (v, l) becomes apparent: we can optimize the parameters by
usinga weighted sum of the gradientsfor log P (v|l) andlog P (l|v). As explained below, this approach
1) avoids the slow mixing of the CD learning forP (v, l), and 2) allows learning with both labeled and
unlabeled data. In our experiments, a model trained with this hybrid learning algorithm has the highest
classification accuracy, beating both a generative model trained using CDas well as a purely discrimi-
native model. The main steps of the algorithm are listed below.

Hybrid learning algorithm forP (v, l):

Let {v+, l+k = 1} be a labeled training case.
Generative update: CD learning ofP (v|l)

1. Sampleh+ ∼ P (h|v+, l+k = 1).

2. Compute the outer productD+
k = v+h+T .

3. Samplev− ∼ P (v|h+, l+k = 1).

4. Sampleh− ∼ P (h|v−, l+k = 1).

5. Compute the outer productD−
k = v−h−T .

6. Compute update∆W g
·,·,k = D+

k −D−
k .

Discriminative update: ML learning of P (l|v)

1. Computelog P (lc = 1|v+) for c ∈ {1, ..., Nl}.

2. Using the result from step 1 and the true labell+k = 1, compute the update
∆W d

·,·,k = ∂ log P (l|v)/∂W·,·,c for c ∈ {1, ..., Nl}.

The two types of update for thecth slice of the arrayW·,·,c are then combined by a weighted sum:

W·,·,c ←W·,·,c + η(∆W g
·,·,c + λ∆W d

·,·,c), (6.7)

whereλ is a parameter that sets the relative weighting of the generative and discriminative updates,
andη is the learning rate. As before, the updates from a mini-batch of training cases can be averaged
together and applied as a single update to the parameters.

Note that the generative part in the above algorithm is simply CD learning of theRBM for thekth

class. The earlier problem of slow mixing does not appear in the hybrid algorithm because the chain in
the generative part does not involve sampling the label.

Semi-supervised learning: The hybrid learning algorithm can also make use ofunlabeledtraining
cases by treating their labels as missing inputs. The model first infers the missing label by sampling
P (l|vu) for an unlabeled training casevu. The generative update is then computed by treating the
inferred label as the true label. (The discriminative update will always be zero in this case.) Therefore
the unlabeled training cases contribute an extra generative term to the parameter update.
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6.3.1 Cost Function of the Hybrid Algorithm

For thediscriminativeversion of the third-order RBM, the 3D parameter arrayW is updated by the
negative gradient of the training set’s negative log-likelihood:

LD(W ) = −
N
∑

n=1

log(P (ln|vn, W )), (6.8)

where(vn, ln) is a labeled training case andP (ln|vn, W ) is given by 6.4. The exact gradient of equation
6.8 can be computed tractably. For theclass-conditional, generativeversion, the negative log-likelihood
expression is:

LCG(W ) = −
N
∑

n=1

log(P (vn|ln, W )), (6.9)

whereP (vn|ln, W ) is the probability ofvn under its corresponding class-specific RBM. In this case we
can use the CD approximation to the gradient of equation 6.9 to updateW .

The cost function optimized by the hybrid learning algorithm is

LCG(W ) + λLD(W ), (6.10)

whereλ is the user-set parameter mentioned before. In our experiments, we havetried values forλ from
0.1 to 20. The best classification results are achieved forλ = 5, but nearby values also give similar
results, so the algorithm does not appear to be extremely sensitive to its exact value. Note that the value
of λ is not a good indicator of the relative size of the contributions made by the two types of gradients.
The generative gradient tends to have a much biggerL2 norm than the discriminative one (in some
experiments we have seen two orders of magnitude difference). Settingλ to 5 therefore does not mean
that the discriminative gradient makes a contribution 5 times bigger than the generative gradient to the
weight update.

6.3.2 Interpretation of the Hybrid Algorithm

Hybrid learning resembles pseudo-likelihood learning: instead of maximizingP (v, l) directly, the op-
timization relies on the two conditional distributionsP (v|l) andP (l|v). So one informal interpretation
of the algorithm is that it is still approximately learning the joint distribution.

A more rigorous interpretation can be found in Bishop and Lasserre [2007]. They consider a cost
function that is slightly different from equation 6.10, but it can be shown that their analysis applies to the
hybrid algorithm’s cost function as well. They show that the kind of blendedlearning done by the hybrid
algorithm can be interpreted as learning a joint distribution model. The main effect of the blending is to
compensate for the model mis-specification problem suffered by the original generative model.

6.4 Sparsity

Discriminative performance is improved by using binary features that are only rarely active. Sparse
activities are achieved by specifying a desired probability of being active, p << 1, and then adding an
additional penalty term that encourages an exponentially decaying average,q, of the actual probability
of being active to be close top. The natural error measure to use is the cross entropy between the desired
and actual distributions:p log q+(1−p) log(1−q). For logistic units this has a simple derivative ofp−q
with respect to the total input to a unit. This derivative is used to adjust both the bias and the incoming
weights of each hidden unit. We tried various values forp and0.1 worked well. In addition to specifying
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p it is necessary to specify how fast the estimate ofq decays. We usedqnew = 0.9 ∗ qold + 0.1 ∗ qcurrent

whereqcurrent is the average probability of activation for the current mini-batch of 100 training cases.
It is also necessary to specify how strong the penalty term should be, butthis is easy to set empirically.
We multiply the penalty gradient by a coefficient that is chosen to ensure that,on average,q is close to
p but there is still significant variation among theq values for different hidden units. This prevents the
penalty term from dominating the learning. One added advantage of this sparseness penalty is that it
revives any hidden units whose average activities are much lower thanp.

6.5 Evaluating DBNs on the NORB Object Recognition Task

Pre-processing:See section A.2 for details about NORB. A single training (and test) case in NORB is a
stereo-pair of grayscale images, each of size96×96. To speed up experiments, we reduce dimensionality
by using a “foveal” image representation. The central64× 64 portion of an image is kept at its original
resolution. The remaining 16 pixel-wide ring around it is compressed by replacing non-overlapping
square blocks of pixels with the average value of a block. We split the ring into four smaller ones: the
outermost ring has8× 8 blocks, followed by a ring of4× 4 blocks, and finally two innermost rings of
2× 2 blocks. The foveal representation reduces the dimensionality of a stereo-pair from 18432 to 8976.
All our models treat the stereo-pair images as 8976-dimensional vectors1. We do not use the lighting
normalization that was used in the previous chapter when training the implicit mixture model on NORB.

A crucial property of the NORB dataset is that the object instances are split into two disjoint sets to
define the training and test sets. Therefore at test time the model must generalize to new instances of
the same object classes.

6.5.1 Training Details

Model architecture: The two main decisions to make when training DBNs are the number of hidden
layers to greedily pre-train and the number of hidden units to use in each layer. To simplify the ex-
periments we constrain the number of hidden units to be the same at all layers (including the top-level
model). We have tried hidden layer sizes of 2000, 4000, and 8000 units. We have also tried models
with two, one, or no greedily pre-trained hidden layers. To avoid clutter, only the results for the best
settings of these two parameters are given. The best classification resultsare given by the DBN with
one greedily pre-trained sparse hidden layer of 4000 units (regardless of the type of top-level model).

A DBN trained on the pre-processed input with one greedily pre-trained layer of 4000 hidden units
and a third-order model on top of it, also with 4000 hidden units, has roughly116 million learnable
parameters in total. This is roughly two orders of magnitude more parameters than some of the early
DBNs trained on the MNIST images (Hinton et al. [2006], Larochelle et al. [2007]). Training such a
model in Matlab on an Intel Xeon 3GHz machine takes almost two weeks. See a recent paper by Raina
et al. [2009] that uses GPUs to train a deep model with roughly the same number of parameters much
more quickly. We put Gaussian units at the lowest (pixel) layer of the DBN.

Early stopping: Previous papers that report results on NORB (LeCun et al. [2004], Bengio and LeCun
[2007]) do not hold out a subset of the training images for early stopping. They train models on the full
training set and report classification accuracy on the test set. To make our results comparable, we also
train the top-level model with the full training set. We use a subset of thetestimages for early stopping,
and compute classification accuracy on the remaining test cases. To estimate the accuracy on theentire

1Knowledge about image topology is used only along the (mostly empty) borders, and not in the central portion that
actually contains the object.
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test set, we train the model twice, each time using a different, non-overlapping subset of the test data for
early stopping and computing the accuracy on the remainder. The mean of thetwo estimates is reported
as the accuracy for the full set. The validation set and the partial test setwe use still split the object
instances disjointly, so at test time the model must still generalize to new instances.

6.6 Results

The results are presented in three parts: part 1 compares deep models to shallow ones, all trained using
CD. Part 2 compares CD to the hybrid learning algorithm for training the top-level model of a DBN. Part
3 compares DBNs trained with and without unlabeled data, using either CD or the hybrid algorithm at
the top level. For comparison, table 6.1 lists results for some discriminative modelson the normalized-
uniform NORB test set (without any pre-processing). The results forour DBN models range from
11.9% to 5.2%.

Model Error
Logistic regression 19.6%

kNN (k=1) (LeCun et al. [2004]) 18.4%
Gaussian kernel SVM (Bengio and LeCun [2007]) 11.6%

Convolutional neural net (Bengio and LeCun [2007])6.0%
Convolutional net + SVM (Bengio and LeCun [2007]) 5.9%

Table 6.1: Test set error rates for discriminative models on normalized-uniform NORB without any
pre-processing.

6.6.1 Deep vs. Shallow Models Trained with CD

We consider here DBNs with one greedily pre-trained layer. Its shallow counterpart trains the top-
level model directly on the pixels (using Gaussian visible units2), with no pre-trained layers in between.
Using CD as the learning algorithm (for both greedy pre-training and at thetop-level) with the two types
of top-level models gives us four possibilities to compare. The test error rates for these four models(see
table 6.2) show that one greedily pre-trained layer reduces the error substantially, even without any
subsequent fine-tuning of the pre-trained layer.

Model RBM with Third-order Restricted
label unit Boltzmann Machine

Shallow 22.8% 20.8%
Deep 11.9% 7.6%

Table 6.2: NORB test set error rates for deep and shallow models trained using CD with two types of
top-level models.

The third-order RBM model outperforms the standard RBM top-level modelwhen they both have
thesame number of hidden units, but a better comparison might be to match the number ofparameters
by increasing the hidden layer size of the standard RBM model by five times (i.e. 20000 hidden units).
We have tried training such an RBM, but the error rate is worse than the RBMwith 4000 hidden units.

2When training the shallow model with Gaussian visible units, the free energy expression in equation 6.3 (for binary visible
units) must be changed appropriately. The new expression is given byequation 4.7.
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6.6.2 Hybrid vs. CD Learning for the Top-level Model

We now compare the two alternatives for training the top-level model of a DBN. There are four possible
combinations of top-level models and learning algorithms, and table 6.3 lists their error rates. All these
DBNs share the same greedily pre-trained first layer – only the top-level model differs among them.

Top-level Model
Learning RBM with Third-order Restricted
algorithm label unit Boltzmann machine

CD 11.9% 7.6%
Hybrid 10.4% 6.5%

Table 6.3: NORB test set error rates for top-level models trained using CDand the hybrid learning
algorithms.

The lower error rates of hybrid learning are partly due to its ability to avoid thepoor mixing of the
label variable when CD is used to learn the joint densityP (v, l) and partly due to its greater emphasis
on discrimination (but with regularization provided by also learningP (v|l)).

6.6.3 Semi-supervised vs. Supervised Learning

In this final part, we show how DBNs can take advantage of unlabeled datato improve the classification
error. We create additional images from the original NORB training set by applying global translations
of 2, 4, and 6 pixels in eight directions (two horizontal, two vertical and four diagonal directions) to the
original stereo-pair images3. These “jittered” images are treated as extraunlabeledtraining cases that
are combined with the original labeled cases to form a much larger training set.

Note that the jittered images could have been assigned the same label as the images they were created
from. By treating them as unlabeled, the goal is to test whether improving the unsupervised, generative
part of the learning alone can improve discriminative performance.

The unlabeled images here are specially designed to help the features become less sensitive to small
shifts of the image. This is clearly artificial – we normally would not expect unlabeled data to provide
information about a useful invariance so directly. Another way to simulate a semi-supervised learning
task is to hold out the labels of some of the original training images and treat themas unlabeled. But this
does not provide any extra data for pre-training the lower layer features since there is no distinction be-
tween labeled and unlabeled images in the greedy pre-training phase. Also,the original NORB training
set is already relatively small (only 24,300 cases) and holding out labels will make it even smaller.

Instead of artificially crippling the discriminative part of the training with fewerlabels, we add a
separate unlabeled set to the full labeled set and measure how much improvement the generative part of
the training can make given the best possible contribution by the discriminativepart. This is a stricter
assessment of the usefulness of the generative part. It also corresponds to what one would do in a real
application, i.e. not hold out any labeled data and try to maximize classification accuracy.

There are two ways to use unlabeled data:
1. Use it for greedy pre-training of the lower layers only, and then train the top-level model as before,

with only labeled data and the hybrid algorithm.

2. Use it for learning the top-level model as well, this time with the semi-supervised variant of the
hybrid algorithm at the top-level.

Table 6.4 lists the results for both options.

3The same translation is applied to both images in the stereo-pair.
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Top-level model Unlabeled Unlabeled
(hybrid learning jitter for jitter at the Error

only) greedy top-level?
pre-training?

RBM with No No 10.4%
label unit No Yes 10.5%

Yes No 9.0%
Third-order No No 6.5%

model No Yes 7.1%
Yes No 5.3%
Yes Yes 5.2%

Table 6.4: NORB test set error rates for DBNs trained with and without unlabeled data, and using the
hybrid learning algorithm at the top-level.

The key conclusion from table 6.4 is that simply using moreunlabeledtraining data in the unsuper-
vised, greedy pre-training phase alone can significantly improve the classification accuracy of the DBN.
It allows a third-order top-level model to reduce its error from 6.5% to 5.3%, which beats the current
best published result for normalized-uniform NORBwithout using any extra labeled data. Using more
unlabeled data also at the top level further improves accuracy, but only slightly, to 5.2%. When the
unlabeled data is used only for training the top-level model (and not for pre-training the first layer), the
results becomeworsethan not using unlabeled data at all. It appears that the main effect of unlabeled
data is to produce better features in the pre-trained layer. Without those improved features in the first
layer, using unlabeled data to train the top-level model does not help.

Now consider a discriminative model at the top, representing the distributionP (l|v). Unlike in
the generative case, the exact gradient of the log-likelihood is tractable tocompute. Table 6.5 shows
the results of some discriminative models. These models use the same greedily pre-trained lower layer,
learned with unlabeled jitter. The only difference is in how the parameters of the top-level are initialized.

Initialization Use jittered
of top-level images as Error
parameters labeled?

Random No 13.4%
Random Yes 7.1%

DBN top-level
model with Yes 5.0%
5.2% error

Table 6.5: NORB test set error rates for discriminative third-order models (i.e. third-order models
trained to representP (l|v)) at the top level. They all use the same greedily pre-trained lower layer. The
only difference among them is how the parameters are initialized.

We compare training the discriminative top-level model “from scratch” (random initialization) ver-
sus initializing its parameters to those of a generative model learned by the hybrid algorithm. We also
compare the effect of using the jittered images as extralabeledcases. As mentioned before, it is possi-
ble to assign the jittered images the same labels as the original NORB images they aregenerated from,
which expands the labeled training set by 25 times.

The bottom two rows of table 6.5 compare the accuracy of a discriminative third-order model with
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and without generative pre-training. Generative pre-training significantly improves accuracy, but using
the labels of the jittered images for the subsequent discriminative training only makes a small additional
improvement. We have also noticed that fine-tuning the lower layer discriminatively leads to rapid
overfitting which quickly makes the test error much higher than 5.0%.

6.7 Conclusions

Our results make a strong case for the use of generative modeling in objectrecognition. The main two
points are:
1) Unsupervised, greedy, generative modeling can learn representations of the input images that support
much more accurate object recognition than the raw pixel representation.
2) IncludingP (v|l) in the objective function for training the top-level model is much better than using
P (l|v) alone, or learningP (v, l) using CD.

In future work we plan to factorize the third-order Boltzmann machine as described in Taylor and
Hinton [2009] so that some of the top-level features can be shared across classes.



Chapter 7

Conclusions

7.1 Summary of the Thesis

The aim of the thesis was to show that generative/reconstructive models ofimages are useful for object
recognition. The thesis demonstrated this idea in four different ways: 1) incorporating complex domain
knowledge into the learning by inverting a synthesis model, 2) using the latent image representations of
generative/reconstructive models for recognition, 3) optimizing a hybrid generative-discriminative loss
function, and 4) creating additional synthetic data for better training of discriminative models. We end
with a summary of the key results in the thesis.

Chapter 3 presented the breeder learning algorithm for learning an analysis model given a synthesis
model and a set of images. We applied it to three different synthesis models which generate images
of eyes, faces, and in chapter 4, handwritten digits. The results support two observations: 1) the input
variables of a synthesis model can be a sensible reconstructive representation for the class of images it is
designed to produce, and 2) empirically, breeder learning appears general enough to invert fairly differ-
ent synthesis models. Once an analysis model is learned, it becomes possibleto train a neural network to
act as an emulator of the synthesis model. With such an emulator, inferring the synthesis inputs from an
image becomes an iterative optimization problem that directly optimizes pixel reconstruction error. As
the reconstruction results for face images showed, iterative inference gives better reconstruction error
than one-step inference.

Chapter 4 applied breeder learning to a physically-based model of handwritten digits. The model
consists of a simple mass-spring system in which the mass represents the tip of the pen and the four
springs correspond to arm muscles. By varying the spring stiffnesses over time, the mass can be made
to move along a particular trajectory. A digit image is then generated by applyingink on the trajectory.
The resulting “motor program” representation’s usefulness for classification is evaluated on the MNIST
dataset in three different ways. The first method assigns to a test image a set of energies under class-
specific models, and uses them as input to a logistic regression classifier. Even with orders of magnitude
fewer discriminatively trained parameters, this method still outperforms baseline models such as a pixel-
based logistic regression classifier or a fully-connected feedforwardneural network. The second method
creates more labeled training cases by corrupting the motor programs of the original MNIST training
images. These synthetic examples turned out to significantly improve the performance of every type
of classifier we tried – kNN, fully-connected feedforward neural networks and convolutional neural
networks. The third method takes the features from the analysis models, putsthem in a neural network
classifier, and trains them discriminatively. When applied to a convolutional network and trained with
additional synthetic examples, this method resulted in a top-5 error rate on the MNIST prediction task.

Chapter 5 looked at the problem of simultaneously learning a clustering of thedata and a cluster-
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specific latent representation. In particular, we proposed a new mixture model in which the component
distributions are represented by RBMs. The traditional way of formulating such a model, with the mix-
ing proportions as explicit parameters and the component distributions as RBMs, is intractable because
the probability of a data vector under an RBM is intractable to compute. Surprisingly, this intractabil-
ity is avoided by letting the mixing proportions be implicitly defined by the parameters of the model.
The resulting mixture model can be trained with contrastive divergence. Weshowed that such a model
is useful for learning cluster-specific features. By using the responsibilities of an image as input to a
logistic regression classifier, it is possible to outperform the same classifiertrained directly on pixels.

Chapter 6 presented an application of Deep Belief Networks to the NORB 3D object recognition
task. We modified the original DBN model with a new type of top-level model anda new hybrid
generative-discriminative algorithm for training it. It produced results that were close to the state-of-
the-art performance given by a convolutional network that has knowledge about 2D image topology and
local translation invariance hand-coded into it. When we used semi-supervised learning – an advantage
our model has over purely discriminative models like convolutional networks– with unlabeled images
created by applying small global shifts to the original training images, our model achieved the current
best published result on the NORB dataset.

7.2 Limitations of Generative Models

While the thesis highlighted the advantages of generative/reconstructive models, they also have a num-
ber of disadvantages. At a broad level, we can identify three basic limitations:

1. Approximating the true generative distribution poorly: When we train a standard parametric
generative model (e.g. RBM) on real-world images with a limited number of parameters and no
built-in domain knowledge, it usually learns only a crude approximation to the real generative
system that produced those images. For example, an RBM with say, 500 hidden units, trained on
handwritten digit images is unlikely to figure out the physics of hand muscles, even if a very large
training set is used. The problem is that a generic model with a small number ofparameters is not
expressive enough to represent the true image distribution.

One way to deal with this problem is to build into the model, by hand, detailed domain knowledge
about how the images are generated. Then the model may need only a small number of learnable
parameters to approximate the real system well enough. Applications of breeder learning in chap-
ters 3 and 4 are examples of this approach. Breeder learning is especiallysensible when domain
knowledge already exists in the form of a realistic graphics program, in which case the additional
hand-engineering effort is small.

Alternatively, the generative model’s expressiveness can be increased by using a larger number of
parameters and many layers of nonlinear features. This approach aims to keep the hand-designing
effort to a minimum and rely as much as possible on the data itself to build the model. Deep
Belief Nets and Deep Boltzmann Machines (Salakhutdinov and Hinton [2009]) are examples of
such large-scale, deep, generative models. With more parameters, optimizing a nonconvex cost
function for learning becomes more difficult. The main advance of DBNs is thegreedy layer-wise
learning strategy that is designed to find better solutions to the optimization problem than those
found by simultaneously updating all model parameters throughout learning.

2. Need for segmented input: Generative models try to explainall the structure in their input,
regardless of whether that structure is directly relevant for the object recognition task. This is a
disadvantage when objects are unsegmented and appear superimposed on structured background
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(e.g. faces in uncontrolled scenes collected off the web). A generativemodel wastes capacity
trying to model the background structure, while a discriminative model can get away without
segmentation by learning to detect only those differences across object classes that are reliably
predictive of the label. The problem is that generative models need to explain everything, and
without segmentation, there are too many things going on in the image to explain.

So for a generative model to be effective, it needs to be used in combination with a reliable
image segmentation algorithm. Without it, applications of generative models will be limited
mostly to datasets that have no structured background, such as MNIST and normalized-uniform
NORB. Unfortunately, segmentation itself is a difficult unsolved problem. In this context, the
ability of discriminative models to ignore background clutter is an advantage. But as segmentation
algorithms improve, the importance of this advantage will decline.

3. Intractable model evaluation: Given two generative models, deciding which one is a better fit
to the data is done by computing the probability each of them assigns to some held-out set of data.
This computation is intractable for many interesting classes of generative models. For example,
computing the probability of a data vector under an RBM (and similar energy-based models)
requires computing the partition function, which involves summing an exponential number of
terms. The sum is intractable for all but small, toy RBMs.

Salakhutdinov and Murray [2008] have used Annealed Importance Sampling to approximate the
partition function of an RBM, but it can give an estimate with a large error without indicating
that the estimate is unreliable. In the absence of a direct estimate, even an upper bound on the
partition function can be useful, as it gives a lower bound on the probabilityof a data vector. Then
the lower bound for two models can be compared for a partial indication of which one may be
better. But computing a strict upper bound on the partition function is also intractable.

Not being able to directly measure a generative model’s quality is a disadvantage, and perhaps
the main obstacle to developing better generative models. In practice, it means that there is no
objective way to decide, e.g., whether an RBM with 100 hidden units is better than one with 200.
Discriminative models do not have this disadvantage since they can be easily evaluated by their
classification error on a held-out set. When training RBMs and DBNs on images, one can try to
assess progress during training by computing the model’s squared pixel reconstruction error, or
visually checking whether the filters learned by the model look sensible. Butthese are at best very
indirect indicators of the quality of the model. For example, an RBM learned withCD can show a
deceptively large improvement in pixel reconstruction error during training simply by getting the
Markov chain to not mix well. There is clearly a need for better ways of evaluating RBMs, and
generative models in general.

7.3 Looking Ahead

As these limitations show, learning good generative models is a long-term research undertaking rather
than a solved problem. Nevertheless, the results in this thesis have hopefullyconvinced the reader that
generative modeling has immediate applications to object recognition, and that further advances will
lead to better results. Unlabeled images are becoming easier to collect in large quantities from the
internet. GPUs, multi-core CPUs and cheaper RAM are making it more and moretractable to train
much larger scale models than those currently being used. In this context, thetools and ideas presented
here will only increase in their importance.

Going forward what we need are better generative models with better waysof training them and
performing inference with them. Recent developments like DBNs are a step in that direction. With
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more such advances, eventually it should become practical to learn a complex, large-scale generative
model that approximates the true underlying generative process much moreclosely than current models
do. Once that happens, the full potential of generative modeling and unsupervised learning for object
recognition will be achieved, and computer vision systems will approach human-level performance at
object recognition.
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Appendix A

Datasets

A.1 MNIST

The dataset contains images of handwritten digits belonging to ten different classes (0 to 9). The digits
are size-normalized and centred within a28 × 28 image. Examples are shown in figure A.1. The
training-test split of the dataset is pre-specified by its creators, so thereis no ambiguity about how to
measure performance. The training set has 60,000 images in total and the test set has 10,000 images.
The pixels are real-valued and lie in the interval[0, 1], with most values at the extremes of the interval.
The dataset can be downloaded from http://yann.lecun.com/exdb/mnist/.

Figure A.1: Randomly selected examples from the MNIST training set.

A.2 NORB

NORB contains stereo-pair, grayscale images of toy objects under controlled lighting conditions and
viewpoints. The five object classes areanimals, humans, planes, trucks, andcars. The dataset comes
in two versions,normalized-uniformand jittered-cluttered. In this thesis we only use thenormalized-
uniform version, which shows objects at a normalized scale and position with a uniform background.
The dimensions of each image in the stereo-pair are96× 96. Examples are shown in figure A.2(a).

There are 10 different instances of each object class, imaged under 6illuminations and 162 view-
points (18 azimuth values× 9 elevation values). The instances are split into two disjoint sets (pre-
specified in the database) of five each to define the training and test sets, both containing 24,300 cases
(5 object types× 5 instances× 6 illuminations× 162 viewpoints). So at test time a trained model has
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to recognizeunseen instancesof the same object classes. Figure A.2(b) shows the training (left) and
test instances of each class in one row. Figure A.3 shows the various viewpoints from which each object
is photographed. Figure A.3 shows the various lighting conditions. For moredetails, see LeCun et al.
[2004]. The dataset is available at http://www.cs.nyu.edu/∼ylclab/data/norb-v1.0/.

  

(a) Stereo-pair training cases
  

(b) Training (left) and test instances

Figure A.2: (a) Randomly selected examples from the NORB training set for the five different classes.
Each row corresponds to one class. (b) All ten instances of each classwith only one image from the
stereo-pair, shown in the same lighting condition.

Figure A.3: The viewpoints from which each object in NORB is photographed. There are 9 elevation
values (one per row) and 18 azimuth values (one per column) for a total of162 viewpoints.

Figure A.4: The six lighting conditions in NORB.


