

Efficient Belief Propagation for MRFs in Low-Level Vision

Stefan Roth

Department of Computer Science Brown University

Joint work with Xiangyang Lan, Dan Huttenlocher, and Michael Black

[Bertalmio et al., 2000]

old photograph

user-supplied mask

Image Inpainting

reconstructed photo

user-supplied mask

CIAR Summer School

August 18, 2006

movie frame with "film grain"

Thanks to Kevin Manbeck and Jay Cassidy (MTI)

denoised frame

CIAR Summer School

August 18, 2006

movie frame with "film grain"

denoised frame

CIAR Summer School

August 18, 2006

- Other applications of interest:
 - Stereo
 - Optical flow
 - Super-resolution
- Both likelihood and prior commonly formulated as Markov random field (MRF).
- Consider two model types here:
 - Classical pairwise MRFs
 - More expressive high-order MRFs.

Review: Factor Graphs

$$p(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = \frac{1}{Z} \cdot \Psi_{1256}(x_1, x_2, x_5, x_6) \cdot \Psi_{23}(x_2, x_3)$$
$$\cdot \Psi_{37}(x_3, x_7) \cdot \Psi_{67}(x_6, x_7)$$
$$\cdot \Psi_{34}(x_3, x_4) \cdot \Psi_{78}(x_7, x_8)$$

CIAR Summer School

August 18, 2006

Pairwise Potentials

$$p(\mathbf{x}|\mathbf{y}) = \frac{1}{Z} \cdot \underbrace{\prod_{i} \Psi_L(x_i, y_i)}_{\text{likelihood}} \cdot \underbrace{\prod_{\substack{n \text{ eighbors} \\ x_i, x_j}} \Psi_P(x_i, x_j)}_{\text{prior}}$$

- What are the potential functions in lowlevel vision applications?
- Likelihood:
 - Application specific
 - Often a simple Gaussian, e.g.:

$$\Psi_L(x_i, y_i) \propto e^{-\frac{1}{2\sigma_L^2}(x_i - y_i)^2}$$

• Prior:

• Gaussian potentials:

$$\Psi_P(x_i, x_j) = e^{-\frac{1}{2\sigma^2}(x_i - x_j)^2}$$

• Prior:

• Gaussian potentials:

$$\Psi_P(x_i, x_j) = e^{-\frac{1}{2\sigma^2}(x_i - x_j)^2}$$

-200

-100

• "Robust" potentials (e.g., t-distribution):

$$\Psi_P(x_i, x_j) = \left(1 + \frac{1}{2\sigma^2}(x_i - x_j)^2\right)^{-\alpha}$$

- non-convex energy
- Not covered here: Parameter estimation

100

200

Beyond pairwise MRFs

- Pairwise MRFs do not capture the rich spatial structure of natural images:
 - Interactions are too local.
- How do we resolve that?
 - Turn to richer, high-order models for the prior.
 - E.g. Fields of Experts [Roth & Black, 2005].

- Likelihood model stays the same.
- Simplest case: Prior has 2x2 factors (cliques).
 - larger factors possible (e.g. 3x3, or 5x5)

$$\mathbf{x}_{C_1} = (x_1, y_1)$$

:

$$\mathbf{x}_{C_4} = (x_4, y_4)$$

$$\mathbf{x}_{C_5} = (x_1, x_2, x_3, x_4)$$

[Roth & Black, 2005]

- Model high-order factor using Product of Experts [Hinton, 1999].
- **Expert distribution** • Formalization: K $\Psi_P(\mathbf{x}_C) = \prod \phi(\mathbf{J}_k^{\mathrm{T}} \mathbf{x}_C; \alpha_k)$ k=1

Example filters

CIAR Summer School

August 18, 2006

- Our goals are:
 - to compute marginals of the posterior,
 - or to compute an assignment that maximizes the posterior (MAP).
- Loopy belief propagation is very popular for approximate inference [Weiss, 1997]:
 - Sum-product BP for (approximately) computing marginals.
 - Max-product BP for (approximately) computing MAP assignments.

- Equivalent to standard loopy BP on pairwise graphs, but more general.
- Two types of messages:
 - From variable node i to factor node C:
 - From factor node C to variable node i: $m_{C \rightarrow i}(x_i)$
- Belief for variable node i:

$$b(x_i) \propto \prod_{C \in \mathcal{N}(i)} m_{C \to i}(x_i)$$

$$n_{i \to C}(x_i)$$

$$n_{i \to C}(x_i) \propto \prod_{C' \in \mathcal{N}(i) \setminus C} m_{C' \to i}(x_i)$$

- Very easy to compute for discrete variables.
- Applies to sum-product and max-product.

$$\begin{pmatrix} m_{C \to i}(x_i) \propto \sum_{\mathbf{x}_C \setminus x_i} \Psi_C(\mathbf{x}_C) \prod_{i' \in \mathcal{N}(C) \setminus i} n_{i' \to C}(x'_i) \\ \text{sum-product BP} \end{pmatrix}$$
$$\begin{pmatrix} m_{C \to i}(x_i) \propto \max_{\mathbf{x}_C \setminus x_i} \Psi_C(\mathbf{x}_C) \prod_{i' \in \mathcal{N}(C) \setminus i} n_{i' \to C}(x'_i) \\ \text{max-product BP} \end{pmatrix}$$

 Often expensive to compute: Have to sum or max over a potentially huge space.

- Per message cost (*N* number of discrete bins, often as many as 256)
 - Pairwise model: $\mathcal{O}(N^2)$
 - mxm factors: $\mathcal{O}(N^{m^2})$
- What can we do to make this tractable?
 - Pairwise model: Apply distance transform [Felzenszwalb & Huttenlocher, 2004].
 - 2x2 factors: Restrict the number of bins.

[Felzenszwalb & Huttenlocher, 2004]

- Max-product (actually min-sum) with pairwise models.
- Speed up message computation using distance transform techniques:
 - Convex, symmetric potentials $\Psi(x_1, x_2) = \Psi'(|x_1 x_2|)$
 - Can compute the lower envelope of potentials in linear time.
 - Allows us to compute message in $\mathcal{O}(N)$ instead of $\mathcal{O}(N^2)$.

Distance Transform (II)

- Very fast, but slightly disappointing results:

CIAR Summer School

Non-convex Potentials

- What could be the problem?
 - Gaussian or truncated Gaussian potentials do not match the statistics of natural images well.
- We could use non-convex potentials, e.g. a t-distribution.
 - But: Distance transform doesn't apply to non-convex potentials!

 Approximate non-convex potentials as the lower envelope of several convex potentials:

CIAR Summer School

August 18, 2006

Details

- Closed form for a number of "robust" potentials [Black & Rangarajan, 1996].
- Fit a given number of quadratics to potential by minimizing KL-divergence.
- Computational burden of message computation (q number of quadratics): $\mathcal{O}(q \cdot N)$

Denoising Results

Noisy image

Denoised with tdistrib. potential

Approximate potentials (8 quadratics)

CIAR Summer School

August 18, 2006

High-order Models

- Decent performance with non-convex pairwise potentials.
- But: High-order potentials promise to be more powerful.
- Can we do unmodified BP on the factor graph even for 2x2 factors?
 - No, each message requires 2³² computations.

Key Idea

- For most pixels, we don't really need to represent the entire [0..255] range.
- Limit computations to smaller range [a..b]
 - $\bullet~$ Determine $a~\mbox{and}~b~\mbox{individually per pixel.}$
 - Denoising: Use neighborhood of pixels + noise scale.
 - Other applications: First approximate with pairwise model.
- Optional: Discretize [a..b] coarsely.

Noisy image

Denoised with tdistrib. potential

Denoised with 2x2 FoE

August 18, 2006

Comparison

truncated Gaussian

Student-t

Student-t approximation

2x2 FoE

Evaluation on 10 different images: Significant PSNR improvements (FoE over Student-t over truncated Gaussian)

- Pairwise graph (256x256 image):
 - Standard algorithm: ~3 min / iteration
 - Distance transform with truncated Gaussian:
 ~5 sec / iteration
 - Distance transform with approximated nonconvex potential: ~30 sec / iteration
- High-order graph (256x256 image):
 - Restricted value range: ~16 min / iteration

- MRFs are a popular model for image processing, optical flow estimation, stereo etc.
- Loopy belief propagation for approximate inference has enjoyed enormous popularity.
- LBP has a large computational complexity, especially for high-order models.
 - Not always practical.

- Pairwise models:
 - Distance transform speed-up for convex potentials.
 - Approximate non-convex potentials as lower envelope of several convex ones.
- High-order models:
 - Standard algorithm impractical.
 - Restrict the value range individually for every pixel.

- X. Lan, S. Roth, D. Huttenlocher, and M. J. Black: Efficient Belief Propagation with Learned Higher-Order Markov Random Fields. ECCV 2006.
- Recent related work:
 - C. Pal, C. Sutton, and A. McCallum: Sparse Forward-Backward using Minimum Divergence Beams for Fast Training of Conditional Random Fields. ICASSP 2006.