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Image Inpainting

user-supplied maskold photograph

[Bertalmio et al., 2000]
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Image Inpainting

user-supplied maskreconstructed photo
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Image and Video Denoising
movie frame with “film grain” denoised frame

Thanks to Kevin Manbeck and Jay Cassidy (MTI)
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Image and Video Denoising
movie frame with “film grain” denoised frame

Thanks to Kevin Manbeck and Jay Cassidy (MTI)

True image “Noisy” observation

Prior probability
of true image x

Likelihood of noisy image y
given true image x

p(x|y) ∝ p(y|x) · p(x)
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Low-level Vision & MRFs

• Other applications of interest:

• Stereo

• Optical flow

• Super-resolution

• Both likelihood and prior commonly 
formulated as Markov random field (MRF).

• Consider two model types here:

• Classical pairwise MRFs

• More expressive high-order MRFs.
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Review: Factor Graphs
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Pairwise Markov Random Fields (MRFs)

recovered image

e.g., [Geman & Geman, 1984]
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Pairwise Potentials

• What are the potential functions in low-
level vision applications?

• Likelihood:

• Application specific

• Often a simple Gaussian, e.g.:

p(x|y) =
1
Z

·
∏

i

ΨL(xi, yi)

︸ ︷︷ ︸
likelihood

·
∏

neighbors
xi,xj

ΨP (xi, xj)

︸ ︷︷ ︸
prior

ΨL(xi, yi) ∝ e
− 1

2σ2
L

(xi−yi)
2
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• Prior:

• Gaussian potentials:

Pairwise Potentials (II)

Log-histogram of the image gradient
[Ruderman, 1997],  [Huang & Mumford, 1999]

−300 −200 −100 0 100 200 300
−18

−16

−14

−12

−10

−8

−6

−4

ΨP (xi, xj) = e−
1

2σ2 (xi−xj)
2



CIAR Summer School Stefan RothAugust 18, 2006

• Prior:

• Gaussian potentials:

• “Robust” potentials (e.g., t-distribution):

• non-convex energy

• Not covered here: Parameter estimation

Pairwise Potentials (II)
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Beyond pairwise MRFs

• Pairwise MRFs do not capture the rich 
spatial structure of natural images:

• Interactions are too local.

• How do we resolve that?

• Turn to richer, high-order models for the prior.

• E.g. Fields of Experts [Roth & Black, 2005].

denoising
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High-order MRF Models

• Likelihood model stays the same.

• Simplest case: Prior has 2x2 factors (cliques).

• larger factors possible (e.g. 3x3, or 5x5)

x1 x2

x3 x4

y1 y2

y3 y4

C1

xC5 = (x1, x2, x3, x4)

xC1 = (x1, y1)

xC4 = (x4, y4)

...

C2

C3 C4

C5
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Fields of Experts

• Model high-order factor using Product of 
Experts [Hinton, 1999].

• Formalization:

[Roth & Black, 2005]

ΨP (xC) =
K∏

k=1

φ(JT
k xC ;αk)

Example filters

Expert distribution
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Review: Probabilistic Inference

• Our goals are:

• to compute marginals of the posterior,

• or to compute an assignment that maximizes the 
posterior (MAP).

• Loopy belief propagation is very popular 
for approximate inference [Weiss, 1997]:

• Sum-product BP for (approximately) computing 
marginals.

• Max-product BP for (approximately) computing 
MAP assignments.
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Loopy BP on Factor Graphs

• Equivalent to standard loopy BP on 
pairwise graphs, but more general.

• Two types of messages:

• From variable node i to factor node C:

• From factor node C  to variable node i:

• Belief for variable node i:

ni→C(xi)
mC→i(xi)

b(xi) ∝
∏

C∈N (i)

mC→i(xi)
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Variable Node to Factor Node

• Very easy to compute for discrete 
variables.

• Applies to sum-product and max-product.

ni→C(xi) ∝
∏

C′∈N (i)\C

mC′→i(xi)
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Factor Node to Variable Node

• Often expensive to compute: Have to sum 
or max over a potentially huge space.

mC→i(xi) ∝
∑

xC\xi

ΨC(xC)
∏

i′∈N (C)\i

ni′→C(x′i)

mC→i(xi) ∝ max
xC\xi

ΨC(xC)
∏

i′∈N (C)\i

ni′→C(x′i)

sum-product BP

max-product BP
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Computational Burden

• Per message cost (N - number of discrete 
bins, often as many as 256)

• Pairwise model:

• mxm factors:

• What can we do to make this tractable?

• Pairwise model:  Apply distance transform 
[Felzenszwalb & Huttenlocher, 2004].

• 2x2 factors: Restrict the number of bins.

O(N2)
O(Nm2

)
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Distance Transform

• Max-product (actually min-sum) with 
pairwise models.

• Speed up message computation using 
distance transform techniques:

• Convex, symmetric potentials

• Can compute the lower envelope
of potentials in linear time.

• Allows us to compute message
in              instead of             .

[Felzenszwalb & Huttenlocher, 2004]

In this form it is apparent that the minimization over fp can
be performed once, independent of the value of fq. Thus the
overall time required to compute the message is O(k). First
we compute minfp h(fp), and then use that to compute the
message value for each fq in constant time. Note that this
idea still applies when instead of a single constant d there
is a constant dpq for each edge in the graph. This is use-
ful when the result of some other process, such as edge de-
tection or segmentation, suggests that discontinuities should
be penalized more or less for different pairs of pixels.

Another class of cost functions are based on the degree
of difference between labels. For example, in stereo and im-
age restoration the labels {0, . . . , k − 1} correspond to dif-
ferent disparities or intensity values. The cost of assigning
a pair of labels to neighboring pixels is generally based on
the amount of difference between these quantities. In order
to allow for discontinuities, as the values are not smoothly
changing everywhere, the cost function should be robust,
becoming constant as the difference becomes large. One
common such function is the truncated linear model, where
the cost increases linearly based on the distance between the
labels fp and fq up to some level,

V (fp, fq) = min(s||fp − fq||, d), (4)

where s is the rate of increase in the cost, and d controls
when the cost stops increasing. A similar cost function was
used in a BP approach to stereo [8], although rather than
truncating the linear cost they have a function that changes
smoothly from being almost linear near the origin to a con-
stant value as the cost increases.

We first consider the simpler problem of a pure linear
cost without truncation given by V (fp, fq) = s||fp − fq||.
Substituting into equation (3) yields,

mt
pq(fq) = min

fp

(s||fp − fq|| + h(fp)) . (5)

One can envision the labels as being embedded in a grid.
Note that this is a grid of labels and is not related to the im-
age grid. The grid of labels is one-dimensional in the case
of stereo or image restoration, and two-dimensional in the
case of motion. The minimization in (5) can then be seen
as the lower envelope of k upward facing cones of slope
s rooted at (fp, h(fp)). The one-dimensional case is il-
lustrated in Figure 1. This lower envelope calculation is
similar to that performed in computing a distance transform
(e.g., [2]). For the distance transform the cones are placed
at height 0 and occur only at selected values rather than ev-
ery grid point. Despite these differences, the standard dis-
tance transform algorithm from [2] can be modified to com-
pute messages with the linear cost.

It is straightforward to verify that the following sim-
ple two-pass algorithm correctly computes the message
in equation (5) for the one-dimensional case. The two-
dimensional case is similar. First we initialize the message

0 1 2 3

Figure 1: An illustration of the lower envelope of four cones
in the case of one-dimensional labels (e.g. stereo dispar-
ity or image restoration). Each cone is rooted at location
(fp, h(fp)). The darker line indicates the lower envelope.

vector with the values of h, and then update its entries se-
quentially. This is done “in place” so that updates affect one
another,

for fq from 1 to k − 1 :
m(fq) ← min(m(fq), m(fq − 1) + s).

The backward pass is analogous,

for fq from k − 2 to 0 :
m(fq) ← min(m(fq), m(fq + 1) + s).

Consider the example in Figure 1. The initial value of m is
(3, 1, 4, 2). After the forward pass we have (3, 1, 2, 2), and
after the backward pass we get (2, 1, 2, 2). The key prop-
erty that allows us to use this algorithm is that the labels
are embedded in a grid, and the discontinuity cost is a lin-
ear function of distance in the grid.

Messages with the truncated linear model in equation (4)
can now be easily be computed in O(k) time. First we com-
pute what the message would be with the linear model and
then compute the element-wise minimum of the linear cost
message and the value used for the Potts computation,

mpq(fq) = min(m(fq),min
fp

h(fp) + d).

Another useful cost function that can be computed in a
similar manner is the truncated quadratic, which grows pro-
portionally to ||fp − fq||2 up to some level and then be-
comes a constant thereafter. However we do not cover the
algorithm for the truncated quadratic case here.

4. BP on the Grid Graph

In this section we show that for a bipartite graph BP can
be performed more efficiently while getting essentially the

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’04) 

1063-6919/04 $20.00 © 2004 IEEE 

O(N2)O(N)

Ψ(x1, x2) = Ψ′(|x1 − x2|)
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Distance Transform (II)

• Can be extended to combinations of 
convex potentials, e.g. truncated Gaussians.

• Very fast, but slightly disappointing results:
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Non-convex Potentials

• What could be the problem?

• Gaussian or truncated Gaussian 
potentials do not match the statistics 
of natural images well.

• We could use non-convex 
potentials, e.g. a t-distribution.

• But: Distance transform doesn’t apply 
to non-convex potentials!
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Key Idea

• Approximate non-convex potentials as the 
lower envelope of several convex potentials:

• Closed form expression for t-distributions:
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Details

• Closed form for a number of “robust” 
potentials [Black & Rangarajan, 1996].

• Fit a given number of quadratics to 
potential by minimizing KL-divergence.

• Computational burden of message 
computation (q - number of quadratics):

O(q · N)
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Denoising Results

Noisy image Denoised with t-
distrib. potential

Approximate 
potentials

(8 quadratics)
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High-order Models

• Decent performance with non-convex 
pairwise potentials.

• But: High-order potentials promise to be 
more powerful.

• Can we do unmodified BP on the factor 
graph even for 2x2 factors?

• No, each message requires 232 computations.
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Key Idea

• For most pixels, we don’t really need to 
represent the entire [0..255] range.

• Limit computations to smaller range [a..b]

• Determine a and b individually per pixel.

• Denoising: Use neighborhood of pixels + noise 
scale.

• Other applications: First approximate with 
pairwise model.

• Optional: Discretize [a..b] coarsely.
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Results

Noisy image Denoised with t-
distrib. potential

Denoised with 2x2 
FoE
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Comparison

Efficient Belief Propagation with Learned Higher-Order MRFs 279

Fig. 4. Image denoising. Top row: (left) Original image. (middle) Noisy image (σ =
10). (right) Max-product BP with model from [4]. Middle row: (left) Max-product BP
with t-distribution potentials. (middle) Max-product BP with approximate potentials
(8 quadratics). (right) Max-product BP with learned 2×2 model. Bottom row: Detail
view. From left to right: Model from [4], BP with t-distribution potentials, BP with
approximate potentials (8 quadratics), BP with learned 2 × 2 model.

truncated 
Gaussian Student-t Student-t 

approximation 2x2 FoE

Evaluation on 10 different images: Significant PSNR 
improvements (FoE over Student-t over truncated Gaussian)
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Running Time

• Pairwise graph (256x256 image):

• Standard algorithm:                 ~3 min / iteration

• Distance transform with truncated Gaussian:  
                                             ~5 sec / iteration

• Distance transform with approximated non-
convex potential:                   ~30 sec / iteration

• High-order graph (256x256 image):

• Restricted value range:           ~16 min / iteration
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Summary

• MRFs are a popular model for image 
processing, optical flow estimation, stereo 
etc.

• Loopy belief propagation for approximate 
inference has enjoyed enormous popularity.

• LBP has a large computational complexity, 
especially for high-order models.

• Not always practical.
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• Pairwise models:

• Distance transform speed-up for convex 
potentials.

• Approximate non-convex potentials as lower 
envelope of several convex ones.

• High-order models:

• Standard algorithm impractical.

• Restrict the value range individually for every 
pixel.

Summary (II)
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