
Lecture 2a:

Latent Variables Models and
Learning with the EM Algorithm

Sam Roweis

Thursday August 17, 2006
CIAR Summer School, Toronto

Unobserved Variables

•We have been assuming that we observe all the random variables in
our model at training time, and all the “inputs” at test time.

• But certain variables Q in our models may be unobserved,
either some of the time or always,
either at training time or at test time.

1X 2X 3X X 4 X 5 X6

1Q 2Q 3Q Q4 Q5 Q6

(Graphically, we will use shading to indicate observation.)

Partially Unobserved (Missing) Variables

• If variables are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values

• In this case, we can still model the joint distribution, but we define
a new cost function in which we sum out or marginalize the missing
values at training or test time:

ℓ(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log p(xm|θ)

=
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

y

p(xm,y|θ)

[Recall that p(x) =
∑

q p(x, q).]

Latent Variable Models

•What to do when a variable z is always unobserved?
Depends on where it appears in our model. If we never condition on
it when computing the probability of the variables we do observe,
then we can just forget about it and integrate it out.
e.g. given y,x fit the model p(z,y|x) = p(z|y)p(y|x,w)p(w).
(In other words if it is a leaf node.)

• But if z is conditioned on, we need to model it:
e.g. given y,x fit the model p(y|x) =

∑

z p(y|x, z)p(z)

X

Z

X

Z

Where Do Latent Variables Come From?

• Latent variables may appear naturally, from the structure of the
problem, because something wasn’t measured, because of faulty
sensors, occlusion, privacy, etc.

• But also, we may want to intentionally introduce latent variables to
model complex dependencies between variables without looking at
the dependencies between them directly.
This can actually simplify the model (e.g. mixtures).

nX

nZ

N

nX

(a) (b)

N

Clustering vs. Classification
Latent Factor Models vs. Regression

• You can think of clustering as the problem of classification
with missing class labels.

X

Z

X

Z

• You can think of factor models (such as factor analysis, PCA, ICA,
etc.) as linear or nonlinear regression with missing inputs.

Why is Learning Harder?

• In fully observed iid settings, the probability model is a product
thus the log likelihood is a sum where terms decouple.
(At least for directed models.)

ℓ(θ;D) = log p(x, z|θ)

= log p(z|θz) + log p(x|z, θx)

•With latent variables, the probability already contains a sum, so the
log likelihood has all parameters coupled together via log

∑

():

ℓ(θ;D) = log
∑

z

p(x, z|θ)

= log
∑

z

p(z|θz)p(x|z, θx)

(Just as with the partition function in undirected models.)

Learning with Latent Variables

• Likelihood ℓ(θ;D) = log
∑

z p(z|θz)p(x|z, θx) couples parameters:

1X 2X 3X

Z

(a) (b)

1X 2X 3X

Z

•We can treat this as a black box probability function and just try to
optimize the likelihood as a function of θ (e.g. gradient descent).
However, sometimes taking advantage of the latent variable
structure can make parameter estimation easier.

• Good news: soon we will see the EM algorithm which allows us to
treat learning with latent variables using fully observed tools.

• Basic trick: guess the values you don’t know.
Basic math: use convexity to lower bound the likelihood.

Mixture Models (1 discrete latent var)

•Most basic latent variable model with a single discrete node z.

• Allows different submodels (experts) to contribute to the
(conditional) density model in different parts of the space.

•Divide and conquer idea: use simple parts to build complex models.
(e.g. multimodal densities, or piecewise-linear regressions).

(a)

(b)

nX

nZ

N
nY

x

y

x

x

x

x

x

x

x
x

x
x

x

x

x

x

x
xx

x x
xx

x

x x

x

x

x

x

x

x

y
x

x

x

x

x

x
x

x x

x

xx

x

x

x

x

x

x
x

x

x

x

x

x

xx
x

x

nX

nZ

N
nY

0z = n 1z = n

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

Mixture Densities

• Exactly like a classification model but the class is unobserved and
so we sum it out. What we get is a perfectly valid density:

p(x|θ) =

K
∑

k=1

p(z = k|θz)p(x|z = k, θk)

=
∑

k

αkpk(x|θk)

where the “mixing proportions” add to one:
∑

k αk = 1.

•We can use Bayes’ rule to compute the posterior probability of the
mixture component given some data:

p(z = k|x, θ) =
αkpk(x|θk)
∑

j αjpj(x|θj)

these quantities are sometimes called the responsibilities.

Clustering Example: Gaussian Mixture Models

• Consider a mixture of K Gaussian components:

p(x|θ) =
∑

k

αkN (x|µk, Σk)

p(z = k|x, θ) =
αkN (x|µk, Σk)
∑

j αjN (x|µk, Σk)

ℓ(θ;D) =
∑

n

log
∑

k

αkN (xn|µk, Σk)

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

•Density model: p(x|θ) is a familiarity signal.
Clustering: p(z|x, θ) is the assignment rule, −ℓ(θ) is the cost.

Example: Mixture of Linear Regression Experts

• Each expert generates data according to a linear function of the
input plus additive Gaussian noise:

p(y|x, θ) =
∑

k

αk(x)N (y|β⊤k x, σ2
k)

• The “gating function” can be a softmax classification machine:

αk(x) = p(z = k|x) =
eη⊤k x

∑

j e
η⊤j x

• Remember: we are not modeling the density of the inputs x.

(a)

nX

nZ

N
nY

x

y
x

x

x

x

x

x
x

x x

x

xx

x

x

x

x

x

x
x

x

x

x

x

x

xx
x

x

0z = n 1z = n

Gradient Learning with Mixtures

•We can learn mixture densities using gradient descent on the
likelihood as usual. The gradients are quite interesting:

ℓ(θ) = log p(x|θ) = log
∑

k

αkpk(x|θk)

∂ℓ

∂θ
=

1

p(x|θ)

∑

k

αk
∂pk(x|θk)

∂θ

=
∑

k

αk
1

p(x|θ)
pk(x|θk)

∂ log pk(x|θk)

∂θ

=
∑

k

αk
pk(x|θk)

p(x|θ)

∂ℓk
∂θk

=
∑

k

αkrk
∂ℓk
∂θk

• In other words, the gradient is the responsibility weighted sum of
the individual log likelihood gradients.

Recap: Learning with Latent Variables

•With latent variables, the probability contains a sum, so the log
likelihood has all parameters coupled together:

ℓ(θ;D) = log
∑

z

p(x, z|θ) = log
∑

z

p(z|θz)p(x|z, θx)

(we can also consider continuous z and replace
∑

with
∫

)

• If the latent variables were observed, parameters would decouple
again and learning would be easy:

ℓ(θ;D) = log p(x, z|θ) = log p(z|θz) + log p(x|z, θx)

•One idea: ignore this fact, compute ∂ℓ/∂θ, and do learning with a
smart optimizer like conjugate gradient.

• Another idea: what if we use our current parameters to guess the
values of the latent variables, and then do fully-observed learning?
This back-and-forth trick might make optimization easier.

Expectation-Maximization (EM) Algorithm

• Iterative algorithm with two linked steps:
E-step: fill in values of ẑt using p(z|x, θt).
M-step: update parameters using θt+1← argmax ℓ(θ;x, ẑt).

• E-step involves inference, which we need to do at runtime anyway.
M-step is no harder than in fully observed case.

•We will prove that this procedure monotonically improves ℓ
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood (as any optimizer should).

• Note: EM is an optimization strategy for objective functions that
can be interpreted as likelihoods in the presence of missing data.

• EM is not a cost function such as “maximum-likelihood”.
EM is not a model such as “mixture-of-Gaussians”.

Expected Complete Log Likelihood

• For any distribution q(z) define expected complete log likelihood:

ℓq(θ;x) = 〈ℓc(θ;x, z)〉q ≡
∑

z

q(z|x) log p(x, z|θ)

• Amazing fact: ℓ(θ) ≥ ℓq(θ) +H(q) because of concavity of log:

ℓ(θ;x) = log p(x|θ)

= log
∑

z

p(x, z|θ)

= log
∑

z

q(z|x)
p(x, z|θ)

q(z|x)

≥
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

•Where the inequality is called Jensen’s inequality.
(It is only true for distributions:

∑

q(z) = 1; q(z) > 0.)

Lower Bounds and Free Energy

• For fixed data x, define a functional called the free energy:

F (q, θ) ≡
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)
≤ ℓ(θ)

• The EM algorithm is coordinate-ascent on F :
E-step: qt+1 = argmaxq F (q, θt)

M-step: θt+1 = argmaxθ F (qt+1, θt)

• EM Constructs Sequential Convex Lower Bounds

θ

likelihood

θt

F(,q)θ t+1

M-step: maximization of expected ℓc

• Note that the free energy breaks into two terms:

F (q, θ) =
∑

z

q(z|x) log p(x, z|θ)−
∑

z

q(z|x) log q(z|x)

= ℓq(θ;x) +H(q)

(this is where its name comes from)

• The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on θ, is the entropy.

• Thus, in the M-step, maximizing with respect to θ for fixed q we
only need to consider the first term:

θt+1 = argmaxθ ℓq(θ;x) = argmaxθ

∑

z

q(z|x) log p(x, z|θ)

• Usually optimizing ℓc(θ) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

E-step: inferring latent posterior

• Claim: the optimum setting of q in the E-step is:

qt+1 = p(z|x, θt)

• This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

• Proof (easy): this setting saturates the bound ℓ(θ;x) ≥ F (q, θ)

F (p(z|x, θt), θt) =
∑

z

p(z|x, θt) log
p(x, z|θt)

p(z|x, θt)

=
∑

z

p(z|x, θt) log p(x|θt)

= log p(x|θt)
∑

z p(z|x, θt)

= ℓ(θ;x) · 1

• Can also show this result using variational calculus or the fact that
ℓ(θ)− F (q, θ) = KL[q||p(z|x, θ)]

Example: Mixtures of Gaussians

• Recall: a mixture of K Gaussians:
p(x|θ) =

∑

k αkN (x|µk, Σk)
ℓ(θ;D) =

∑

n log
∑

k αkN (xn|µk, Σk)

• Learning with EM algorithm:

E− step : pt
kn = N (xn|µt

k, Σ
t
k)

qt+1
kn = p(z=k|xn, θt) =

αt
kp

t
kn

∑

j αt
jp

t
kn

M− step : µt+1
k =

∑

n qt+1
kn xn

∑

n qt+1
kn

Σt+1
k =

∑

n qt+1
kn (xn − µt+1

k)(xn − µt+1
k)⊤

∑

n qt+1
kn

αt+1
k =

1

M

∑

n

qt+1
kn

EM for MOG

(a) (c) (d)

L = 1

(e)

L = 4

(f)

L = 6

(g)

L = 8

(h)

L = 10

(i)

L = 12

Compare: K-means

• The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.

• In the K-means “E-step” we do hard assignment:

ct+1
n = argmink(xn − µt

k)⊤Σ−1
k (xn − µt

k)

• In the K-means “M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

µt+1
k =

∑

n[ct+1
k = n]xn

∑

n[ct+1
k = n]

(a) (b) (c) (d) (e) (f)

Continuous Latent Variables

• In many models there are some underlying causes of the data.

•Mixture models use a discrete class variable: clustering.

• Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe. Geometrically, this is
equivalent to thinking of a data manifold or subspace.

λ1

λ 2µ

y1

y2

y3

• To generate data, first generate a point within the manifold then
add noise. Coordinates of point are components of latent variable.

Factor Analysis

•When we assume that the
subspace is linear and that the
underlying latent variable has a
Gaussian distribution we get a
model known as factor analysis:
— data y (p-dim);
— latent variable x (k-dim)

λ1

λ 2µ

y1

y2

y3

p(x) = N (x|0, I)

p(y|x, θ) = N (y|µ + Λx, Ψ)

where µ is the mean vector, Λ is the p by k factor loading matrix, and
Ψ is the sensor noise covariance (ususally diagonal).

• Important: since the product of Gaussians is still Gaussian, the joint
distribution p(x,y), the other marginal p(y) and the conditional
p(x|y) are also Gaussian.

FA = Constrained Covariance Gaussian

•Marginal density for factor analysis (y is p-dim, x is k-dim):

p(y|θ) = N (y|µ , ΛΛ⊤+Ψ) (integrate out x)

• So the effective covariance is the low-rank outer product of two
long skinny matrices plus a diagonal matrix:

ΛT

Λ ΨCov[y]

• In other words, factor analysis is just a constrained Gaussian model.
(If Ψ were not diagonal then we could model any Gaussian and it
would be pointless.)

• Learning: how should we fit the ML parameters?

• It is easy to find µ: just take the mean of the data.
From now on assume we have done this and re-centred y.

•What about the other parameters?

EM for Factor Analysis

•We will do maximum likelihood learning using the EM algorithm.
E-step: qt+1

n = p(xn|yn, θt)
M-step: θt+1 = argmaxθ

∑

n

∫

x qt+1(xn|yn) log p(yn,xn|θ)dxn

• For E-step we need the conditional distribution (inference)
For M-step we need the expected log of the complete data.

E− step : qt+1
n = p(xn|yn, θt) = N (xn|mn,Vn)

M− step : Λt+1 = argmaxΛ

∑

n

〈ℓc(x
n,yn)〉

qt+1
n

Ψt+1 = argmaxΨ

∑

n

〈ℓc(x
n,yn)〉

qt+1
n

• Inferring the posterior mean is just a linear operation, and
theposterior covariance does not depend on observed data:

mn = β(yn − µ) V = (I + Λ⊤Ψ−1Λ)−1

where β can be computed beforehand given the model parameters.

EM Algorithm for Factor Analysis

• First, set µ equal to the sample mean (1/N)
∑

n yn, and subtract
this mean from all the data.

• Now run the following iterations:

E− step : qt+1 = p(x|y, θt) = N (xn|mn,Vn)

Vn = (I + Λ⊤Ψ−1Λ)−1

mn = VnΛ⊤Ψ−1(y − µ)

M− step : Λt+1 =

(

∑

n

ynmn⊤

)(

∑

n

Vn

)−1

Ψt+1 =
1

N
diag

[

∑

n

ynyn⊤ + Λt+1
∑

n

mnyn⊤

]

Principal Component Analysis

• In Factor Analysis, we can write the marginal density explicitly:

p(y|θ) =

∫

x
p(x)p(y|x, θ)dx = N (y|µ , ΛΛ⊤+Ψ)

• Noise Ψ mut be restricted for model to be interesting. (Why?)

• In Factor Analysis the restriction is that Ψ is diagonal (axis-aligned).

•What if we further restrict Ψ = σ2I (ie spherical)?

•We get the Probabilistic Principal Component Analysis (PPCA)
model:

p(x) = N (x|0, I)

p(y|x, θ) = N (y|µ + Λx, σ2I)

where µ is the mean vector,
columns of Λ are the principal components (usually orthogonal),
and σ2 is the global sensor noise.

PCA: Zero Noise Limit

• The traditional PCA model is actually a limit as σ2 → 0.
The model we saw is actually called “probabilistic PCA”.

• However, the ML parameters Λ∗ are the same.
The only difference is the global sensor noise σ2.

• In the zero noise limit inference is easier: orthogonal projection.

lim
σ2→0

Λ⊤(ΛΛ⊤ + σ2I)−1 = (Λ⊤Λ)−1Λ⊤

µ

y1

y2

y3

y

Direct Fitting

• For FA the parameters are coupled in a way that makes it
impossible to solve for the ML params directly.
We must use EM or other nonlinear optimization techniques.

• But for (P)PCA, the ML params can be solved for directly:
The kth column of Λ is the kth largest eigenvalue of the sample
covariance S times the associated eigenvector.

• The global sensor noise σ2 is the sum of all the eigenvalues smaller
than the kth one.

• This technique is good for initializing FA also.

• Actually PCA is the limit as the ratio of the noise variance on the
output to the prior variance on the latent variables goes to zero.
We can either achieve this with zero noise or with infinite variance
priors.

Gaussians are Footballs in High-D

• Recall the intuition that Gaussians are hyperellipsoids.

•Mean == centre of football
Eigenvectors of covariance matrix == axes of football
Eigenvalues == lengths of axes

• In FA our football is an axis aligned cigar.
In PPCA our football is a sphere of radius σ2.

PCA

εΙ

FA

Ψ

Scale Invariance in Factor Analysis

• In FA the scale of the data is unimportant: we can multiply yi by
αi without changing anything:

µi← αiµi

Λij ← αiΛij ∀j

Ψi← α2
iΨi

• However, the rotation of the data is important.

• FA looks for directions of large correlation in the data, so it is not
fooled by large variance noise.

PCA

FA

Rotational Invariance in PCA

• In PCA the rotation of the data is unimportant: we can multiply
the data y by and rotation Q without changing anything:

µ← Qµ

Λ← QΛ

Ψ← unchanged

• However, the scale of the data is important.

• PCA looks for directions of large variance, so it will chase big noise
directions.

PCA

FA

Recap: EM Algorithm

• A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

• Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: qt+1 = p(z|x, θt)
M-step: θt+1 = argmaxθ

∑

z q(z|x) log p(x, z|θ)

• In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.

