
Lecture 1a:

Probabilistic Graphical Models

Sam Roweis

Thursday August 17, 2006
CIAR Summer School, Toronto

Building Intelligent Computers

•We want intelligent, adaptive, robust behaviour in computers.

Picture: ⇒ Name: Sam Roweis

•Often hand programming not possible.

• Solution? Get the computer to program itself, by showing it
examples of the behaviour we want!
This is the learning approach to AI.

• Really, we write the structure of the program and the computer
tunes many internal parameters.

Learning and Uncertainty in AI

• Automatic System Building

– old expert systems needed hand coding
of knowledge and of output semantics

– learning automatically constructs rules
and supports all types of queries ?

?

?
?

• Statistical Models are “Probabilistic Databases”

– traditional DB technology cannot answer queries about items that
were never loaded into the dataset; probabilistic methods can:

– make decisions given partial information about the world

– account for noisy sensors or actuators

– explain phenomena not part of our models

– describe inherently stochastic behaviour in the world

Canonical Learning Tasks

• Supervised Learning: given examples of inputs and corresponding
desired outputs, predict outputs on future inputs.
Ex: classification, regression, time series prediction

• Unsupervised Learning: given only inputs, automatically discover
representations, features, structure, etc.
Ex: clustering, outlier detection, compression, rule learning

• Reinforcement Learning: given sequences of inputs, actions from a
fixed set, and scalar rewards/punishments, learn to select action
sequences in a way that maximizes expected reward.
[Not covered in this summer school.]

Applications of (Probabilistic) Learning

• Automatic speech recognition & speaker verification

• Printed and handwritten text parsing

• Face location and identification

• Tracking/separating objects in video

• Search and recommendation (e.g. google, yahoo, msn, amazon)

• Financial prediction, fraud detection (e.g. telecom/credit card)

• Insurance premium prediction, product pricing

•Medical diagnosis/image analysis (e.g. pneumonia, pap smears)

• Game playing (e.g. backgammon)

• Scientific analysis/data visualization (e.g. galaxy classification)

• Analysis/control of complex systems (e.g. freeway traffic, industrial
manufacturing plants, space shuttle)

• Troubleshooting and fault correction

Representation

• Key issue: how do we represent information about the world?
(e.g. for an image, do we just list pixel values in some order?)

→ 127,254,3,18,...

•We must pick a way of numerically representing things that exploits
regularities or structure in the data.

•One way to do this, is to rely on probability and statistics, and in
particular on random variables.

• A random variable is like a variable in a computer program that
represents a certain quantity, but its value changes depending on
which data our program is looking at. The value a random variable
is often unknown/uncertain, so we use probabilities.

Using random variables to represent the world

•We will use mathematical random variables to encode everything
we know about the task: inputs, outputs and internal states.

• Random variables may be discrete/categorical or continuous/vector.
Discrete quantities take on one of a fixed set of values,
e.g. {0,1}, {email,spam}, {sunny,overcast,raining}.
Continuous quantities take on real values.
e.g. temp=12.2, income=38231, blood-pressure=58.9

• Generally have repeated measurements of same quantities.
Convention: i, j, . . . indexes components/variables/dimensions;
n,m, . . . indexes cases/records, x are inputs, y are outputs.
– xni is the value of the ith input variable on the nth case

– ymj is the value of the jth output variable on the mth case

xn is a vector of all inputs for the nth case
X = {x1, . . . ,xn, . . . ,xN} are all the inputs

Training vs. Testing

• Training data: the X,Y we are given.
Testing data: the X,Y we will see in future.

• Training error: the average penalty we incur on the training data.
Test error: the average penalty we incur on the test data.

•What is our real goal? To do well on the data we have seen already?
Usually not. We already have the answers for that data. We want
to perform well on future unseen data. So ideally we would like to
minimize the test error. How to do this if we don’t have test data?

• Probabilistic framework to the rescue!

• This is the main advantage of the probabilistic view:
it *makes precise* what our assumptions are and
it *formally justifies* how doing anything on the training data could
ever help us on the testing data.

Sampling Assumption

• Imagine that our data is created randomly, from a joint probability
distribution p(x,y) which we don’t know.

•We are given a finite (possibly noisy) training sample:
{x1,y1, . . . ,xn,yn, . . . ,xN yN} with members n generated
independently and identically distributed (iid).

• Looking only at the training data, we construct a machine that
generates outputs f (x) given inputs.
(Possibly by trying to build machines with small training error.)

• Now a new sample is drawn from the same distribution as the
training sample.

•We run our machine on the new sample and evaluate the loss; this
is the test error.

• Central question: by looking at the machine, the training data and
the training error, what if anything can be said about test error?

Generalization and Overfitting

• Crucial concepts: generalization, capacity, overfitting.

•What’s the danger in the above setup? That we will do well on
training data but poorly on test data. This is called overfitting.

• Example: just memorize training data and give random outputs on
all other data.

• Key idea: you can’t learn anything about the world without making
some assumptions.
(Although you can memorize what you have seen).

• Both representation and hypothesis class (model choice) represent
assumptions we make.

• The ability to achieve small loss on test data is generalization.

Structure of Learning Machines

• Given some inputs, expressed in our representation, how do we
calculate something about them (e.g. this is Sam’s face)?

•Our computer program uses a mathematical function y = f (x)
x is the representation of our input (e.g. face)
y is the representation of our output (e.g. Sam)

• Hypothesis Space and Parameters:
We don’t just make up functions out of thin air. We select them
from a carefully specified set, known as our hypothesis space.

• Generally this space is indexed by a set of parameters θ which are
knobs we can turn to create different machines:
H : {f (x|θ)}

• Hardest part of doing probabilistic learning is deciding how to
represent inputs/outputs and how to select hypothesis spaces.

Loss Functions for Tuning Parameters

• Let inputs=X, correct answers=Y, outputs of our machine=f (X).

•Once we select a representation and hypothesis space,
how do we set our parameters θ?

•We need to quantify what it means to do well or poorly on a task.

•We can do this by defining a loss function L(X,Y)
(or just L(X) in unsupervised case).

• Examples:
Classification: f (xn) is predicted class. L =

∑
n[yn 6= f (xn)]

Regression: f (xn) is predicted output. L =
∑
n ‖yn − f (xn)‖

2

Clustering: µc is mean of all cases assigned to cluster c.
L =

∑
nminc ‖xn − µc‖

2

• Now set parameters to minimize average loss function.

Capacity: Complexity of Hypothesis Space

• Learning == Search in Hypothesis Space

• Inductive Learning Hypothesis: Generalization is possible.
If a machine performs well on most training data AND it is not too
complex, it will probably do well on similar test data.

• Amazingly, in some cases you can actually prove this. Typical
statement: If our hypothesis space is “not too complicated/flexible”
(has a low capacity in some formal sense), and if our training set is
“large enough” then we can bound the probability of performing
much worse on test data than on training data.
Sadly, results are so weak that they are essentially meaningless.

•Do additional capacity control by adding a penalty to the loss:

Φ(X, θ) = L(X|θ) + P (θ)

i.e. it is good to fit the data well (get low training loss) but it is also
good to bias ourselves towards simpler models to avoid overfitting.

Inductive Bias

• The converse of the Inductive Learning Hypothesis is that
generalization only possible if we make some assumptions, or
introduce some priors. We need an Inductive Bias.

• No Free Lunch Theorems: an unbiased learner can never generalize.

• Consider: arbitrarily wiggly functions or random truth tables or
non-smooth distributions.

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
?
1
1
0
?
1
?

Probabilistic Approach

• Given the above setup, we can think of learning as estimation of
joint probability density functions given samples from the functions.

• Classification and Regression: conditional density estimation p(y|x)

• Unsupervised Learning: density estimation p(x)

• The central object of interest is the joint distribution and the main
difficulty is compactly representing it and robustly learning its shape
given noisy samples.

•Our inductive bias is expressed as prior assumptions about these
joint distributions via our hypothesis class and parameter penalties.

• The main computations we will need to do during the operation of
our algorithms are to efficiently calculate marginal and conditional
distributions from our compactly represented joint model.

Joint Probabilities

• Goal 1: represent a joint distribution P(X) = P(x1,x2, . . . ,xn)
compactly even when there are many variables.

• Goal 2: efficiently calculate marginal and conditionals of such
compactly represented joint distributions.

• Notice: for n discrete variables of arity k, the naive (table)
representation is HUGE: it requires kn entries.

•We need to make some assumptions about the distribution.
One simple assumption: independence == complete factorization:

P(X) =
∏
i P(xi)

• But the independence assumption is too restrictive.
So we make conditional independence assumptions instead.

Conditional Independence

• Notation: xA ⊥ xB|xC
Definition: two (sets of) variables xA and xB are conditionally
independent given a third xC if:

P(xA,xB|xC) = P(xA|xC)P(xB|xC) ∀xC

which is equivalent to saying

P(xA|xB,xC) = P(xA|xC) ∀xC

•Only a subset of all distributions respect any given (nontrivial)
conditional independence statement. The subset of distributions
that respect all the CI assumptions we make is the
family of distributions consisitent with our assumptions.

• Probabilistic graphical models are a powerful, elegant and simple
way to specify such a family.

Probabilistic Graphical Models

• Probabilistic graphical models represent large joint distributions
compactly using a set of “local” relationships specified by a graph.

• Each random variable in our model corresponds to a graph node.

• There are directed/undirected edges between the nodes which tell
us qualitatively about the factorization of the joint probability.

• There are functions stored at the nodes which tell us the
quantitative details of the pieces into which the distribution factors.

1X

2X

3X

X 4

X 5

X6

X Y Z

• Graphical models are also known as Bayes(ian) (Belief) Net(work)s.

Directed Graphical Models

• Consider directed acyclic graphs (DAGs) over n variables.

• Each node has (possibly empty) set of parents πi.

• Each node maintains a conditional distribution p(xi|xπi)
(p > 0 and

∑
xi
p(xi|xπi) = 1 ∀πi).

•Define the joint probability to be:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)

• Factorization of the joint in terms of local conditional probabilities.

• Exponential in “fan-in” of each node instead of in total variables n.

Example DAG

• Consider this six node network: The joint probability is now:

1X

2X

3X

X 4

X 5

X6
P(x1,x2,x3,x4,x5,x6) =

P(x1)P(x2|x1)P(x3|x1)

P(x4|x2)P(x5|x3)P(x6|x2,x5)

0

1

0 1
2x

4x

0

1
x 1

0

1

0 1
x 1

2x

0

1

0 1

3x

x 1

5x 0

1

0 1
3x

0

1

0 1

0
1

6x

2x

5x

1X

2X

3X

X 4

X 5

X6

Conditional Independence and Missing Edges in DAGs

• Key point about directed graphical models:
Missing edges imply conditional independence

• Remember, that by the chain rule we can always write the full joint
as a product of conditionals, given an ordering:

P(x1,x2,x3,x4, . . .) = P(x1)P(x2|x1)P(x3|x1,x2)P(x4|x1,x2,x3) . . .

• In general, the DAG is telling us that each variable is conditionally
independent of its non-descendants given its parents:

{xi ⊥ xπ̃i|xπi}∀i

where xπ̃i are non-descendants of xi that are not its parents.

• Removing an edge into node i eliminates an argument from the
conditional probability factor p(xi|x1,x2, . . . ,xi−1)

• Remember: the graph alone represents a family of joint distributions
consistent with its CI assumptions, not any specific distribution.

Explaining Away

X

Y

Z X Z

•Q: When we condition on y, are x and z independent?

P(x,y, z) = P(x)P(z)P(y|x, z)

• x and z are marginally independent, but given y they are
conditionally dependent.

• This important effect is called explaining away (Berkson’s paradox.)

• For example, flip two coins independently; let x=coin1,z=coin2.
Let y=1 if the coins come up the same and y=0 if different.

• x and z are independent, but if I tell you y, they become coupled!

What’s Inside the Nodes/Cliques?

• For directed models we need prior functions p(xi) for root nodes
and parent-conditionals p(xi|xπi) for interior nodes.

•We’ll consider various types of nodes: binary/discrete (categorical),
continuous, interval, and integer counts.

•We’ll see some basic probability models (parametrized families of
distributions); these models live inside nodes of directed models.

• Notice that for specific (numerical) choices of factors at the nodes
there may be even more conditional independencies, but when we
talk about the structure of the model, we are only concerned with
statements that are always true of every member of the family of
distributions, no matter what specific factors live at the nodes.

Probability Tables & CPTs

• For discrete (categorical) variables, the most basic parametrization
is the probability table which lists p(x = kth value).

• Since PTs must be nonnegative and sum to 1, for k-ary nodes
there are k − 1 free parameters.

• If a discrete node has discrete parent(s) we make one table for each
setting of the parents: this is a conditional probability table or CPT.

0

1

0 1
2x

4x

0

1
x 1

0

1

0 1
x 1

2x

0

1

0 1

3x

x 1

5x 0

1

0 1
3x

0

1

0 1

0
1

6x

2x

5x

1X

2X

3X

X 4

X 5

X6

Exponential Family

• For a numeric random variable x

p(x|η) = h(x) exp{η⊤T (x) − A(η)}

=
1

Z(η)
h(x) exp{η⊤T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Key idea: all you need to know about the data in order to estimate
parameters is captured in the summarizing function T (x).

• Examples: Bernoulli, binomial/geometric/negative-binomial,
Poisson, gamma, multinomial, Gaussian, ...

Nodes with Parents

•When the parent is discrete, we just have one probability model for
each setting of the parent. Examples:
– table of natural parameters (exponential model for cts. child)
– table of tables (CPT model for discrete child)

•When the parent is numeric, some or all of the parameters for the
child node become functions of the parent’s value.

• A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(θ⊤x; Σ).

• For classification, often use Bernoulli/Multinomial densities whose
parameters π are some function of the parent: πj = fj(x).

GLMs and Canonical Links

• Generalized Linear Models: p(y|x) is exponential family with
conditional mean µi = fi(θ

⊤x).

• The function f is called the response function.

• If we chose f to be the inverse of the mapping b/w conditional
mean and natural parameters then it is called the canonical
response function or canonical link:

η = ψ(µ)

f (·) = ψ−1(·)

• Example: logistic function is canonical link for Bernoulli variables;
softmax function is canonical link for multinomials

Multiple Observations, Complete Data, IID Sampling

• A single observation of the data X is rarely useful on its own.

• Generally we have data including many observations, which creates
a set of random variables: D = {x1,x2, . . . ,xM}

•We will assume two things (for now):

1. Observations are independently and identically distributed
according to joint distribution of graphical model: IID samples.

2. We observe all random variables in the domain on each
observation: complete data.

•We shade the nodes in a graphical model to indicate they are
observed. (Later you will see unshaded nodes corresponding to
missing data or latent variables.)

1X 2X 3X NX

Basic Statistical Problems

• Let’s remind ourselves of the basic problems we discussed:
density estimation, clustering, classification and regression.

•We can always do joint density estimation and then condition:
Regression: p(y|x) = p(y,x)/p(x) = p(y,x)/

∫
p(y,x)dy

Classification: p(c|x) = p(c,x)/p(x) = p(c,x)/
∑
c p(c,x)

Clustering: p(c|x) = p(c,x)/p(x) c unobserved
Density Estimation: p(y|x) = p(y,x)/p(x) x unobserved

In general, if certain nodes are
always observed we may not
want to model their density:

Y

X

Regression/Classification

If certain nodes are always unob-
served they are called hidden or
latent variables (more later):

X

Z

Clustering/Density Est.

Review: Goal of Graphical Models

• Graphical models aim to provide compact factorizations of large
joint probability distributions.

• These factorizations are achieved using local functions which
exploit conditional independencies in the models.

• The graph tells us a basic set of conditional independencies that
must be true. From these we can derive more that also must be
true. These independencies are crucial to developing efficient
algorithms valid for all numerical settings of the local functions.

• Local functions tell us the quantitative details of the distribution.

• Certain numerical settings of the distribution may have more
independencies present, but these do not come from the graph.

1X

2X

3X

X 4

X 5

X6

X Y Z

