NON-LINEAR DIMENSIONALITY REDUCTION USING NEURAL NETWORKS

Ruslan Salakhutdinov Joint work with Geoff Hinton

University of Toronto, Machine Learning Group

Overview

- Document Retrieval
 - Present layer-by-layer pretraining and the fine-tuning of the multi-layer network that discovers *binary* codes in the top layer. This allows us to significantly speed-up retrieval time.
 - We also show how we can use our model to allow retrieval in constant time (a time independent of the number of documents).
- Show how to perform nonlinear embedding by preserving class neighbouthood structure (supervised, semi-supervised).

Motivation

- For the document retrieval tasks, we want to retrieve a small set of documents, relevant to the given query.
- Popular and widely used in practice text retrieval algorithm is based on TF-IDF (term frequency / inverse document frequency) word-weighting heuristic.
- Drawbacks: it computes document similarity directly in the word-count space, and it does not capture high-order correlations between words in a document.
- We want to extract semantic structure "topics" from documents. Latent Semantic Analysis is a simple and widely-used linear method.
- A network with multiple hidden layers and with many more parameters should be able to discover latent representations that work much better for retrieval.

Model

The Deep Generative Model

Recursive Pretraining

Fine-tuning

Document Retrieval: 20 newsgroup corpus

• Where should talk.politics.guns go?

Document Retrieval: 20 newsgroup corpus

• Where should alt.atheism go?

Document Retrieval: 20 newsgroup corpus

Constrained Poisson Model

- Hidden units are binary and the visible word counts are modeled by constrained Poisson model.
- Conditional distributions over hidden and visible units are:

$$p(h_j = 1 | \mathbf{v}) = \frac{1}{1 + \exp(-b_j - \sum_i w_{ij} v_i)}$$
$$p(v_i = n | \mathbf{h}) = \operatorname{Poisson}\left(\frac{\exp(b_i + \sum_j h_j w_{ij})}{Z} \times N\right)$$

where N is the total length of the document and

$$Z = \sum_{i} \exp\left(b_i + \sum_{j} h_j w_{ij}\right)$$

Learning Multiple Layers - Pretraining

- A single layer of binary features generally cannot perfectly model the structure in the data.
- Perform greedy, layer-by-layer learning:
 - Learn and Freeze W_1 using Constrained Poisson Model.
 - Treat the existing feature detectors, driven by training data, $W_1^T V$ as if they were data.
 - Learn and Freeze W_2 .
 - Proceed recursive greedy learning as many times as desired.
- Under certain conditions adding an extra layer always improves a lower bound on the log probability of data. (In our case, these conditions are violated)
- Each layer of features captures strong high-order correlations between the activities of units in the layer belows.

Recursive Learning

Learning Binary Representations

Document Retrieval: 20 Newsgroup Corpus

- We use a 2000-500-500-128 autoencoder to convert a document into a 128-bit vector.
- We corrupted the input signal to the code-layer with Gaussian noise $\sim \mathcal{N}(0, 16)$.
- Empirical distributions of 128 code units before and after fine-tuning:

• After fine-tuning, we binarize codes at 0.1.

Learning Binary Representations

• 2-dimensional embedding of 128-bit codes using SNE for 20 Newsgroup data (left panel) and Reuters RCV2 corpus (right panel).

Semantic Address Space

- We could instead learn how to convert a document into a 20-bit code.
- We have ultimate retrieval tool: Given a query document, compute its 20-bit address and retrieve all of the documents stored at similar addresses with no search at all.
- Essentially we could learn "semantic" hashing table.
- We could also retrieve similar documents by looking at a hamming-ball of radius, for example, 4.
- The retrieved documents could then be given to a slower but more precise retrieval method, such as TF-IDF.

Results

Learning nonlinear embedding

- We tackle the problem of learning similarity measure or distance metric over the input space *X*
- Given a distance metric d (f.e. Euclidean) we can measure similarity between two input vectors $x_1, x_2 \in X$ by computing $d[f(x_1|W), f(x_2|W)]$.
- f(x|W) is a function $f: X \to Y$, mapping input vectors in X to a feature space Y and is parametarized by W.

d[f(x1),f(x2)]

Learning nonlinear embedding

- Most of the previous algorithms studied the case when *d* is Euclidean measure and f(x|W) is a simple linear projection f(x-W)=Wx.
- The Euclidean distance is then the Mahalanobis distance $d[f(x_1), f(x_2)] = (x_1 x_2)^T W^T W(x_1 x_2)$. See Goldberger et. al. 2004, Globerson and Roweis 2005, Kilian et. al. 2005.
- We have a set of *N* training labeled data vectors (x_i, c_i) , where $x_i \in R^d$, and $c_i \in 1, 2, ..., K$.
- For each training vector x_i , define the probability that point *i* selects one of its neighbours *j* in the transformed space as:

$$p_{ij} = \frac{\exp\left(-d_{ij}\right)}{\sum_{k \neq i} \exp\left(-d_{ik}\right)}, \qquad p_{ii} = 0$$

where $d_{ij} = || f(x_i|W) - f(x_j|W) ||^2$, and $f(\cdot|W)$ is a multi-layer perceptron.

Learning nonlinear embedding

• Probability that point *i* belongs to class *k* is:

$$p(c_i = k) = \sum_{j \mid c_j = k} p_{ij}$$

• Mazimize the expected number of correctly classified points on the training data:

NCA =
$$\sum_{i=1}^{N} \sum_{j|c_i=c_j} p_{ij}$$

• One could alternatively minimize KL-divergence:

$$KL(p^{0}|p) = \sum_{i=1}^{N} \sum_{k=1}^{K} p_{ik}^{0} \log \frac{p_{ik}^{0}}{p(c_{i}=k)}$$

where

$$p_{ik}^0 = \begin{cases} 1 & \text{if } c_i = k\\ 0 & \text{if } c_i \neq k \end{cases}$$

• This induces the following objective function to maximize:

$$NCA_2 = \sum_{i=1}^N \log\left(\sum_{j|c_i=c_j} p_{ij}\right)$$

• By considering a linear perceptron we arrive to linear NCA.

Results

Results

Semi-supervised Extention

• The combined objective we maximize:

$$C = \lambda * \mathbf{NCA} + (1 - \lambda) * (-E)$$

• So the derivative of the reconstruction error E is backpropagated through the autoencoder and is combined with derivatives of NCA at the code level.

Semi-supervised Extention

