Hierarchical Sparse Bayesian Learning

> Pierre Garrigues UC Berkeley

Outline

- Motivation
- Description of the model
- Inference
- Learning
- Results

- Assumption: sensory systems are adapted to the statistical properties of their inputs
- Our ability to extract statistical regularities of natural images help us perform complex visual tasks
- Building a better statistical model of natural images will help us improve algorithms for image processing

Sparse Coding Model

• Generative model [Olshausen, Field 96]:

• The model allows A to be overcomplete

Independent Component Analysis

 Find a linear transform such that the outputs are independent and have sparse distributions [Bell & Sejnowski 97]

$$\begin{split} p(x) &= |W| \prod_{i=1}^{n} q(w_i^T x) \\ q(y) &= \begin{cases} \frac{1}{2} e^{-|y|} & \text{Laplacian distribution} \\ \frac{1}{\pi(1+y^2)} & \text{Cauchy distribution} \end{cases} \end{split}$$

Learned transform

The learned filters resemble wavelets

Caveats of these models

- The independence assumption is violated for natural images
- The coefficients associated with quadrature pair or colinear Gabor filters are not independent
- The visual system probably makes use of these dependencies (e.g. for contour extraction)

Modeling the remaining dependencies

- Existing work
 - Gaussian Scale Mixtures [Wainwright & Simoncelli 01]
 - Density Components Models [Karklin & Lewicki 03]
 - Markov Random Fields [Hinton et al. 05]
- Our Model:
 - extends K&L to overcomplete setting
 - draws a connection with Sparse Bayesian Learning [Tipping 01]

Hierarchical Sparse Bayesian Learning

 $p(v) \propto e^{-|v|}$

$$\gamma_i = \psi([Bv]_i)$$

 $s_i \sim \mathcal{N}(0, \gamma_i)$ for every i

$$x = As + n$$
, where $n \sim \mathcal{N}(0, \sigma^2)$

Choice of the nonlinearity

Intuition for B

• Our goal is to model the joint dependencies of the basis functions

$$Bv = \sum_{i=1}^{d} v_i \begin{pmatrix} B_{1i} \\ \vdots \\ B_{mi} \end{pmatrix}$$
 density component

• The relative signs within a density component model the excitation and inhibition

Inference of v

• As in SBL, we use the EM algorithm

 $\hat{v} = \arg\max_{v} p(v|x) = \arg\max_{v} p(x|v)p(v)$

- Expectation Step $q(s|x, v^{(k)}) \sim \mathcal{N}(\mu, \Sigma)$ $\begin{cases} \Sigma = (\sigma^{-2}A^TA + \Gamma^{-1})^{-1}, & \Gamma = \operatorname{diag}(\psi([Bv^{(k)}]_1), \dots, \psi([Bv^{(k)}]_m)) \\ \mu = \sigma^{-2}\Sigma A^Tx \end{cases}$
- Maximization Step

$$v^{(k+1)} = \arg\max_{v} \mathbb{E}_{s \sim q} [\log p(x, s|v) + \log p(v)]$$

=
$$\arg\min_{v} \sum_{i=1}^{m} \left(\frac{1}{2} \log \psi([Bv]_i) + \frac{\mathbb{E}_{s \sim q}[s_i^2]}{2\psi([Bv]_i)} - \log p(v_i)\right)$$

Learning of B

- MAP estimate
- Approximation of the objective function

$$p(x|B) = \int p(x, s, v|B) ds dv$$

=
$$\int p(x|s)p(s|v, B)p(v) ds dv$$

$$\simeq p(x|\hat{s})p(\hat{s}|\hat{v}, B)p(\hat{v})$$

$$\hat{v} = \arg \max p(v|x)$$

$$\hat{s} = \mathbb{E}[s|x, \hat{v}]$$

Learning of B

- MAP estimate $\hat{B} = \arg \min_{B} \sum_{i=1}^{N} -\log p(x^{(i)}|B) \log p(B)$
- Approximation of the objective function

$$p(x|B) = \int p(x, s, v|B) ds dv$$

=
$$\int p(x|s)p(s|v, B)p(v) ds dv$$

$$\simeq p(x|\hat{s})p(\hat{s}|\hat{v}, B)p(\hat{v})$$

$$\hat{v} = \arg \max p(v|x)$$

$$\hat{s} = \mathbb{E}[s|x, \hat{v}]$$

Learning rule

• New objective function:

 $\hat{B} = \arg\min_B \sum_{i=1}^N -\log p(\hat{s}^{(i)}|\hat{v}^{(i)},B) = \arg\min_B J(B)$

• Learning rule:

$$\begin{aligned} B^{new} &= B^{old} - \eta \nabla J(B) \\ \frac{\partial J(B)}{\partial B_{ij}} &= \frac{1}{2} \hat{v_j} \frac{\psi'([v]_i)}{\psi([Bv]_i)} \left(1 - \frac{\hat{s_i}^2}{\psi([Bv]_i)} \right) + \frac{1}{2} B_{ij} \end{aligned}$$

Results

- Settings:
 - n = m = d = 144
 - about 1000 iterations
- The matrix A was learned using ICA

Learned density components

Needle plot

Visualization w.r.t. spatial position of the basis functions

Visualization w.r.t. position in the Fourier domain

Sparsity of the coefficients

Sparsity index distribution

Conclusion

- We were able to reproduce similar results as K&L in the overcomplete setting
- Future work
 - results preliminary, still issues
 - denoising results
 - texture classification
 - MRF model

MRF model

Binary MRF $s_i \mid u_i = 1 \sim \mathcal{N}(0, \sigma_i^2)$ $s_i \mid u_i = 0 \sim \delta(s_i)$ $x = As + \epsilon$, where $A \in \mathbb{R}^{n \times m}$

Apply similar algorithm as in [Hinton et al. 05]

Variance and mean for HSBL with learned B

