
Accelerated Training of Conditional
Random Fields with Stochastic

Gradient Methods
S.V.N. Vishwanathan, Nicol N. Schraudolph, Mark Schmidt, Kevin Murphy

ICML 2006

Overview

• Conditional Random Fields

• Batch Learning Methods

• Stochastic Gradient Methods

• Stochastic Meta-Descent

• Automatic Differentiation

• Gradient Approximations

Conditional Random Fields

• Discriminative model for structured data

• modeled directly

• Log-Likelihood:

• Log-Partition Function:

Accelerated Training of Conditional Random
Fields with Stochastic Gradient Methods

S.V.N. Vishwanathan svn.vishwanathan@nicta.com.au
Nicol N. Schraudolph nic.schraudolph@nicta.com.au

Statistical Machine Learning, National ICT Australia, Locked Bag 8001, Canberra ACT 2601, Australia; and
Research School of Information Sciences & Engr., Australian National University, Canberra ACT 0200, Australia

Mark W. Schmidt schmidtm@cs.ubc.ca
Kevin P. Murphy murphyk@cs.ubc.ca

Department of Computer Science, University of British Columbia, Canada

Abstract

We apply Stochastic Meta-Descent (SMD),
a stochastic gradient optimization method
with gain vector adaptation, to the train-
ing of Conditional Random Fields (CRFs).
On several large data sets, the resulting opti-
mizer converges to the same quality of solu-
tion over an order of magnitude faster than
limited-memory BFGS, the leading method
reported to date. We report results for both
exact and inexact inference techniques.

1. Introduction

Conditional Random Fields (CRFs) have recently
gained popularity in the machine learning community
(Lafferty et al., 2001; Sha & Pereira, 2003; Kumar &
Hebert, 2004). Current training methods for CRFs1

include generalized iterative scaling (GIS), conjugate
gradient (CG), and limited-memory BFGS. These are
all batch-only algorithms that do not work well in
an online setting, and require many passes through
the training data to converge. This currently limits
the scalability and applicability of CRFs to large real-
world problems. In addition, for many graph struc-
tures with large treewidth, such as 2D lattices, com-
puting the exact gradient is intractable. Various ap-
proximate inference methods can be employed, but
these cause many optimizers to break.

1In this paper, “training” specifically means penalized
maximum likelihood parameter estimation.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

Stochastic gradient methods, on the other hand, are
online and scale sub-linearly with the amount of train-
ing data, making them very attractive for large data
sets; empirically we have also found them more re-
silient to errors made when approximating the gradi-
ent. Unfortunately their asymptotic convergence to
the optimum is often painfully slow. Gain adaptation
methods like Stochastic Meta-Descent (SMD) accel-
erate this process by using second-order information
to adapt the gradient step sizes (Schraudolph, 1999,
2002). Key to SMD’s efficiency is the implicit compu-
tation of fast Hessian-vector products (Pearlmutter,
1994; Griewank, 2000).

In this paper we marry the above two techniques and
show how SMD can be used to significantly acceler-
ate the training of CRFs. The rest of the paper is
organized as follows: Section 2 gives a brief overview
of CRFs while Section 3 introduces stochastic gradi-
ent methods. We present experimental results for 1D
chain CRFs in Section 4, and 2D lattice CRFs in Sec-
tion 5. We conclude with a discussion in Section 6.

2. Conditional Random Fields (CRFs)

CRFs are a probabilistic framework for labeling and
segmenting data. Unlike Hidden Markov Models
(HMMs) and Markov Random Fields (MRFs), which
model the joint density P(X, Y) over inputs X and
labels Y , CRFs directly model P(Y |x) for a given in-
put sample x. Furthermore, instead of maintaining a
per-state normalization, which leads to the so-called
label bias problem (Lafferty et al., 2001), CRFs uti-
lize a global normalization which allows them to take
long-range interactions into account.

We now introduce exponential families, and describe
CRFs as conditional models in the exponential family.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.1. Exponential Families

Given x ∈ X and y ∈ Y (where Y is a discrete space),
a conditional exponential family distribution over Y,
parameterized by the natural parameter θ ∈ Θ, can
be written in its canonical form as

p(y|x; θ) = exp(〈φ(x, y), θ〉 − z(θ|x)). (1)

Here φ(x, y) is called the sufficient statistics of the
distribution, 〈·, ·〉 denotes the inner product, and z(·)
the log-partition function

z(θ|x) := ln
∑

y

exp(〈φ(x, y), θ〉). (2)

It is well-known (Barndorff-Nielsen, 1978) that the log-
partition function is a C∞ convex function. Further-
more, it is also the cumulant generating function of
the exponential family, i.e.,

∂

∂θ
z(θ|x) = Ep(y|x;θ)[φ(x, y)], (3)

∂2

(∂θ)2
z(θ|x) = Covp(y|x;θ)[φ(x, y)], etc. (4)

The sufficient statistics φ(x, y) represent salient fea-
tures of the data, and are typically chosen in an
application-dependent manner as part of the CRF de-
sign for a given machine learning task.

2.2. Clique Decomposition Theorem

The clique decomposition theorem essentially states
that if the conditional density p(y|x; θ) factorizes ac-
cording to a graph G, then the sufficient statistics (or
features) φ(x, y) decompose into terms over the max-
imal cliques {c1, . . . cn} of G: φ(x, y) = ({φc(x, yc)}),
where c indexes the maximal cliques, and yc is the
label configuration for nodes in clique c.

For ease of notation we will assume that all maximal
cliques have size two, i.e., each edge of the graph has
a potential associated with it, denoted φij for an edge
between nodes i and j. We will also refer to single-
node potentials φi as local evidence.

To reduce the amount of training data required, all
cliques share the same parameters θ (Lafferty et al.,
2001; Sha & Pereira, 2003); this is the same parameter
tying assumption as used in HMMs. This enables us
to compute the sufficient statistics by simply summing
the clique potentials over all nodes and edges:

φ(x, y) =

∑

ij ∈E
φij(x, yi, yj),

∑

i∈N
φi(x, yi)

 (5)

where E is the set of edges and N is the set of nodes.

2.3. Parameter Estimation

Let X := {xi ∈ X}m
i=1 be a set of m data points

and Y := {yi ∈ Y}m
i=1 be the corresponding set of

labels. We assume a conditional exponential family
distribution over the labels, and also that they are i.i.d.
given the training samples. Thus we can write

P(Y |X ; θ) =
m∏

i=1

p(yi|xi; θ) (6)

= exp(
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)]).

Bayes’ rule states that P(θ|X, Y) ∝ P(θ) P(Y |X ; θ).
For computational convenience we assume an isotropic
Gaussian prior over the parameters θ, i.e., P(θ) ∝
exp(− 1

2σ2 ||θ||2) for some fixed σ, and write the nega-
tive log-posterior of the parameters given the data and
labels, up to a constant, as

L(θ) :=
||θ||2
2σ2

−
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)] (7)

= − ln P(θ|X, Y) + const.

Maximum a posteriori (MAP) estimation involves
maximizing P(θ|X, Y), or equivalently minimizing
L(θ). Prediction then utilizes the plug-in estimate
p(y|x; θ∗), where θ∗ = argminθ L(θ).

2.4. Gradient and Expectation

As stated in Section 2.3, to perform MAP estimation
we need to minimize L(θ). For this purpose we com-
pute its gradient g(θ) := ∂

∂θ L(θ). Differentiating (7)
with respect to θ and substituting (3) yields

g(θ) =
θ

σ2
−

m∑

i=1

[
φ(xi, yi) − Ep(y|xi;θ)[φ(xi, y)]

]
. (8)

which has the familiar form of features minus expected
features. The expected feature vector for each clique,

Ep(y|x;θ) [φ(x, y)] =
∑

y∈Y
p(y|x; θ)φ(x, y) (9)

can be computed in O(N | Y |w) time using dynamic
programming, where N is the number of nodes and w
is the treewidth of the graph, i.e., the size of its largest
clique after the graph has been optimally triangulated.
For chains and (undirected) trees, w = 2, so this com-
putation is usually fairly tractable, at least for small
state spaces. For cases where this is intractable, we
discuss various approximations in Section 2.6. Since
we assume all the variables are fully observed during
training, the objective function is convex, so we can
find the global optimum.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.1. Exponential Families

Given x ∈ X and y ∈ Y (where Y is a discrete space),
a conditional exponential family distribution over Y,
parameterized by the natural parameter θ ∈ Θ, can
be written in its canonical form as

p(y|x; θ) = exp(〈φ(x, y), θ〉 − z(θ|x)). (1)

Here φ(x, y) is called the sufficient statistics of the
distribution, 〈·, ·〉 denotes the inner product, and z(·)
the log-partition function

z(θ|x) := ln
∑

y

exp(〈φ(x, y), θ〉). (2)

It is well-known (Barndorff-Nielsen, 1978) that the log-
partition function is a C∞ convex function. Further-
more, it is also the cumulant generating function of
the exponential family, i.e.,

∂

∂θ
z(θ|x) = Ep(y|x;θ)[φ(x, y)], (3)

∂2

(∂θ)2
z(θ|x) = Covp(y|x;θ)[φ(x, y)], etc. (4)

The sufficient statistics φ(x, y) represent salient fea-
tures of the data, and are typically chosen in an
application-dependent manner as part of the CRF de-
sign for a given machine learning task.

2.2. Clique Decomposition Theorem

The clique decomposition theorem essentially states
that if the conditional density p(y|x; θ) factorizes ac-
cording to a graph G, then the sufficient statistics (or
features) φ(x, y) decompose into terms over the max-
imal cliques {c1, . . . cn} of G: φ(x, y) = ({φc(x, yc)}),
where c indexes the maximal cliques, and yc is the
label configuration for nodes in clique c.

For ease of notation we will assume that all maximal
cliques have size two, i.e., each edge of the graph has
a potential associated with it, denoted φij for an edge
between nodes i and j. We will also refer to single-
node potentials φi as local evidence.

To reduce the amount of training data required, all
cliques share the same parameters θ (Lafferty et al.,
2001; Sha & Pereira, 2003); this is the same parameter
tying assumption as used in HMMs. This enables us
to compute the sufficient statistics by simply summing
the clique potentials over all nodes and edges:

φ(x, y) =

∑

ij ∈E
φij(x, yi, yj),

∑

i∈N
φi(x, yi)

 (5)

where E is the set of edges and N is the set of nodes.

2.3. Parameter Estimation

Let X := {xi ∈ X}m
i=1 be a set of m data points

and Y := {yi ∈ Y}m
i=1 be the corresponding set of

labels. We assume a conditional exponential family
distribution over the labels, and also that they are i.i.d.
given the training samples. Thus we can write

P(Y |X ; θ) =
m∏

i=1

p(yi|xi; θ) (6)

= exp(
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)]).

Bayes’ rule states that P(θ|X, Y) ∝ P(θ) P(Y |X ; θ).
For computational convenience we assume an isotropic
Gaussian prior over the parameters θ, i.e., P(θ) ∝
exp(− 1

2σ2 ||θ||2) for some fixed σ, and write the nega-
tive log-posterior of the parameters given the data and
labels, up to a constant, as

L(θ) :=
||θ||2
2σ2

−
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)] (7)

= − ln P(θ|X, Y) + const.

Maximum a posteriori (MAP) estimation involves
maximizing P(θ|X, Y), or equivalently minimizing
L(θ). Prediction then utilizes the plug-in estimate
p(y|x; θ∗), where θ∗ = argminθ L(θ).

2.4. Gradient and Expectation

As stated in Section 2.3, to perform MAP estimation
we need to minimize L(θ). For this purpose we com-
pute its gradient g(θ) := ∂

∂θ L(θ). Differentiating (7)
with respect to θ and substituting (3) yields

g(θ) =
θ

σ2
−

m∑

i=1

[
φ(xi, yi) − Ep(y|xi;θ)[φ(xi, y)]

]
. (8)

which has the familiar form of features minus expected
features. The expected feature vector for each clique,

Ep(y|x;θ) [φ(x, y)] =
∑

y∈Y
p(y|x; θ)φ(x, y) (9)

can be computed in O(N | Y |w) time using dynamic
programming, where N is the number of nodes and w
is the treewidth of the graph, i.e., the size of its largest
clique after the graph has been optimally triangulated.
For chains and (undirected) trees, w = 2, so this com-
putation is usually fairly tractable, at least for small
state spaces. For cases where this is intractable, we
discuss various approximations in Section 2.6. Since
we assume all the variables are fully observed during
training, the objective function is convex, so we can
find the global optimum.

• Exponential Family

• Continuous, Twice-Differentiable

• Probabilistic Interpretation

• Negative log-likelihood is convex
(worst initialization => best parameters)

• Log-partition function is cumulant generating

• Efficient Calculation of Objective and
Gradient for ‘thin’ graph structures

CRF Properties

Objective and Gradients

Accelerated Training of CRFs with Stochastic Gradient Methods

2.1. Exponential Families

Given x ∈ X and y ∈ Y (where Y is a discrete space),
a conditional exponential family distribution over Y,
parameterized by the natural parameter θ ∈ Θ, can
be written in its canonical form as

p(y|x; θ) = exp(〈φ(x, y), θ〉 − z(θ|x)). (1)

Here φ(x, y) is called the sufficient statistics of the
distribution, 〈·, ·〉 denotes the inner product, and z(·)
the log-partition function

z(θ|x) := ln
∑

y

exp(〈φ(x, y), θ〉). (2)

It is well-known (Barndorff-Nielsen, 1978) that the log-
partition function is a C∞ convex function. Further-
more, it is also the cumulant generating function of
the exponential family, i.e.,

∂

∂θ
z(θ|x) = Ep(y|x;θ)[φ(x, y)], (3)

∂2

(∂θ)2
z(θ|x) = Covp(y|x;θ)[φ(x, y)], etc. (4)

The sufficient statistics φ(x, y) represent salient fea-
tures of the data, and are typically chosen in an
application-dependent manner as part of the CRF de-
sign for a given machine learning task.

2.2. Clique Decomposition Theorem

The clique decomposition theorem essentially states
that if the conditional density p(y|x; θ) factorizes ac-
cording to a graph G, then the sufficient statistics (or
features) φ(x, y) decompose into terms over the max-
imal cliques {c1, . . . cn} of G: φ(x, y) = ({φc(x, yc)}),
where c indexes the maximal cliques, and yc is the
label configuration for nodes in clique c.

For ease of notation we will assume that all maximal
cliques have size two, i.e., each edge of the graph has
a potential associated with it, denoted φij for an edge
between nodes i and j. We will also refer to single-
node potentials φi as local evidence.

To reduce the amount of training data required, all
cliques share the same parameters θ (Lafferty et al.,
2001; Sha & Pereira, 2003); this is the same parameter
tying assumption as used in HMMs. This enables us
to compute the sufficient statistics by simply summing
the clique potentials over all nodes and edges:

φ(x, y) =

∑

ij ∈E
φij(x, yi, yj),

∑

i∈N
φi(x, yi)

 (5)

where E is the set of edges and N is the set of nodes.

2.3. Parameter Estimation

Let X := {xi ∈ X}m
i=1 be a set of m data points

and Y := {yi ∈ Y}m
i=1 be the corresponding set of

labels. We assume a conditional exponential family
distribution over the labels, and also that they are i.i.d.
given the training samples. Thus we can write

P(Y |X ; θ) =
m∏

i=1

p(yi|xi; θ) (6)

= exp(
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)]).

Bayes’ rule states that P(θ|X, Y) ∝ P(θ) P(Y |X ; θ).
For computational convenience we assume an isotropic
Gaussian prior over the parameters θ, i.e., P(θ) ∝
exp(− 1

2σ2 ||θ||2) for some fixed σ, and write the nega-
tive log-posterior of the parameters given the data and
labels, up to a constant, as

L(θ) :=
||θ||2
2σ2

−
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)] (7)

= − ln P(θ|X, Y) + const.

Maximum a posteriori (MAP) estimation involves
maximizing P(θ|X, Y), or equivalently minimizing
L(θ). Prediction then utilizes the plug-in estimate
p(y|x; θ∗), where θ∗ = argminθ L(θ).

2.4. Gradient and Expectation

As stated in Section 2.3, to perform MAP estimation
we need to minimize L(θ). For this purpose we com-
pute its gradient g(θ) := ∂

∂θ L(θ). Differentiating (7)
with respect to θ and substituting (3) yields

g(θ) =
θ

σ2
−

m∑

i=1

[
φ(xi, yi) − Ep(y|xi;θ)[φ(xi, y)]

]
. (8)

which has the familiar form of features minus expected
features. The expected feature vector for each clique,

Ep(y|x;θ) [φ(x, y)] =
∑

y∈Y
p(y|x; θ)φ(x, y) (9)

can be computed in O(N | Y |w) time using dynamic
programming, where N is the number of nodes and w
is the treewidth of the graph, i.e., the size of its largest
clique after the graph has been optimally triangulated.
For chains and (undirected) trees, w = 2, so this com-
putation is usually fairly tractable, at least for small
state spaces. For cases where this is intractable, we
discuss various approximations in Section 2.6. Since
we assume all the variables are fully observed during
training, the objective function is convex, so we can
find the global optimum.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.1. Exponential Families

Given x ∈ X and y ∈ Y (where Y is a discrete space),
a conditional exponential family distribution over Y,
parameterized by the natural parameter θ ∈ Θ, can
be written in its canonical form as

p(y|x; θ) = exp(〈φ(x, y), θ〉 − z(θ|x)). (1)

Here φ(x, y) is called the sufficient statistics of the
distribution, 〈·, ·〉 denotes the inner product, and z(·)
the log-partition function

z(θ|x) := ln
∑

y

exp(〈φ(x, y), θ〉). (2)

It is well-known (Barndorff-Nielsen, 1978) that the log-
partition function is a C∞ convex function. Further-
more, it is also the cumulant generating function of
the exponential family, i.e.,

∂

∂θ
z(θ|x) = Ep(y|x;θ)[φ(x, y)], (3)

∂2

(∂θ)2
z(θ|x) = Covp(y|x;θ)[φ(x, y)], etc. (4)

The sufficient statistics φ(x, y) represent salient fea-
tures of the data, and are typically chosen in an
application-dependent manner as part of the CRF de-
sign for a given machine learning task.

2.2. Clique Decomposition Theorem

The clique decomposition theorem essentially states
that if the conditional density p(y|x; θ) factorizes ac-
cording to a graph G, then the sufficient statistics (or
features) φ(x, y) decompose into terms over the max-
imal cliques {c1, . . . cn} of G: φ(x, y) = ({φc(x, yc)}),
where c indexes the maximal cliques, and yc is the
label configuration for nodes in clique c.

For ease of notation we will assume that all maximal
cliques have size two, i.e., each edge of the graph has
a potential associated with it, denoted φij for an edge
between nodes i and j. We will also refer to single-
node potentials φi as local evidence.

To reduce the amount of training data required, all
cliques share the same parameters θ (Lafferty et al.,
2001; Sha & Pereira, 2003); this is the same parameter
tying assumption as used in HMMs. This enables us
to compute the sufficient statistics by simply summing
the clique potentials over all nodes and edges:

φ(x, y) =

∑

ij ∈E
φij(x, yi, yj),

∑

i∈N
φi(x, yi)

 (5)

where E is the set of edges and N is the set of nodes.

2.3. Parameter Estimation

Let X := {xi ∈ X}m
i=1 be a set of m data points

and Y := {yi ∈ Y}m
i=1 be the corresponding set of

labels. We assume a conditional exponential family
distribution over the labels, and also that they are i.i.d.
given the training samples. Thus we can write

P(Y |X ; θ) =
m∏

i=1

p(yi|xi; θ) (6)

= exp(
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)]).

Bayes’ rule states that P(θ|X, Y) ∝ P(θ) P(Y |X ; θ).
For computational convenience we assume an isotropic
Gaussian prior over the parameters θ, i.e., P(θ) ∝
exp(− 1

2σ2 ||θ||2) for some fixed σ, and write the nega-
tive log-posterior of the parameters given the data and
labels, up to a constant, as

L(θ) :=
||θ||2
2σ2

−
m∑

i=1

[〈φ(xi, yi), θ〉 − z(θ|xi)] (7)

= − ln P(θ|X, Y) + const.

Maximum a posteriori (MAP) estimation involves
maximizing P(θ|X, Y), or equivalently minimizing
L(θ). Prediction then utilizes the plug-in estimate
p(y|x; θ∗), where θ∗ = argminθ L(θ).

2.4. Gradient and Expectation

As stated in Section 2.3, to perform MAP estimation
we need to minimize L(θ). For this purpose we com-
pute its gradient g(θ) := ∂

∂θ L(θ). Differentiating (7)
with respect to θ and substituting (3) yields

g(θ) =
θ

σ2
−

m∑

i=1

[
φ(xi, yi) − Ep(y|xi;θ)[φ(xi, y)]

]
. (8)

which has the familiar form of features minus expected
features. The expected feature vector for each clique,

Ep(y|x;θ) [φ(x, y)] =
∑

y∈Y
p(y|x; θ)φ(x, y) (9)

can be computed in O(N | Y |w) time using dynamic
programming, where N is the number of nodes and w
is the treewidth of the graph, i.e., the size of its largest
clique after the graph has been optimally triangulated.
For chains and (undirected) trees, w = 2, so this com-
putation is usually fairly tractable, at least for small
state spaces. For cases where this is intractable, we
discuss various approximations in Section 2.6. Since
we assume all the variables are fully observed during
training, the objective function is convex, so we can
find the global optimum.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.5. Hessian and Hessian-Vector Product

In addition to the gradient, second-order methods
based on Newton steps also require computation and
inversion of the Hessian H(θ) := ∂2

(∂θ)2 L(θ). Taking

the gradient of (8) wrt. θ and substituting (4) yields

H(θ) =
I

σ2
+

m∑

i=1

Covp(y|xi;θ)φ(xi, y). (10)

Explicitly computing the full Hessian (let alone invert-
ing it) costs O(n2) time per iteration, where n is the
number of features (sufficient statistics). In our 1-D
chain CRFs (Section 4) n > 105, making this approach
prohibitively expensive. Our 2-D grid CRFs (Sec-
tion 5) have few features, but computing the Hessian
there requires the pairwise marginals P(xi, xj |y) ∀i, j,
which is O(| Y |2k) for an k × k grid, again infeasible
for the problems we are looking at.

Our SMD optimizer (given below) instead makes use
of the differential

dg(θ) = H(θ) dθ (11)

to efficiently compute the product of the Hessian with
a chosen vector v =: dθ by forward-mode algorithmic
differentiation (Pearlmutter, 1994; Griewank, 2000).
Such Hessian-vector products are implicit — i.e., they
never calculate the Hessian itself —and can be com-
puted along with the gradient at only 2–3 times the
cost of the gradient computation alone.

In fact the similarity between differential and complex
arithmetic (i.e., addition and multiplication) implies

g(θ + i ε dθ) = g(θ) + O(ε2) + i ε dg(θ), (12)

so for suitably small ε (say, 10−150) we can effectively
compute the Hessian-vector product in the imaginary
part of the gradient function extended to the complex
plane (Pearlmutter, personal communication). We use
this technique in the experiments reported below.

2.6. Approximate Inference and Learning

Since we assume that all the variables are observed
in the training set, we can find the global optimum
of the objective function, so long as we can compute
the gradient exactly. Unfortunately for many CRFs
the treewidth is too large for exact inference (and
hence exact gradient computation) to be tractable.
The treewidth of an N = k × k grid, for instance,
is w = O(2k) (Lipton & Tarjan, 1979), so exact in-
ference takes O(| Y |2k) time. Various approximate in-
ference methods have been used in parameter learning
algorithms (Parise & Welling, 2005). Here we con-
sider two of the simplest: mean field (MF) and loopy

belief propagation (LBP) (Weiss, 2001; Yedidia et al.,
2003). The MF free energy is a lower bound on the log-
likelihood, and hence an upper bound on our negative
log-likelihood objective. The Bethe free energy mini-
mized by LBP is not a bound, but has been found em-
pirically to often better approximate the log-likelihood
than the MF free energy (Weiss, 2001). Although LBP
can sometimes oscillate, convergent versions have been
developed (e.g., Kolmogorov, 2004).

For some kinds of potentials, one can use graph cuts
(Boykov et al., 2001) to find an approximate MAP
estimate of the labels, which can be used inside a
Viterbi training procedure. However, this produces
a very discontinuous estimate of the gradient (though
one could presumably use methods similar to Collins’
(2002) voted perceptron to smoothe this out). For the
same reason, we use the sum-product version of LBP
rather than max-product.

An alternative to trying to approximate the condi-
tional likelihood (CL) is to change the objective func-
tion. The pseudo-likelihood (PL) proposed by Besag
(1986) has the significant advantage that it only re-
quires normalizing over the possible labels at one node:

θ̂PL = argmax
θ

∑

m

∑

i

ln p(ym
i |ym

Ni
, xm, θ), (13)

where Ni are the neighbors of node i, and

p(ym
i |ym

Ni
, xm, θ) =

φi(ym
i)

zi(xm, θ)

∏

j∈Ni

φij(y
m
i , ym

j), (14)

zi(x
m, θ) =

∑

yi

φi(yi)
∏

j∈Ni

φij(y
m
i , ym

j). (15)

Here ym
i is the observed label for node i in the m’th

training case, and zi sums over all possible labels for
node i. We have dropped the conditioning on xm in
the potentials for notational simplicity.

Although the pseudo-likelihood is not necessarily a
good approximation to the likelihood, as the amount
of training data (or the size of the lattice, when us-
ing tied parameters) tends to infinity, its maximum
coincides with that of the likelihood (Winkler, 1995).

Note that pseudo-likelihood estimates the parameters
conditional on i’s neighbors being observed. As a con-
sequence, PL tends to place too much emphasis on the
edge potentials, and not enough on the local evidence.
For image denoising problems, this is often evident as
“oversmoothing”. The “frailty” of pseudo-likelihood
in learning to segment images was also noted by Blake
et al. (2004). Regularizing the edge parameters does
help, but as we show in Section 5, it is often better to
try to optimize the correct objective function.

Overview

• Conditional Random Fields

• Batch Learning Methods

• Stochastic Gradient Methods

• Stochastic Meta-Descent

• Automatic Differentiation

• Gradient Approximations

Parameter Estimation

• Each evaluation of objective/gradient requires
inference on each training example.

• Chains/Trees: Belief Propagation

• Learning is an unconstrained convex optimization

• Current state of the art:

• Generalized Iterative Scaling

• Newton Methods

Newton’s Method
w = smallRand;

[f,g,H] = @gradientFunction(w);

do

stepDir = H \ g

stepLen = lineSearch(w + stepLen*stepDir)

w = w + stepLen*stepDir

[f,g,H] = @gradientFunction(x);

while norm(g) > optTol

Quasi-Newton Method
w = smallRand;

B = eye;

[f,g] = @gradientFunction;

do

stepDir = B \ g

stepLen = lineSearch(w + stepLen*stepDir)

update(B)

w = w + stepLen*stepDir

[f,g] = @gradientFunction

while norm(g) > optTol

BFGS Update

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) Update:

• Update Factorization or inverse instead of inverting B:

• Under certain conditions (initial B is pd, function convex, twice-
differentiable, sum(norm(x_k-x*))< inf, Hessian Lipschitz continuous
at minimizer found, line search satisfies Wolfe conditions):

• BFGS leads to super-linear convergence to global minimum

[In Matlab: R= cholupdate(cholupdate(R,y/sqrt(y'*s)),R'*R*s/sqrt(s'*R'*R*s),'-');]

Getting Started with LATEX

David R. Wilkins

2nd Edition
Copyright c© David R. Wilkins 1995

Contents

1 Introduction to LATEX

1.1 What is LATEX?

Bi+1 = Bi +
yyT

yT s
− BissT Bi

sT Bis
(1)

B−1
i+1 = (I − syT

yT s
)B−1

i (I − ysT

yT s
) +

ssT

yT s
(2)

1

L-BFGS Update

• Re-write BFGS in terms of inverse:

• Current Inverse Hessian can be computed
recursively based on previous function and
gradient values

• Limited Memory BFGS:

• Compute B\g without storing Hessian
approximation

Getting Started with LATEX

David R. Wilkins

2nd Edition
Copyright c© David R. Wilkins 1995

Contents

1 Introduction to LATEX

1.1 What is LATEX?

Bi+1 = Bi +
yyT

yT s
− BissT Bi

sT Bis
(1)

B−1
i+1 = (I − syT

yT s
)B−1

i (I − ysT

yT s
) +

ssT

yT s
(2)

1

function [d] = lbfgs(s,y,g)
% [L-]BFGS Search Direction
%
% This function returns the (L-BFGS) approximate inverse Hessian,
% multiplied by the gradient
%
% If you pass in all previous parameter/gradient differences, it will be full BFGS
% If you truncate to the k most recent, it will be L-BFGS
%
% s - differences in parameters between last k steps (p by k)
% y - differences in gradient between last k steps(p by k)
% g - gradient (p by 1)

[p,k] = size(s);

for i = 1:k
 ro(i,1) = 1/(y(:,i)'*s(:,i));
end

q = zeros(p,k+1);
r = zeros(p,k+1);
al =zeros(k,1);
be =zeros(k,1);

q(:,k+1) = g;

for i = k:-1:1
 al(i) = ro(i)*s(:,i)'*q(:,i+1);
 q(:,i) = q(:,i+1)-al(i)*y(:,i);
end

r(:,1) = q(:,1);

for i = 1:k
 be(i) = ro(i)*y(:,i)'*r(:,i);
 r(:,i+1) = r(:,i) + s(:,i)*(al(i)-be(i));
end
d=r(:,k+1);

Overview

• Conditional Random Fields

• Batch Learning Methods

• Stochastic Gradient Methods

• Stochastic Meta-Descent

• Automatic Differentiation

• Gradient Approximations

CRF Parameter
Learning

• Current Champ:

• Quasi-Newton w/ [L-]BFGS Updating

• Challenger:

• Stochastic Gradient

Stochastic Gradient

w = smallRand;

for i = 1:maxIter

for b = 1:maxBatch

[f(b),g(b)] = @gradientFunction(b);

w = w - stepSize*g(b)

end

end

CRF Parameter
Learning

• Current Champ:

• Quasi-Newton w/ [L-]BFGS Updating

• Inference on all training examples

• Challenger:

• Stochastic Gradient

• Inference on batch of training examples

Experiment 1

• CoNLL-2000 Shared Word Chunking Task

• 8936 Sentences

• 330731 Features

• BFGS faster than NL-CG and GIS [3]

• Compare BFGS, Stochastic Gradient, Collin’s
Perceptron (see Yann’s talk), SMD (later)

Learning vs.
Optimization (revisited)Accelerated Training of CRFs with Stochastic Gradient Methods

Figure 1. Left: F-scores on the CoNLL-2000 shared task,
against passes through the training set, for SMD (solid),
SGD (dotted), BFGS (dash-dotted), and CP (dashed).
Horizontal line: F-score reported by Sha & Pereira (2003).
Right: Enlargement of the final portion of the figure.

chunking, an intermediate step towards full parsing,
consists of dividing a text into syntactically correlated
parts of words. The training set consists of 8936 sen-
tences, each word annotated automatically with part-
of-speech (POS) tags. The task is to label each word
with a label indicating whether the word is outside a
chunk, starts a chunk, or continues a chunk. The stan-
dard evaluation metrics for this task are the precision
p (fraction of output chunks which match the refer-
ence chunks), recall r (fraction of reference chunks re-
turned), and their harmonic mean, the F-score given
by F = 2pr/(p + r), on a test set of 2012 sentences.

Sha & Pereira (2003) found BFGS to converge faster
than CG and GIS methods on this task. We follow
them in using binary-valued features which depend on
the words, POS tags, and labels in the neighborhood
of a given word, taking into account only those 330731
features which occur at least once in the training data.
The main difference between our setup and theirs is
that they assume a second-order Markov dependency
between chunk tags, which we do not model.

We used σ = 1 and b = 8, and tuned η0 = 0.1 for best
performance of SGD on this task. SMD then used the
same η0 and the default values µ = 0.1 and λ = 1. We
evaluated the F-score on the test set after every batch
during the first pass through the training data, after
every iteration through the data thereafter. The result
is plotted in Figure 1 as a function of the number of
iterations through the data on a logarithmic scale.

Figure 1 shows the F-score obtained on the test set
by the three algorithms as a function of the number
of passes through the training set, on a logarithmic
scale. The online methods show progress orders of
magnitude earlier, simply because unlike batch meth-
ods they start optimizing long before having seen the
entire training set even once.

Enlarging the final portion of the data reveals dif-

Figure 2. Left: F-scores on the BioNLP/NLPBA-2004
shared task, against passes through the training set. Hor-
izontal line: best F-score reported by Settles (2004).
Right: Enlargement of the final portion of the figure.

ferences in asymptotic convergence between the on-
line methods: While SMD and BFGS both attain the
same F-score of 93.6%— compared to Sha & Pereira’s
(2003) 94.2% for a richer model — SMD does so almost
an order of magnitude faster than BFGS. SGD levels
out at around 93.4%, while CP declines to 92.7% from
a peak of 92.9% reached earlier.

4.2. BioNLP/NLPBA-2004 Shared Task

Our second experiment uses the BioNLP/NLPBA-
2004 shared task of biomedical named-entity recogni-
tion on the GENIA corpus (Kim et al., 2004). Named-
entity recognition aims to identify and classify tech-
nical terms in a given domain (here: molecular bi-
ology) that refer to concepts of interest to domain
experts (Kim et al., 2004). Following Settles (2004)
we use binary orthographic features (AlphaNumeric,
HasDash, RomanNumeral, etc.) based on regular
expressions, though ours differ somewhat from those
used by Settles (2004). We also use neighboring words
to model context, and add features to capture corre-
lations between the current and previous label, for a
total of 106583 features that occur in the training data.

We permuted the 18546 sentences of the training data
set so as to destroy any correlations across sentences,
used the parameters σ = 1 and b = 6, and tuned
η0 = 0.1 for best performance of SGD. SMD then used
the same η0, µ = 0.02 (moderately tuned), and λ = 1
(default value). Figure 2 plots the F-score, evaluated
on the 3856 sentences of the test set, against number
of passes through the training data.

Settles (2004) trained a CRF on this data and report a
best F-score of 72.0%. Our asymptotic F-scores are far
better; we attribute this to our use of different regular
expressions, and a richer set of features. Again SMD
converges much faster to the same solution as BFGS
(85.8%), significantly outperforming SGD (85.2%) and
CP, whose oscillations are settling around 83%.

“On”-Line

Learning vs.
OptimizationAccelerated Training of CRFs with Stochastic Gradient Methods

Figure 1. Left: F-scores on the CoNLL-2000 shared task,
against passes through the training set, for SMD (solid),
SGD (dotted), BFGS (dash-dotted), and CP (dashed).
Horizontal line: F-score reported by Sha & Pereira (2003).
Right: Enlargement of the final portion of the figure.

chunking, an intermediate step towards full parsing,
consists of dividing a text into syntactically correlated
parts of words. The training set consists of 8936 sen-
tences, each word annotated automatically with part-
of-speech (POS) tags. The task is to label each word
with a label indicating whether the word is outside a
chunk, starts a chunk, or continues a chunk. The stan-
dard evaluation metrics for this task are the precision
p (fraction of output chunks which match the refer-
ence chunks), recall r (fraction of reference chunks re-
turned), and their harmonic mean, the F-score given
by F = 2pr/(p + r), on a test set of 2012 sentences.

Sha & Pereira (2003) found BFGS to converge faster
than CG and GIS methods on this task. We follow
them in using binary-valued features which depend on
the words, POS tags, and labels in the neighborhood
of a given word, taking into account only those 330731
features which occur at least once in the training data.
The main difference between our setup and theirs is
that they assume a second-order Markov dependency
between chunk tags, which we do not model.

We used σ = 1 and b = 8, and tuned η0 = 0.1 for best
performance of SGD on this task. SMD then used the
same η0 and the default values µ = 0.1 and λ = 1. We
evaluated the F-score on the test set after every batch
during the first pass through the training data, after
every iteration through the data thereafter. The result
is plotted in Figure 1 as a function of the number of
iterations through the data on a logarithmic scale.

Figure 1 shows the F-score obtained on the test set
by the three algorithms as a function of the number
of passes through the training set, on a logarithmic
scale. The online methods show progress orders of
magnitude earlier, simply because unlike batch meth-
ods they start optimizing long before having seen the
entire training set even once.

Enlarging the final portion of the data reveals dif-

Figure 2. Left: F-scores on the BioNLP/NLPBA-2004
shared task, against passes through the training set. Hor-
izontal line: best F-score reported by Settles (2004).
Right: Enlargement of the final portion of the figure.

ferences in asymptotic convergence between the on-
line methods: While SMD and BFGS both attain the
same F-score of 93.6%— compared to Sha & Pereira’s
(2003) 94.2% for a richer model — SMD does so almost
an order of magnitude faster than BFGS. SGD levels
out at around 93.4%, while CP declines to 92.7% from
a peak of 92.9% reached earlier.

4.2. BioNLP/NLPBA-2004 Shared Task

Our second experiment uses the BioNLP/NLPBA-
2004 shared task of biomedical named-entity recogni-
tion on the GENIA corpus (Kim et al., 2004). Named-
entity recognition aims to identify and classify tech-
nical terms in a given domain (here: molecular bi-
ology) that refer to concepts of interest to domain
experts (Kim et al., 2004). Following Settles (2004)
we use binary orthographic features (AlphaNumeric,
HasDash, RomanNumeral, etc.) based on regular
expressions, though ours differ somewhat from those
used by Settles (2004). We also use neighboring words
to model context, and add features to capture corre-
lations between the current and previous label, for a
total of 106583 features that occur in the training data.

We permuted the 18546 sentences of the training data
set so as to destroy any correlations across sentences,
used the parameters σ = 1 and b = 6, and tuned
η0 = 0.1 for best performance of SGD. SMD then used
the same η0, µ = 0.02 (moderately tuned), and λ = 1
(default value). Figure 2 plots the F-score, evaluated
on the 3856 sentences of the test set, against number
of passes through the training data.

Settles (2004) trained a CRF on this data and report a
best F-score of 72.0%. Our asymptotic F-scores are far
better; we attribute this to our use of different regular
expressions, and a richer set of features. Again SMD
converges much faster to the same solution as BFGS
(85.8%), significantly outperforming SGD (85.2%) and
CP, whose oscillations are settling around 83%.

“On”-Line

Overview

• Conditional Random Fields

• Batch Learning Methods

• Stochastic Gradient Methods

• Stochastic Meta-Descent

• Automatic Differentiation

• Gradient Approximations

Disadvantage of
Stochastic Gradient

• For a fixed step size:

• May not converge

• May converge too slowly

• For annealed step size:

• Need to tune step size update

• Steepest Descent direction (batch case: sub-
linear convergence, pathological cases
converge in infinite number of steps)

SMD

• Stochastic Meta-Descent:

• Attempt to translate non-linear CG to
stochastic gradient learning

• Adaptive Step Sizes for each dimension

• Some 2nd-Order information provided
through Hessian-Vector products

SMD

• Each parameter has its own gain:

• Update the gain multiplicatively by meta-gain
(mu):

• Update the long-term 2nd-order
dependence w/ memory (lambda):

Accelerated Training of CRFs with Stochastic Gradient Methods

3. Stochastic Gradient Methods

In this section we describe stochastic gradient de-
scent and discuss how its convergence can be improved
by gain vector adaptation via the Stochastic Meta-
Descent (SMD) algorithm (Schraudolph, 1999, 2002).

3.1. Stochastic Approximation of Gradients

Since the log-likelihood (7) is summed over a poten-
tially large number m of data points, we approximate
it by subsampling batches of b ! m points:

L(θ) ≈
m
b −1∑

t=0

Lb(θ, t), where (16)

Lb(θ, t) =
b||θt||2

2mσ2
−

b∑

i=1

[〈φ(xbt+i, ybt+i), θt〉 (17)

− z(θt|xbt+i)].

Note that for θt = const. (16) would be exact. We will,
however, interleave an optimization step that modifies
θ with each evaluation of Lb(θ, t), resp. its gradient

gt := ∂
∂θ Lb(θ, t). (18)

The batch size b controls the stochasticity of the ap-
proximation. At one extreme, b = m recovers the con-
ventional deterministic algorithm; at the other, b = 1
adapts θ fully online, based on individual data sam-
ples. Typically small batches of data (5 ≤ b ≤ 20) are
found to be computationally most efficient.

Unfortunately most advanced gradient methods do
not tolerate the sampling noise inherent in stochas-
tic approximation: it collapses conjugate search di-
rections (Schraudolph & Graepel, 2003) and confuses
the line searches that both conjugate gradient and
quasi-Newton methods depend upon. Full second-
order methods are unattractive here because the com-
putational cost of inverting the Hessian is better amor-
tized over a large data set.

This leaves plain first-order gradient descent. Though
this can be very slow to converge, the speed-up gained
by stochastic approximation dominates on large, re-
dundant data sets, making this strategy more efficient
overall than even sophisticated deterministic methods.
The convergence of stochastic gradient descent can be
further improved by gain vector adaptation.

3.2. SMD Gain Vector Adaptation

Consider a stochastic gradient descent where each co-
ordinate of θ has its own positive gain:

θt+1 = θt − ηt · gt, (19)

where ηt ∈ Rn
+, and · denotes component-wise (Hada-

mard) multiplication. The gain vector η serves as a
diagonal conditioner; it is simultaneously adapted via
a multiplicative update with meta-gain µ:

ηt+1 = ηt · max(1
2 , 1 − µ gt+1 · vt+1), (20)

where the vector v ∈ Θ characterizes the long-term
dependence of the system parameters on gain history
over a time scale governed by the decay factor 0≤λ≤1.
It is computed by the simple iterative update

vt+1 = λvt − ηt · (gt + λHtvt), (21)

where Htvt is calculated efficiently via (11). Since θ0

does not depend on any gains, v0 = 0. SMD thus
introduces two scalar tuning parameters, with typical
values (for stationary problems) µ = 0.1 and λ = 1; see
Vishwanathan et al. (2006) for a detailed derivation.

4. Experiments on 1D Chain CRFs

We have applied SMD as described in Section 3, com-
prising Equations (19), (20), and (21), to the training
of CRFs as described in Section 2, using the stochas-
tic gradient (18). The Hessian-vector product Htvt

in (21) is computed efficiently alongside the gradient
by forward-mode algorithmic differentiation using the
differential (11) with dθ := vt.

We implemented this by modifying the CRF++ soft-
ware2 developed by Taku Kudo. We compare the con-
vergence of SMD to three control methods:

• Simple stochastic gradient descent (SGD) with a
fixed gain η0,

• the batch-only limited-memory BFGS algorithm
as supplied with CRF++, storing 5 BFGS correc-
tions, and

• Collins’ (2002) perceptron (CP), a fully online up-
date (b = 1) that optimizes a different objective.

Except for CP— which in our implementation re-
quired far more time per iteration than the other meth-
ods —we repeated each experiment several times, ob-
taining for different random permutations of the data
substantially identical results to those reported below.

4.1. CoNLL-2000 Base NP Chunking Task

Our first experiment uses the well-known CoNLL-2000
Base NP chunking task (Sang & Buchholz, 2000). Text

2Available under LGPL from http://chasen.org/
~taku/software/CRF++/. Our modified code, as well as
the data sets, configuration files, and results for all exper-
iments reported here will be available for download from
http://sml.nicta.com.au/code/crfsmd/.

Accelerated Training of CRFs with Stochastic Gradient Methods

3. Stochastic Gradient Methods

In this section we describe stochastic gradient de-
scent and discuss how its convergence can be improved
by gain vector adaptation via the Stochastic Meta-
Descent (SMD) algorithm (Schraudolph, 1999, 2002).

3.1. Stochastic Approximation of Gradients

Since the log-likelihood (7) is summed over a poten-
tially large number m of data points, we approximate
it by subsampling batches of b ! m points:

L(θ) ≈
m
b −1∑

t=0

Lb(θ, t), where (16)

Lb(θ, t) =
b||θt||2

2mσ2
−

b∑

i=1

[〈φ(xbt+i, ybt+i), θt〉 (17)

− z(θt|xbt+i)].

Note that for θt = const. (16) would be exact. We will,
however, interleave an optimization step that modifies
θ with each evaluation of Lb(θ, t), resp. its gradient

gt := ∂
∂θ Lb(θ, t). (18)

The batch size b controls the stochasticity of the ap-
proximation. At one extreme, b = m recovers the con-
ventional deterministic algorithm; at the other, b = 1
adapts θ fully online, based on individual data sam-
ples. Typically small batches of data (5 ≤ b ≤ 20) are
found to be computationally most efficient.

Unfortunately most advanced gradient methods do
not tolerate the sampling noise inherent in stochas-
tic approximation: it collapses conjugate search di-
rections (Schraudolph & Graepel, 2003) and confuses
the line searches that both conjugate gradient and
quasi-Newton methods depend upon. Full second-
order methods are unattractive here because the com-
putational cost of inverting the Hessian is better amor-
tized over a large data set.

This leaves plain first-order gradient descent. Though
this can be very slow to converge, the speed-up gained
by stochastic approximation dominates on large, re-
dundant data sets, making this strategy more efficient
overall than even sophisticated deterministic methods.
The convergence of stochastic gradient descent can be
further improved by gain vector adaptation.

3.2. SMD Gain Vector Adaptation

Consider a stochastic gradient descent where each co-
ordinate of θ has its own positive gain:

θt+1 = θt − ηt · gt, (19)

where ηt ∈ Rn
+, and · denotes component-wise (Hada-

mard) multiplication. The gain vector η serves as a
diagonal conditioner; it is simultaneously adapted via
a multiplicative update with meta-gain µ:

ηt+1 = ηt · max(1
2 , 1 − µ gt+1 · vt+1), (20)

where the vector v ∈ Θ characterizes the long-term
dependence of the system parameters on gain history
over a time scale governed by the decay factor 0≤λ≤1.
It is computed by the simple iterative update

vt+1 = λvt − ηt · (gt + λHtvt), (21)

where Htvt is calculated efficiently via (11). Since θ0

does not depend on any gains, v0 = 0. SMD thus
introduces two scalar tuning parameters, with typical
values (for stationary problems) µ = 0.1 and λ = 1; see
Vishwanathan et al. (2006) for a detailed derivation.

4. Experiments on 1D Chain CRFs

We have applied SMD as described in Section 3, com-
prising Equations (19), (20), and (21), to the training
of CRFs as described in Section 2, using the stochas-
tic gradient (18). The Hessian-vector product Htvt

in (21) is computed efficiently alongside the gradient
by forward-mode algorithmic differentiation using the
differential (11) with dθ := vt.

We implemented this by modifying the CRF++ soft-
ware2 developed by Taku Kudo. We compare the con-
vergence of SMD to three control methods:

• Simple stochastic gradient descent (SGD) with a
fixed gain η0,

• the batch-only limited-memory BFGS algorithm
as supplied with CRF++, storing 5 BFGS correc-
tions, and

• Collins’ (2002) perceptron (CP), a fully online up-
date (b = 1) that optimizes a different objective.

Except for CP— which in our implementation re-
quired far more time per iteration than the other meth-
ods —we repeated each experiment several times, ob-
taining for different random permutations of the data
substantially identical results to those reported below.

4.1. CoNLL-2000 Base NP Chunking Task

Our first experiment uses the well-known CoNLL-2000
Base NP chunking task (Sang & Buchholz, 2000). Text

2Available under LGPL from http://chasen.org/
~taku/software/CRF++/. Our modified code, as well as
the data sets, configuration files, and results for all exper-
iments reported here will be available for download from
http://sml.nicta.com.au/code/crfsmd/.

Accelerated Training of CRFs with Stochastic Gradient Methods

3. Stochastic Gradient Methods

In this section we describe stochastic gradient de-
scent and discuss how its convergence can be improved
by gain vector adaptation via the Stochastic Meta-
Descent (SMD) algorithm (Schraudolph, 1999, 2002).

3.1. Stochastic Approximation of Gradients

Since the log-likelihood (7) is summed over a poten-
tially large number m of data points, we approximate
it by subsampling batches of b ! m points:

L(θ) ≈
m
b −1∑

t=0

Lb(θ, t), where (16)

Lb(θ, t) =
b||θt||2

2mσ2
−

b∑

i=1

[〈φ(xbt+i, ybt+i), θt〉 (17)

− z(θt|xbt+i)].

Note that for θt = const. (16) would be exact. We will,
however, interleave an optimization step that modifies
θ with each evaluation of Lb(θ, t), resp. its gradient

gt := ∂
∂θ Lb(θ, t). (18)

The batch size b controls the stochasticity of the ap-
proximation. At one extreme, b = m recovers the con-
ventional deterministic algorithm; at the other, b = 1
adapts θ fully online, based on individual data sam-
ples. Typically small batches of data (5 ≤ b ≤ 20) are
found to be computationally most efficient.

Unfortunately most advanced gradient methods do
not tolerate the sampling noise inherent in stochas-
tic approximation: it collapses conjugate search di-
rections (Schraudolph & Graepel, 2003) and confuses
the line searches that both conjugate gradient and
quasi-Newton methods depend upon. Full second-
order methods are unattractive here because the com-
putational cost of inverting the Hessian is better amor-
tized over a large data set.

This leaves plain first-order gradient descent. Though
this can be very slow to converge, the speed-up gained
by stochastic approximation dominates on large, re-
dundant data sets, making this strategy more efficient
overall than even sophisticated deterministic methods.
The convergence of stochastic gradient descent can be
further improved by gain vector adaptation.

3.2. SMD Gain Vector Adaptation

Consider a stochastic gradient descent where each co-
ordinate of θ has its own positive gain:

θt+1 = θt − ηt · gt, (19)

where ηt ∈ Rn
+, and · denotes component-wise (Hada-

mard) multiplication. The gain vector η serves as a
diagonal conditioner; it is simultaneously adapted via
a multiplicative update with meta-gain µ:

ηt+1 = ηt · max(1
2 , 1 − µ gt+1 · vt+1), (20)

where the vector v ∈ Θ characterizes the long-term
dependence of the system parameters on gain history
over a time scale governed by the decay factor 0≤λ≤1.
It is computed by the simple iterative update

vt+1 = λvt − ηt · (gt + λHtvt), (21)

where Htvt is calculated efficiently via (11). Since θ0

does not depend on any gains, v0 = 0. SMD thus
introduces two scalar tuning parameters, with typical
values (for stationary problems) µ = 0.1 and λ = 1; see
Vishwanathan et al. (2006) for a detailed derivation.

4. Experiments on 1D Chain CRFs

We have applied SMD as described in Section 3, com-
prising Equations (19), (20), and (21), to the training
of CRFs as described in Section 2, using the stochas-
tic gradient (18). The Hessian-vector product Htvt

in (21) is computed efficiently alongside the gradient
by forward-mode algorithmic differentiation using the
differential (11) with dθ := vt.

We implemented this by modifying the CRF++ soft-
ware2 developed by Taku Kudo. We compare the con-
vergence of SMD to three control methods:

• Simple stochastic gradient descent (SGD) with a
fixed gain η0,

• the batch-only limited-memory BFGS algorithm
as supplied with CRF++, storing 5 BFGS correc-
tions, and

• Collins’ (2002) perceptron (CP), a fully online up-
date (b = 1) that optimizes a different objective.

Except for CP— which in our implementation re-
quired far more time per iteration than the other meth-
ods —we repeated each experiment several times, ob-
taining for different random permutations of the data
substantially identical results to those reported below.

4.1. CoNLL-2000 Base NP Chunking Task

Our first experiment uses the well-known CoNLL-2000
Base NP chunking task (Sang & Buchholz, 2000). Text

2Available under LGPL from http://chasen.org/
~taku/software/CRF++/. Our modified code, as well as
the data sets, configuration files, and results for all exper-
iments reported here will be available for download from
http://sml.nicta.com.au/code/crfsmd/.

Overview

• Conditional Random Fields

• Batch Learning Methods

• Stochastic Gradient Methods

• Stochastic Meta-Descent

• Automatic Differentiation

• Gradient Approximations

Hessian-Vector
Products

• Finite Differencing: For any d, can compute
Hessian-Vector product using 2 gradient
evaluations:

• Algorithmic Differentiation: Under
arithmetic assumption about gradient
evaluation, can use 1 gradient evaluation and
complex perturbation:

Accelerated Training of CRFs with Stochastic Gradient Methods

2.5. Hessian and Hessian-Vector Product

In addition to the gradient, second-order methods
based on Newton steps also require computation and
inversion of the Hessian H(θ) := ∂2

(∂θ)2 L(θ). Taking

the gradient of (8) wrt. θ and substituting (4) yields

H(θ) =
I

σ2
+

m∑

i=1

Covp(y|xi;θ)φ(xi, y). (10)

Explicitly computing the full Hessian (let alone invert-
ing it) costs O(n2) time per iteration, where n is the
number of features (sufficient statistics). In our 1-D
chain CRFs (Section 4) n > 105, making this approach
prohibitively expensive. Our 2-D grid CRFs (Sec-
tion 5) have few features, but computing the Hessian
there requires the pairwise marginals P(xi, xj |y) ∀i, j,
which is O(| Y |2k) for an k × k grid, again infeasible
for the problems we are looking at.

Our SMD optimizer (given below) instead makes use
of the differential

dg(θ) = H(θ) dθ (11)

to efficiently compute the product of the Hessian with
a chosen vector v =: dθ by forward-mode algorithmic
differentiation (Pearlmutter, 1994; Griewank, 2000).
Such Hessian-vector products are implicit — i.e., they
never calculate the Hessian itself —and can be com-
puted along with the gradient at only 2–3 times the
cost of the gradient computation alone.

In fact the similarity between differential and complex
arithmetic (i.e., addition and multiplication) implies

g(θ + i ε dθ) = g(θ) + O(ε2) + i ε dg(θ), (12)

so for suitably small ε (say, 10−150) we can effectively
compute the Hessian-vector product in the imaginary
part of the gradient function extended to the complex
plane (Pearlmutter, personal communication). We use
this technique in the experiments reported below.

2.6. Approximate Inference and Learning

Since we assume that all the variables are observed
in the training set, we can find the global optimum
of the objective function, so long as we can compute
the gradient exactly. Unfortunately for many CRFs
the treewidth is too large for exact inference (and
hence exact gradient computation) to be tractable.
The treewidth of an N = k × k grid, for instance,
is w = O(2k) (Lipton & Tarjan, 1979), so exact in-
ference takes O(| Y |2k) time. Various approximate in-
ference methods have been used in parameter learning
algorithms (Parise & Welling, 2005). Here we con-
sider two of the simplest: mean field (MF) and loopy

belief propagation (LBP) (Weiss, 2001; Yedidia et al.,
2003). The MF free energy is a lower bound on the log-
likelihood, and hence an upper bound on our negative
log-likelihood objective. The Bethe free energy mini-
mized by LBP is not a bound, but has been found em-
pirically to often better approximate the log-likelihood
than the MF free energy (Weiss, 2001). Although LBP
can sometimes oscillate, convergent versions have been
developed (e.g., Kolmogorov, 2004).

For some kinds of potentials, one can use graph cuts
(Boykov et al., 2001) to find an approximate MAP
estimate of the labels, which can be used inside a
Viterbi training procedure. However, this produces
a very discontinuous estimate of the gradient (though
one could presumably use methods similar to Collins’
(2002) voted perceptron to smoothe this out). For the
same reason, we use the sum-product version of LBP
rather than max-product.

An alternative to trying to approximate the condi-
tional likelihood (CL) is to change the objective func-
tion. The pseudo-likelihood (PL) proposed by Besag
(1986) has the significant advantage that it only re-
quires normalizing over the possible labels at one node:

θ̂PL = argmax
θ

∑

m

∑

i

ln p(ym
i |ym

Ni
, xm, θ), (13)

where Ni are the neighbors of node i, and

p(ym
i |ym

Ni
, xm, θ) =

φi(ym
i)

zi(xm, θ)

∏

j∈Ni

φij(y
m
i , ym

j), (14)

zi(x
m, θ) =

∑

yi

φi(yi)
∏

j∈Ni

φij(y
m
i , ym

j). (15)

Here ym
i is the observed label for node i in the m’th

training case, and zi sums over all possible labels for
node i. We have dropped the conditioning on xm in
the potentials for notational simplicity.

Although the pseudo-likelihood is not necessarily a
good approximation to the likelihood, as the amount
of training data (or the size of the lattice, when us-
ing tied parameters) tends to infinity, its maximum
coincides with that of the likelihood (Winkler, 1995).

Note that pseudo-likelihood estimates the parameters
conditional on i’s neighbors being observed. As a con-
sequence, PL tends to place too much emphasis on the
edge potentials, and not enough on the local evidence.
For image denoising problems, this is often evident as
“oversmoothing”. The “frailty” of pseudo-likelihood
in learning to segment images was also noted by Blake
et al. (2004). Regularizing the edge parameters does
help, but as we show in Section 5, it is often better to
try to optimize the correct objective function.

Accelerated Training of CRFs with Stochastic Gradient Methods

2.5. Hessian and Hessian-Vector Product

In addition to the gradient, second-order methods
based on Newton steps also require computation and
inversion of the Hessian H(θ) := ∂2

(∂θ)2 L(θ). Taking

the gradient of (8) wrt. θ and substituting (4) yields

H(θ) =
I

σ2
+

m∑

i=1

Covp(y|xi;θ)φ(xi, y). (10)

Explicitly computing the full Hessian (let alone invert-
ing it) costs O(n2) time per iteration, where n is the
number of features (sufficient statistics). In our 1-D
chain CRFs (Section 4) n > 105, making this approach
prohibitively expensive. Our 2-D grid CRFs (Sec-
tion 5) have few features, but computing the Hessian
there requires the pairwise marginals P(xi, xj |y) ∀i, j,
which is O(| Y |2k) for an k × k grid, again infeasible
for the problems we are looking at.

Our SMD optimizer (given below) instead makes use
of the differential

dg(θ) = H(θ) dθ (11)

to efficiently compute the product of the Hessian with
a chosen vector v =: dθ by forward-mode algorithmic
differentiation (Pearlmutter, 1994; Griewank, 2000).
Such Hessian-vector products are implicit — i.e., they
never calculate the Hessian itself —and can be com-
puted along with the gradient at only 2–3 times the
cost of the gradient computation alone.

In fact the similarity between differential and complex
arithmetic (i.e., addition and multiplication) implies

g(θ + i ε dθ) = g(θ) + O(ε2) + i ε dg(θ), (12)

so for suitably small ε (say, 10−150) we can effectively
compute the Hessian-vector product in the imaginary
part of the gradient function extended to the complex
plane (Pearlmutter, personal communication). We use
this technique in the experiments reported below.

2.6. Approximate Inference and Learning

Since we assume that all the variables are observed
in the training set, we can find the global optimum
of the objective function, so long as we can compute
the gradient exactly. Unfortunately for many CRFs
the treewidth is too large for exact inference (and
hence exact gradient computation) to be tractable.
The treewidth of an N = k × k grid, for instance,
is w = O(2k) (Lipton & Tarjan, 1979), so exact in-
ference takes O(| Y |2k) time. Various approximate in-
ference methods have been used in parameter learning
algorithms (Parise & Welling, 2005). Here we con-
sider two of the simplest: mean field (MF) and loopy

belief propagation (LBP) (Weiss, 2001; Yedidia et al.,
2003). The MF free energy is a lower bound on the log-
likelihood, and hence an upper bound on our negative
log-likelihood objective. The Bethe free energy mini-
mized by LBP is not a bound, but has been found em-
pirically to often better approximate the log-likelihood
than the MF free energy (Weiss, 2001). Although LBP
can sometimes oscillate, convergent versions have been
developed (e.g., Kolmogorov, 2004).

For some kinds of potentials, one can use graph cuts
(Boykov et al., 2001) to find an approximate MAP
estimate of the labels, which can be used inside a
Viterbi training procedure. However, this produces
a very discontinuous estimate of the gradient (though
one could presumably use methods similar to Collins’
(2002) voted perceptron to smoothe this out). For the
same reason, we use the sum-product version of LBP
rather than max-product.

An alternative to trying to approximate the condi-
tional likelihood (CL) is to change the objective func-
tion. The pseudo-likelihood (PL) proposed by Besag
(1986) has the significant advantage that it only re-
quires normalizing over the possible labels at one node:

θ̂PL = argmax
θ

∑

m

∑

i

ln p(ym
i |ym

Ni
, xm, θ), (13)

where Ni are the neighbors of node i, and

p(ym
i |ym

Ni
, xm, θ) =

φi(ym
i)

zi(xm, θ)

∏

j∈Ni

φij(y
m
i , ym

j), (14)

zi(x
m, θ) =

∑

yi

φi(yi)
∏

j∈Ni

φij(y
m
i , ym

j). (15)

Here ym
i is the observed label for node i in the m’th

training case, and zi sums over all possible labels for
node i. We have dropped the conditioning on xm in
the potentials for notational simplicity.

Although the pseudo-likelihood is not necessarily a
good approximation to the likelihood, as the amount
of training data (or the size of the lattice, when us-
ing tied parameters) tends to infinity, its maximum
coincides with that of the likelihood (Winkler, 1995).

Note that pseudo-likelihood estimates the parameters
conditional on i’s neighbors being observed. As a con-
sequence, PL tends to place too much emphasis on the
edge potentials, and not enough on the local evidence.
For image denoising problems, this is often evident as
“oversmoothing”. The “frailty” of pseudo-likelihood
in learning to segment images was also noted by Blake
et al. (2004). Regularizing the edge parameters does
help, but as we show in Section 5, it is often better to
try to optimize the correct objective function.

Getting Started with LATEX

David R. Wilkins

2nd Edition
Copyright c© David R. Wilkins 1995

Contents

1 Introduction to LATEX 1
1.1 What is LATEX? . 1

1 Introduction to LATEX

1.1 What is LATEX?

Bi+1 = Bi +
yyT

yT s
− BissT Bi

sT Bis
(1)

B−1
i+1 = (I − syT

yT s
)B−1

i (I − ysT

yT s
) +

ssT

yT s
(2)

dg(θ) ≈ g(θ + εd)− g(θ)

ε
(3)

1

for i = 2:T
 for b=1:Nbatches
 batchNdx = batchIndices{b};
 % Nic's code - uses complex number trick
 [f(b),g] = feval(gradient, w + ii*v, batchNdx, gradArgs{:});
	
 eta = eta.*max(1/2,1+mu*v.*real(g));
 w = w - eta.*real(g);
 v = lambda*v+eta.*(real(g)-lambda*imag(g)*1e150);

SMD:

Experiment 2

• BioNLP/NLPBA-2004 Shared Task:

• Biomedical Named Entity recognition on
GENIA corpus

• 18546 Sentences

• 106583 Features

Accelerated Training of CRFs with Stochastic Gradient Methods

Figure 1. Left: F-scores on the CoNLL-2000 shared task,
against passes through the training set, for SMD (solid),
SGD (dotted), BFGS (dash-dotted), and CP (dashed).
Horizontal line: F-score reported by Sha & Pereira (2003).
Right: Enlargement of the final portion of the figure.

chunking, an intermediate step towards full parsing,
consists of dividing a text into syntactically correlated
parts of words. The training set consists of 8936 sen-
tences, each word annotated automatically with part-
of-speech (POS) tags. The task is to label each word
with a label indicating whether the word is outside a
chunk, starts a chunk, or continues a chunk. The stan-
dard evaluation metrics for this task are the precision
p (fraction of output chunks which match the refer-
ence chunks), recall r (fraction of reference chunks re-
turned), and their harmonic mean, the F-score given
by F = 2pr/(p + r), on a test set of 2012 sentences.

Sha & Pereira (2003) found BFGS to converge faster
than CG and GIS methods on this task. We follow
them in using binary-valued features which depend on
the words, POS tags, and labels in the neighborhood
of a given word, taking into account only those 330731
features which occur at least once in the training data.
The main difference between our setup and theirs is
that they assume a second-order Markov dependency
between chunk tags, which we do not model.

We used σ = 1 and b = 8, and tuned η0 = 0.1 for best
performance of SGD on this task. SMD then used the
same η0 and the default values µ = 0.1 and λ = 1. We
evaluated the F-score on the test set after every batch
during the first pass through the training data, after
every iteration through the data thereafter. The result
is plotted in Figure 1 as a function of the number of
iterations through the data on a logarithmic scale.

Figure 1 shows the F-score obtained on the test set
by the three algorithms as a function of the number
of passes through the training set, on a logarithmic
scale. The online methods show progress orders of
magnitude earlier, simply because unlike batch meth-
ods they start optimizing long before having seen the
entire training set even once.

Enlarging the final portion of the data reveals dif-

Figure 2. Left: F-scores on the BioNLP/NLPBA-2004
shared task, against passes through the training set. Hor-
izontal line: best F-score reported by Settles (2004).
Right: Enlargement of the final portion of the figure.

ferences in asymptotic convergence between the on-
line methods: While SMD and BFGS both attain the
same F-score of 93.6%— compared to Sha & Pereira’s
(2003) 94.2% for a richer model — SMD does so almost
an order of magnitude faster than BFGS. SGD levels
out at around 93.4%, while CP declines to 92.7% from
a peak of 92.9% reached earlier.

4.2. BioNLP/NLPBA-2004 Shared Task

Our second experiment uses the BioNLP/NLPBA-
2004 shared task of biomedical named-entity recogni-
tion on the GENIA corpus (Kim et al., 2004). Named-
entity recognition aims to identify and classify tech-
nical terms in a given domain (here: molecular bi-
ology) that refer to concepts of interest to domain
experts (Kim et al., 2004). Following Settles (2004)
we use binary orthographic features (AlphaNumeric,
HasDash, RomanNumeral, etc.) based on regular
expressions, though ours differ somewhat from those
used by Settles (2004). We also use neighboring words
to model context, and add features to capture corre-
lations between the current and previous label, for a
total of 106583 features that occur in the training data.

We permuted the 18546 sentences of the training data
set so as to destroy any correlations across sentences,
used the parameters σ = 1 and b = 6, and tuned
η0 = 0.1 for best performance of SGD. SMD then used
the same η0, µ = 0.02 (moderately tuned), and λ = 1
(default value). Figure 2 plots the F-score, evaluated
on the 3856 sentences of the test set, against number
of passes through the training data.

Settles (2004) trained a CRF on this data and report a
best F-score of 72.0%. Our asymptotic F-scores are far
better; we attribute this to our use of different regular
expressions, and a richer set of features. Again SMD
converges much faster to the same solution as BFGS
(85.8%), significantly outperforming SGD (85.2%) and
CP, whose oscillations are settling around 83%.

“On”-Line

Overview

• Conditional Random Fields

• Batch Learning Methods

• Stochastic Gradient Methods

• Stochastic Meta-Descent

• Automatic Differentiation

• Gradient Approximations

General Graphs

• In General Graphs, Inference may be
intractable

• Batch Models: need to approximate log(Z) in
objective and marginals in gradient

• Stochastic Approaches: need marginals, but
no log(Z)

Pseudo-likelihood!"#$%%&'()***

5 Binary Pseudolikelihood

Pseudo-likelihood:

1

1 + exp(yiwT xi)
∏

j∈nei(yi)
[exp(yiyjvT xij)]

(25)

Log-pseudo-likelihood:

− log(1 + exp(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij)) (26)

Define:

S ← yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij (27)

Final Log-pseudo-likelihood:

− log(1 + exp(S)) (28)

6 Gradient

Gradient wrt w:

−yixi exp(yiw
T xi +

∑
j∈nei(yi)

yiyjv
T xij)

1 + exp(yiwT xi +
∑

j∈nei(yi)
yiyjvT xij)

(29)

Re-write with sigmoid:

−yixiσ(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij) (30)

Gradient wrt v:

−
∑

j∈nei(yi)
[yiyjxij] exp(yiw

T xi +
∑

j∈nei(yi)
yiyjv

T xij)

1 + exp(yiwT xi +
∑

j∈nei(yi)
yiyjvT xij)

(31)

Re-write with sigmoid:

−
∑

j∈nei(yi)

[yiyjxij]σ(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij) (32)

Full gradient:

−yi[xi;
∑

j∈nei(yi)

[yjxij]]σ(S) (33)

7 Hessian

Hessian wrt w:

y2
i xix

T
i σ(S)(1− σ(S)) (34)

Hessian wrt v:

(
∑

j∈nei(yi)

[yiyjxij])(
∑

j∈nei(yi)

[yiyjxij])
T σ(S)(1− σ(S)) (35)

Full Hessian:

y2
i [xi;

∑

j∈nei(yi)

[yjvxij]][xi;
∑

j∈nei(yi)

[yjvxij]]
T σ(S)(1− σ(S)) (36)

3

5 Binary Pseudolikelihood

Pseudo-likelihood:

1

1 + exp(yiwT xi)
∏

j∈nei(yi)
[exp(yiyjvT xij)]

(25)

Log-pseudo-likelihood:

− log(1 + exp(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij)) (26)

Define:

S ← yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij (27)

Final Log-pseudo-likelihood:

− log(1 + exp(S)) (28)

6 Gradient

Gradient wrt w:

−yixi exp(yiw
T xi +

∑
j∈nei(yi)

yiyjv
T xij)

1 + exp(yiwT xi +
∑

j∈nei(yi)
yiyjvT xij)

(29)

Re-write with sigmoid:

−yixiσ(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij) (30)

Gradient wrt v:

−
∑

j∈nei(yi)
[yiyjxij] exp(yiw

T xi +
∑

j∈nei(yi)
yiyjv

T xij)

1 + exp(yiwT xi +
∑

j∈nei(yi)
yiyjvT xij)

(31)

Re-write with sigmoid:

−
∑

j∈nei(yi)

[yiyjxij]σ(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij) (32)

Full gradient:

−yi[xi;
∑

j∈nei(yi)

[yjxij]]σ(S) (33)

7 Hessian

Hessian wrt w:

y2
i xix

T
i σ(S)(1− σ(S)) (34)

Hessian wrt v:

(
∑

j∈nei(yi)

[yiyjxij])(
∑

j∈nei(yi)

[yiyjxij])
T σ(S)(1− σ(S)) (35)

Full Hessian:

y2
i [xi;

∑

j∈nei(yi)

[yjvxij]][xi;
∑

j∈nei(yi)

[yjvxij]]
T σ(S)(1− σ(S)) (36)

3

5 Binary Pseudolikelihood

Pseudo-likelihood:

1

1 + exp(yiwT xi)
∏

j∈nei(yi)
[exp(yiyjvT xij)]

(25)

Log-pseudo-likelihood:

− log(1 + exp(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij)) (26)

Define:

S ← yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij (27)

Final Log-pseudo-likelihood:

− log(1 + exp(S)) (28)

6 Gradient

Gradient wrt w:

−yixi exp(yiw
T xi +

∑
j∈nei(yi)

yiyjv
T xij)

1 + exp(yiwT xi +
∑

j∈nei(yi)
yiyjvT xij)

(29)

Re-write with sigmoid:

−yixiσ(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij) (30)

Gradient wrt v:

−
∑

j∈nei(yi)
[yiyjxij] exp(yiw

T xi +
∑

j∈nei(yi)
yiyjv

T xij)

1 + exp(yiwT xi +
∑

j∈nei(yi)
yiyjvT xij)

(31)

Re-write with sigmoid:

−
∑

j∈nei(yi)

[yiyjxij]σ(yiw
T xi +

∑

j∈nei(yi)

yiyjv
T xij) (32)

Full gradient:

−yi[xi;
∑

j∈nei(yi)

[yjxij]]σ(S) (33)

7 Hessian

Hessian wrt w:

y2
i xix

T
i σ(S)(1− σ(S)) (34)

Hessian wrt v:

(
∑

j∈nei(yi)

[yiyjxij])(
∑

j∈nei(yi)

[yiyjxij])
T σ(S)(1− σ(S)) (35)

Full Hessian:

y2
i [xi;

∑

j∈nei(yi)

[yjvxij]][xi;
∑

j∈nei(yi)

[yjvxij]]
T σ(S)(1− σ(S)) (36)

3

Experiment 3

• Man-Made Structure Detection

• Images divided into 16x24 patches

• 108 training Images

• 35 Features (we used ‘full’ BFGS)

Accelerated Training of CRFs with Stochastic Gradient Methods

5 10 15 20 25 30 35 40

0.6

0.8

1

1.2

1.4

1.6
x 104

passes

ob
je

ct
iv

e

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40
0.12

0.14

0.16

0.18

0.2

0.22

passes

%
 te

st
 e

rr
or

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40

0.6

0.8

1

1.2

1.4

1.6
x 104

passes

ob
je

ct
iv

e

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40
0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

passes

%
 te

st
 e

rr
or

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40

70

80

90

100

110

120

130

140

passes

ob
je

ct
iv

e

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40

0.122

0.124

0.126

0.128

0.13

0.132

passes
%

 te
st

 e
rr

or

SMD
SGD
BFGS
ASGD

Figure 6. Training objective (left) and percent test error
(right) vs. passes through the data, for classifying image
patches with (rows, top to bottom) LBP, MF, and PL.

and the ICT Center of Excellence program. This work
is also supported by the IST Program of the European
Community, under the Pascal Network of Excellence,
IST-2002-506778, and an NSERC Discovery Grant.

References

Barndorff-Nielsen, O. E. (1978). Information and Exponen-
tial Families in Statistical Theory. Wiley, Chichester.

Besag, J. (1986). On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society B, 48 (3),
259–302.

Blake, A., Rother, C., Brown, M., Perez, P., & Torr, P.
(2004). Interactive image segmentation using an adap-
tive GMMRF model. In Proc. European Conf. on Com-
puter Vision.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approxi-
mate energy minimization via graph cuts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
23 (11), 1222–1239.

Collins, M. (2002). Discriminative training methods for
hidden markov models. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

Griewank, A. (2000). Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Frontiers
in Applied Mathematics. Philadelphia: SIAM.

Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A.

(2005). Overview of BioCreAtivE:critical assessment of
information extraction for biology. BMC Bioinformat-
ics, 6 (Suppl 1).

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., & Col-
lier, N. (2004). Introduction to the bio-entity recogni-
tion task at JNLPBA. In Proceeding of the Interna-
tional Joint Workshop on Natural Language Processing
in Biomedicine and its Applications (NLPBA), 70 – 75.
Geneva, Switzerland.

Kolmogorov, V. (2004). Convergent tree-reweighted mes-
sage passing for energy minimization. Tech. Rep. MSR-
TR-2004-90, Microsoft Research, Cambridge, UK.

Kumar, S., & Hebert, M. (2003). Man-made structure de-
tection in natural images using a causal multiscale ran-
dom field. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition.

Kumar, S., & Hebert, M. (2004). Discriminative fields for
modeling spatial dependencies in natural images. In Ad-
vances in Neural Information Processing Systems 16.

Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic modeling for seg-
menting and labeling sequence data. In Proc. Intl. Conf.
Machine Learning, vol. 18.

Lipton, R. J., & Tarjan, R. E. (1979). A separator theorem
for planar graphs. SIAM Journal of Applied Mathemat-
ics, 36, 177–189.

Parise, S., & Welling, M. (2005). Learning in markov ran-
dom fields: An empirical study. In Joint Statistical Meet-
ing.

Pearlmutter, B. A. (1994). Fast exact multiplication by
the Hessian. Neural Computation, 6 (1), 147–160.

Sang, E. F. T. K., & Buchholz, S. (2000). Introduction to
the CoNLL-2000 shared task: Chunking. In In Proceed-
ings of CoNLL-2000, 127 – 132. Lisbon, Portugal.

Schraudolph, N. N. (1999). Local gain adaptation in
stochastic gradient descent. In Proc. Intl. Conf. Arti-
ficial Neural Networks, 569–574. Edinburgh, Scotland:
IEE, London.

Schraudolph, N. N. (2002). Fast curvature matrix-vector
products for second-order gradient descent. Neural Com-
putation, 14 (7), 1723–1738.

Schraudolph, N. N., & Graepel, T. (2003). Combining con-
jugate direction methods with stochastic approximation
of gradients. In C. M. Bishop, & B. J. Frey, eds., Proc.
9th Intl. Workshop Artificial Intelligence and Statistics,
7–13. Key West, Florida. ISBN 0-9727358-0-1.

Settles, B. (2004). Biomedical named intity recogni-
tion using conditional random fields and rich feature
sets. In Proceedings of COLING 2004, International
Joint Workshop On Natural Language Processing in
Biomedicine and its Applications (NLPBA). Geneva,
Switzerland.

Sha, F., & Pereira, F. (2003). Shallow parsing with con-
ditional random fields. In Proceedings of HLT-NAACL,
213–220. Association for Computational Linguistics.

Vishwanathan, S. V. N., Schraudolph, N. N., & Smola,
A. J. (2006). Step size adaptation in reproducing kernel
hilbert space. Journal of Machine Learning Research, 7.

Weiss, Y. (2001). Comparing the mean field method and
belief propagation for approximate inference in MRFs.
In D. Saad, & M. Opper, eds., Advanced Mean Field
Methods. MIT Press.

Winkler, G. (1995). Image Analysis, Random Fields and

Variational
Approximations

• Mean Field:

• Bethe:

• Not convex, may not give descent direction

• Can SG methods escape bad gradient or
local min?

Getting Started with LATEX

David R. Wilkins

2nd Edition
Copyright c© David R. Wilkins 1995

Contents

1 Introduction to LATEX 1
1.1 What is LATEX? . 1

1 Introduction to LATEX

1.1 What is LATEX?

Bi+1 = Bi +
yyT

yT s
− BissT Bi

sT Bis
(1)

B−1
i+1 = (I − syT

yT s
)B−1

i (I − ysT

yT s
) +

ssT

yT s
(2)

dg(θ) ≈ g(θ + εd)− g(θ)

ε
(3)

FMF (bi) = −
∑

i,j

∑

xi,xj

bi(xi)bj(xj) log ψi,j(xi, xj)+
∑

i

∑

xi

bi(xi)[log bi(xi)−log ψi(xi)] (4)

Fβ(bi, bj) =
∑

i,j

∑

xi,xj

bi,j(xi, xj)[log bi,j(xi, xj)− log ψi,j(xi, xj)] (5)

−
∑

i

(di − 1)
∑

xi

bi(xi)[log bi(xi)− ψi(xi)] (6)

1

Getting Started with LATEX

David R. Wilkins

2nd Edition
Copyright c© David R. Wilkins 1995

Contents

1 Introduction to LATEX 1
1.1 What is LATEX? . 1

1 Introduction to LATEX

1.1 What is LATEX?

Bi+1 = Bi +
yyT

yT s
− BissT Bi

sT Bis
(1)

B−1
i+1 = (I − syT

yT s
)B−1

i (I − ysT

yT s
) +

ssT

yT s
(2)

dg(θ) ≈ g(θ + εd)− g(θ)

ε
(3)

FMF (bi) = −
∑

i,j

∑

xi,xj

bi(xi)bj(xj) log ψi,j(xi, xj)+
∑

i

∑

xi

bi(xi)[log bi(xi)−log ψi(xi)] (4)

Fβ(bi, bj) =
∑

i,j

∑

xi,xj

bi,j(xi, xj)[log bi,j(xi, xj)− log ψi,j(xi, xj)] (5)

−
∑

i

(di − 1)
∑

xi

bi(xi)[log bi(xi)− ψi(xi)] (6)

1

Accelerated Training of CRFs with Stochastic Gradient Methods

5 10 15 20 25 30 35 40

0.6

0.8

1

1.2

1.4

1.6
x 104

passes

ob
je

ct
iv

e

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40
0.12

0.14

0.16

0.18

0.2

0.22

passes

%
 te

st
 e

rr
or

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40

0.6

0.8

1

1.2

1.4

1.6
x 104

passes

ob
je

ct
iv

e

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40
0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

passes

%
 te

st
 e

rr
or

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40

70

80

90

100

110

120

130

140

passes

ob
je

ct
iv

e

SMD
SGD
BFGS
ASGD

5 10 15 20 25 30 35 40

0.122

0.124

0.126

0.128

0.13

0.132

passes

%
 te

st
 e

rr
or

SMD
SGD
BFGS
ASGD

Figure 6. Training objective (left) and percent test error
(right) vs. passes through the data, for classifying image
patches with (rows, top to bottom) LBP, MF, and PL.

and the ICT Center of Excellence program. This work
is also supported by the IST Program of the European
Community, under the Pascal Network of Excellence,
IST-2002-506778, and an NSERC Discovery Grant.

References

Barndorff-Nielsen, O. E. (1978). Information and Exponen-
tial Families in Statistical Theory. Wiley, Chichester.

Besag, J. (1986). On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society B, 48 (3),
259–302.

Blake, A., Rother, C., Brown, M., Perez, P., & Torr, P.
(2004). Interactive image segmentation using an adap-
tive GMMRF model. In Proc. European Conf. on Com-
puter Vision.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approxi-
mate energy minimization via graph cuts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
23 (11), 1222–1239.

Collins, M. (2002). Discriminative training methods for
hidden markov models. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing.

Griewank, A. (2000). Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Frontiers
in Applied Mathematics. Philadelphia: SIAM.

Hirschman, L., Yeh, A., Blaschke, C., & Valencia, A.

(2005). Overview of BioCreAtivE:critical assessment of
information extraction for biology. BMC Bioinformat-
ics, 6 (Suppl 1).

Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., & Col-
lier, N. (2004). Introduction to the bio-entity recogni-
tion task at JNLPBA. In Proceeding of the Interna-
tional Joint Workshop on Natural Language Processing
in Biomedicine and its Applications (NLPBA), 70 – 75.
Geneva, Switzerland.

Kolmogorov, V. (2004). Convergent tree-reweighted mes-
sage passing for energy minimization. Tech. Rep. MSR-
TR-2004-90, Microsoft Research, Cambridge, UK.

Kumar, S., & Hebert, M. (2003). Man-made structure de-
tection in natural images using a causal multiscale ran-
dom field. In Proc. IEEE Conf. Computer Vision and
Pattern Recognition.

Kumar, S., & Hebert, M. (2004). Discriminative fields for
modeling spatial dependencies in natural images. In Ad-
vances in Neural Information Processing Systems 16.

Lafferty, J. D., McCallum, A., & Pereira, F. (2001). Con-
ditional random fields: Probabilistic modeling for seg-
menting and labeling sequence data. In Proc. Intl. Conf.
Machine Learning, vol. 18.

Lipton, R. J., & Tarjan, R. E. (1979). A separator theorem
for planar graphs. SIAM Journal of Applied Mathemat-
ics, 36, 177–189.

Parise, S., & Welling, M. (2005). Learning in markov ran-
dom fields: An empirical study. In Joint Statistical Meet-
ing.

Pearlmutter, B. A. (1994). Fast exact multiplication by
the Hessian. Neural Computation, 6 (1), 147–160.

Sang, E. F. T. K., & Buchholz, S. (2000). Introduction to
the CoNLL-2000 shared task: Chunking. In In Proceed-
ings of CoNLL-2000, 127 – 132. Lisbon, Portugal.

Schraudolph, N. N. (1999). Local gain adaptation in
stochastic gradient descent. In Proc. Intl. Conf. Arti-
ficial Neural Networks, 569–574. Edinburgh, Scotland:
IEE, London.

Schraudolph, N. N. (2002). Fast curvature matrix-vector
products for second-order gradient descent. Neural Com-
putation, 14 (7), 1723–1738.

Schraudolph, N. N., & Graepel, T. (2003). Combining con-
jugate direction methods with stochastic approximation
of gradients. In C. M. Bishop, & B. J. Frey, eds., Proc.
9th Intl. Workshop Artificial Intelligence and Statistics,
7–13. Key West, Florida. ISBN 0-9727358-0-1.

Settles, B. (2004). Biomedical named intity recogni-
tion using conditional random fields and rich feature
sets. In Proceedings of COLING 2004, International
Joint Workshop On Natural Language Processing in
Biomedicine and its Applications (NLPBA). Geneva,
Switzerland.

Sha, F., & Pereira, F. (2003). Shallow parsing with con-
ditional random fields. In Proceedings of HLT-NAACL,
213–220. Association for Computational Linguistics.

Vishwanathan, S. V. N., Schraudolph, N. N., & Smola,
A. J. (2006). Step size adaptation in reproducing kernel
hilbert space. Journal of Machine Learning Research, 7.

Weiss, Y. (2001). Comparing the mean field method and
belief propagation for approximate inference in MRFs.
In D. Saad, & M. Opper, eds., Advanced Mean Field
Methods. MIT Press.

Winkler, G. (1995). Image Analysis, Random Fields and

Final Notes

• For large data sets and well-behaved
functions, SG methods can significantly
improve training time

• SMD has better convergence properties
than SG in these cases

• Reproducible Research:

• Matlab code/data for replicating 2D
experiments on-line (including mex code
for MF/LBP)

Automatic Brain
Tumor Segmentation

Automated Heart Wall
Abnormality Detection

L1-Penalized
Optimization

Support Vector
Random Fields

Bayesian Sparse
Logistic Regression

Graphical Model
Structure Learning

CRF Toolbox

9

Target

20 40 60

20

40

60

Testing images

20 40 60

20

40

60

SVM

20 40 60

20

40

60

LR

20 40 60

20

40

60

SVRFs

20 40 60

20

40

60

DRFs

20 40 60

20

40

60

Car

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

Toybox

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

Size

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

M

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

20 40 60

20

40

60

Objects

Fig. 1. Example Data and Results for the Different Classifiers

4 Experiments

We have evaluated our proposed model on synthetic and real-world binary image
labeling tasks, comparing our approach to Logistic Regression, SVMs, and DRFs
for these problems. Since class imbalance was present in many of the data sets,
we used the Jaccard measure to quantify performance: f = TP

TP+FP+FN
, where

TP is the number of true positives, FP denotes the number of false positives,
and FN tallies false negatives.

4.1 Experiments on Synthetic data

We evaluated the four techniques over 5 synthetic binary image sets. These
binary images were corrupted by zero mean Gaussian noise with unit standard
deviation, and the task was to label the foreground objects (see the first and
second columns in Fig. 2). Two of the sets contained balanced class labels (Car
and Objects), while the other three contained imbalanced classes. The five 150

! !

1

2

21

23 24

12

1325 26

3

9

14 194

32

36

5

16

28

30

31

6

15

7

27

8

1710

3334

1118

35

37

20 22

29

0 10 20 30

0

10

20

30

nz = 167

true

0 10 20 30

0

10

20

30

nz = 487

lam=50.00000

0 10 20 30

0

10

20

30

nz = 215

lam=200.00000

0 10 20 30

0

10

20

30

nz = 135

lam=500.00000

Figure 1: Left: Alarm network (ground truth). Right: Sparsity pattern learned from Gaussian data
using BCD with N = 500. True adjacency matrix is in the top left corner (corresponding to the
graph on the left).

Figure 2: Sparsity pattern for digits 1 to 9. We represent the 2D image data in column major order.
Thus the block on the diagonal for digit 1 represents the partial correlationswithin the vertical stroke,
whereas the off diagonal block represents (longer range) correlations between the vertical edges of
the stroke.

are obviously not as good as learning from the fully observed Gaussian data, but are reasonable
nonetheless. See also Figure 4, where we can observe that we can roughly recover structure of the
digits even after they have been binarized and passed through EM.

We compare our method to the max-min hill-climbing (MMHC) algorithm [22], which has been
shown, in extensive studies, to be a state of the art method for learning directed graphical models
from discrete data.1 We see that MMHC seems to do better, but we were unable to increase its
sensitivity (thus making the curve cover the full range), despite increasing the p-value parameter
(used internally for significance testing) beyond 0.3.

1We used the public implementation available at http://discover1.mc.vanderbilt.edu/
discover/public/causal_explorer/index.html.

Figure 3. One frame from an A4C image clip
with the yellow box showing the localized LV,

and the yellow dots representing the control

points along the detected contour.

set of numerical features extracted from the dual-contours

tracked through time, and these are then used to provide

classification for each segment and the entire heart.

4.1. Image processing

The first step toward classification of the heart involves

automatic contour generation of the LV [9]. Ultrasound

is known to be noisier than other common medical imag-

ing modalities such as MRI or CT, and echocardiograms

are even worse due to the fast motion of the heart mus-

cle and respiratory interferences. The framework used by

the algorithm we use is ideal for tracking echo sequences

since it exploits heteroscedastic (i.e. location-dependent

and anisotropic) measurement uncertainties. The process

can be divided into 2 steps: border detection and border

tracking. Border detection involves localizing the LV on

multiple frames of the image clip (shown in Figure 3 as

a box drawn around the LV), and then detecting the LV’s

shape within that box. Border tracking involves tracking

this LV border from one frame to the next through the en-

tire movie clip. Motion interferences (e.g. probe motion,

patient movement, respiration, etc.) are compensated for

by using global motion estimation based on robust statis-

tics outside the LV. This global motion estimation can be

seen in Figure 4 as a vertical red line near the center of the

image. After detection and tracking numerical features are

computed from the dual-contours tracked through time. The

features extracted are both global (involving the whole LV)

and local (involving individual segments visible in the im-

age), and are based on velocity, thickening, timing, volume

changes, etc.

Figure 4. One frame from an A4C image
clip with the outer and inner contour control

points shown. The red vertical line showsuse

of global motion compensation, and the two
squares denote the centers of the individual

contours.

4.2. Extracted Features

A number of features have been developed to character-

ize cardiac motion in order to detect cardiac wall motion

abnormalities, among them: global and local ejection frac-

tion (EF) ratio, radial displacement, circumferential strain,

velocity, thickness, thickening, timing, eigenmotion, curva-

ture, and bending energy. Some of these features, including

timing, eigenmotion, curvature, local EF ratio and bending

energy, are based on the endocardial contour.

Due to the patient examination protocol, only the systole

(i.e. contraction phase of the heart) is recorded for some

patients. In order for the features to be consistent, the sys-

tole is extracted from each patient based on the cavity area

change. For each frame, the LV cavity area can be estimated

accurately based on the endocardial contour of that frame.

The frame corresponding to the maximal cavity area that

is achieved at the end of diastolic phase (expansion phase

of the heart) is the frame considered to be the beginning of

systole. The frame corresponding to the minimal cavity area

(achieved at the end of systolic phase) is the frame assumed

to be the end of systole. For the time being, all features are

computed based only on the systolic phase. However, the

methods used to calculate the features are generally appli-

cable for the diastolic phase as well.

The following is a basic description of some of the fea-

tures:

• Timing-based features: examine the synchronousness

“Non-Patented”
Stuff

Fig. 2. Examples of features measured at a single scale. Top row: Gaussian and Lapla-
cian of Gaussian responses. Middle row: Maximum Response Gabor filter responses.
Bottom row: Average normal Gaussian responses for T1 and T2, standard devia-
tion of Gaussian responses for T1 and T2, average absolute distances from normal
Gaussian responses for T1 and T2. All images have been normalized to the their full
contrast range to enhance display. Although the tumor area is very similar to several
normal areas in the image, the bottom right image clearly shows that the tumor has
a Gaussian response that is not expected at this location (further supported by the
average Gaussian response and the standard deviation of these responses).

healthy structures (i.e., compression or enlargement). Hence, while these struc-
tures indeed deviate from normality, it is usually undesirable to label such (rela-
tively) healthy regions as containing cancer cells. Thus, in order to find meaning-
ful combinations of (a) intensity features, (b) texture features, (c) our character-
izations of normality, (d) distance from normality, and (e) symmetry of distance
from normality, a supervised pixel classification approach was selected.

6 Experimental Results

The validation of the proposed method is complicated by the lack of a stan-
dard data set, and the lack of released implementations for performing this task.
Furthermore, existing implementations that do not use Machine Learning are
heavily dependent on the specific image acquisition protocol used during the de-
sign of the system, and thus can not be appropriately quantified using the data
available to us. In order to assess the performance of our method, we imple-
mented and evaluated the feature sets used by other recent systems that do use
Machine Learning. While each of the related works uses a post-processing stage
to correct mistakes made in classification, we only compare raw classification re-
sults. However, the results of this post-processing stage will not be hurt by using

Database Textons

Parallel Algorithms

