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Sparsenet is wasteful because it ‘copies’ basis functions




Why? Because sparsenet codes aren’t translation invariant

e OKk, actually they are, sort of: the activations of low spatial
frequency basis functions don't change much for small shifts
(they don’t need to, because they are so big and boring)

e T hat's why there are more ‘copies’ of high frequency BFs

e ..but we'd like a code that gives the same output when the
input slightly translated, scaled, rotated, or occluded.

o [.e., we'd like to account for slight transformations of the
image with another set of variables.



Sparsenet BFs ordered by spatial frequency




What happens as we slide our window?
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Morphable basis functions increase representational power

e \We don't have to ‘copy’ each orientation and frequency to
each position

e T here are a small number of useful morphs, each of which
can be applied to each template basis function

e \We can use M basis functions and N morphs to gain the
expressiveness of M x N basis functions



Morphable BFs can be used to separate ‘what’ from ‘where’

e Modeling this way allows us to read out the two factors as
separate variables

e T he model then captures the separate functions of the ven-
tral (‘what’) and dorsal (‘where’) processing streams in ma-
mallian visual cortex

— Strong support for this idea of two streams comes from
lesion studies in monkey, in which damage to dorsal or
ventral cortical regions impairs spatial abilities or object
identification, respectively



Image transformations

e Consider a 1-dimensional, discretely sampled image of a 2-
dimensional world.

e We can express arbitrary transformations from I(z) to I'(z'),
rec X, 2 € X' as follows.

I(x) = ZT(QB,:U’)I’(Q:’)

e Or, in vector-matrix notation,

I=TrI



Visualizing 1-d image transformations
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Basis function expansions of image transformations

e Transformations between sequential frames of natural movies
are 2-d and not necessarily affine.

— Add dimensions y € Y and ¢/ € V':

I(z,y) =YY T(z,y,2',y) (&, y)

Y

— We can capture the space of all possible transforms by
expressing T'(z,y,z’,y’) as a basis function expansion:

T(ﬂ?, Y, :U,7 y/) — Z ngg(% Y, :B/) y/)
J
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Sparse coding in transform space

e The transformations lie inside a subspace of X x ) x X' x )/
(not all possible transforms are viable).

e \We expect that for a small image patch, the correspondence
between most sequential movie frames can be ‘explained’ by
a small number of underlying causes — such as object motion
or observer self-motion.

e [ hus, it makes sense to learn them via sparse coding!
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Putting it all together

e Our complete model is now:
I(z,y) = Y T(z,y,2',y)I'(a,y)
x/,y/
where
T(:anax/ay/> — ij(x,y,x/,y’)cj
J
and

I'(@',y") = Z ¢i (', y)a;
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A bilinear model

e Rearranging the terms

I($, y) = Z ¢J(5E7 Yy, xla y/)qbi(x/v y/)a’icj
ARV

and precomputing the sums over 2’ and v/

r’L](x7y) — Z wj(x7y7x/7y/)¢i(x/7y,>

:C,,y/
I(z,y) =) Tii(z,y)ac;
1,]

(Grimes & Rao, 2005)
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Transforms in coefficient space

e Sparse coding is capable of learning transformations between
the pixels in sequential movie frames

e It turns out that it is also capable of learning transformations
between the sparse codes for representing sequential movie
frames, and this is even easier
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¢ $i(x) di(x)

1(x,t) [(x,t+1)
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Modeling slow underlying causes

e Edges don't pop into existence in one position, disappear,
then pop into existence in a new position. They appear, then
translate. We capture this using a latent variable model to
describe the frame by frame coefficients:

I(z,y,t) = Z oi(z,y)a;(t) + vy
a;(t) = ZTij(t)bj(t)
J
Tz] = Z I‘Z-jkck(t) + vq
k
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A bilinear model of slow underlying causes

e T his gives a bilinear model for the frame by frame coeffi-
cients:

[(z,y,t) = qui(w,y)ai(t) + v;

a;i(t) = > Tijpb;j()ck(t) + va
ik

e We'd like to learn I' that produces sparse ¢ and b, and slowly
varying b
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I(x,t) I(x,t+1)



Probabilistic framework

e Assuming that reconstruction errors in a are due to i.i.d.
Gaussian noise, the probability of a given the coefficients
and model parameters is a Gaussian distribution:

1 1
exp{—=—5 > _[e(i,1)]*
V2mon t 202 ZZ,; J

P(alb,c,T') =

where
e(z,t) = a;(t) —a;(t)
a;(t) = > _ Tyjbj () ey (t)
jk
Zn = \/2mop, and o2 is the variance of the noise.
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Prior knowledge

P(b|T) = Hziexp{—S(bj(t))} HZiexp{—R(bj(t))}
jt 4SS j oR
P(c|T) = Hziexp{—S(Ck(t))}
S

k.t

e Wish to adapt our model parameters so that (1) the coeffi-
cients follow distributions that are peaked at zero with heavy
tails, because we believe that our images can be ‘explained’
by a small number of independent, additive features, and (2)
the ‘what’ coefficients vary slowly in time.
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Slow prior

e [he time-varying model imposes a smoothness constraint
over time on the ‘what’ variables using the following cost
function:

T—1
RO;(0) = 5 3 [b() byt + D)
t

OR
oby(u)

= 2bj(u) —b(u+1) = by(u—1)
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Probabilistic bilinear sparse coding

e Using Bayes' rule, we can compute the probability of different
explanations for an image’s sparse code:

P(b,cla,T') = P(a|lb,c,I')P(b,c|I')/P(a,T)

e Given an image's code a and a set of basis functions I', we
select the most likely coefficients for describing it by com-

puting the maximum a-posteriori (MAP) estimates b* and

c*.

P(b,c|a,T') < P(a|b,c,I') P(b|T") P(c|T")
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Objective function

e From this, we derive our objective function, minimization of
which is equivalent to finding the MAP estimates:

L = Iog P(b,c|a,T)
5.2 Z[e(Z )]° + ZS(b () + ZS(Ck(t)) + ZR(b (1))

nzt
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