
Factoring movies into ‘what’ and ‘where’

Jack Culpepper

Advisor: Bruno Olshausen

bjc@cs.berkeley.edu

CIAR Summer School

University of Toronto

August 15, 2006

1

Sparsenet is wasteful because it ‘copies’ basis functions

2

Why? Because sparsenet codes aren’t translation invariant

• Ok, actually they are, sort of : the activations of low spatial
frequency basis functions don’t change much for small shifts
(they don’t need to, because they are so big and boring)

• That’s why there are more ‘copies’ of high frequency BFs

• ..but we’d like a code that gives the same output when the
input slightly translated, scaled, rotated, or occluded.

• I.e., we’d like to account for slight transformations of the
image with another set of variables.

3

Sparsenet BFs ordered by spatial frequency

4

What happens as we slide our window?

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

5

I

x

y

5 10 15

10

20

30

40

50

60

70

80

90

6

a
i
(y)

i

y

50 100 150 200 250

10

20

30

40

50

60

70

80

Morphable basis functions increase representational power

• We don’t have to ‘copy’ each orientation and frequency to

each position

• There are a small number of useful morphs, each of which

can be applied to each template basis function

• We can use M basis functions and N morphs to gain the

expressiveness of M ×N basis functions

7

Morphable BFs can be used to separate ‘what’ from ‘where’

• Modeling this way allows us to read out the two factors as

separate variables

• The model then captures the separate functions of the ven-

tral (‘what’) and dorsal (‘where’) processing streams in ma-

mallian visual cortex

– Strong support for this idea of two streams comes from

lesion studies in monkey, in which damage to dorsal or

ventral cortical regions impairs spatial abilities or object

identification, respectively

8

Image transformations

• Consider a 1-dimensional, discretely sampled image of a 2-

dimensional world.

• We can express arbitrary transformations from I(x) to I ′(x′),
x ∈ X , x′ ∈ X ′ as follows.

I(x) =
∑
x′
T (x, x′)I ′(x′)

• Or, in vector-matrix notation,

I = TI′

9

Visualizing 1-d image transformations

T(x,x')

I(x')

I(x)

x

x'

10

Basis function expansions of image transformations

• Transformations between sequential frames of natural movies

are 2-d and not necessarily affine.

– Add dimensions y ∈ Y and y′ ∈ Y ′:

I(x, y) =
∑
x′

∑
y′
T (x, y, x′, y′)I ′(x′, y′)

– We can capture the space of all possible transforms by

expressing T (x, y, x′, y′) as a basis function expansion:

T (x, y, x′, y′) =
∑
j

cjψj(x, y, x
′, y′)

11

Sparse coding in transform space

• The transformations lie inside a subspace of X × Y ×X ′ ×Y ′

(not all possible transforms are viable).

• We expect that for a small image patch, the correspondence

between most sequential movie frames can be ‘explained’ by

a small number of underlying causes – such as object motion

or observer self-motion.

• Thus, it makes sense to learn them via sparse coding!

12

13

Putting it all together

• Our complete model is now:

I(x, y) =
∑
x′,y′

T (x, y, x′, y′)I ′(x′, y′)

where

T (x, y, x′, y′) =
∑
j

ψj(x, y, x
′, y′)cj

and

I ′(x′, y′) =
∑
i

φi(x
′, y′)ai

14

A bilinear model

• Rearranging the terms

I(x, y) =
∑

x′,y′,i,j

ψj(x, y, x
′, y′)φi(x

′, y′)aicj

and precomputing the sums over x′ and y′

Γij(x, y) =
∑
x′,y′

ψj(x, y, x
′, y′)φi(x

′, y′)

I(x, y) =
∑
i,j

Γij(x, y)aicj

(Grimes & Rao, 2005)

15

T(ck(t))

I(x,t) I(x,t+1)

16

Transforms in coefficient space

• Sparse coding is capable of learning transformations between

the pixels in sequential movie frames

• It turns out that it is also capable of learning transformations

between the sparse codes for representing sequential movie

frames, and this is even easier

17

I(x,t) I(x,t+1)

T(ck(t))

ai(t) ai(t+1)

φi(x) φi(x)

18

Modeling slow underlying causes

• Edges don’t pop into existence in one position, disappear,

then pop into existence in a new position. They appear, then

translate. We capture this using a latent variable model to

describe the frame by frame coefficients:

I(x, y, t) =
∑
i

φi(x, y)ai(t) + νI

ai(t) =
∑
j

Tij(t)bj(t)

Tij =
∑
k

Γijkck(t) + νa

19

A bilinear model of slow underlying causes

• This gives a bilinear model for the frame by frame coeffi-

cients:

I(x, y, t) =
∑
i

φi(x, y)ai(t) + νI

ai(t) =
∑
j,k

Γijkbj(t)ck(t) + νa

• We’d like to learn Γ that produces sparse c and b, and slowly

varying b

20

I(x,t) I(x,t+1)

fast

ai(t) ai(t+1)

φi(x) φi(x)

slow

bj(t) bj(t+1)

T(ck(t)) T(ck(t+1))

fast

ck(t) ck(t+1)

21

Probabilistic framework

• Assuming that reconstruction errors in a are due to i.i.d.

Gaussian noise, the probability of a given the coefficients

and model parameters is a Gaussian distribution:

P (a|b, c,Γ) =
1√

2πσn
exp{−

1

2σ2
n

∑
i,t

[e(i, t)]2}

where

e(i, t) = ai(t)− âi(t)

âi(t) =
∑
jk

Γijkbj(t)ck(t)

Zn =
√

2πσn, and σ2
n is the variance of the noise.

22

Prior knowledge

P (b|Γ) =
∏
j,t

1

ZS
exp{−S(bj(t))}

∏
j

1

ZR
exp{−R(bj(t))}

P (c|Γ) =
∏
k,t

1

ZS
exp{−S(ck(t))}

• Wish to adapt our model parameters so that (1) the coeffi-

cients follow distributions that are peaked at zero with heavy

tails, because we believe that our images can be ‘explained’

by a small number of independent, additive features, and (2)

the ‘what’ coefficients vary slowly in time.

23

Slow prior

• The time-varying model imposes a smoothness constraint

over time on the ‘what’ variables using the following cost

function:

R(bj(t)) =
1

2

τ−1∑
t

[bj(t)− bj(t+ 1)]2

∂R

∂bl(u)
= 2bl(u)− bl(u+ 1)− bl(u− 1)

24

Probabilistic bilinear sparse coding

• Using Bayes’ rule, we can compute the probability of different

explanations for an image’s sparse code:

P (b, c|a,Γ) = P (a|b, c,Γ)P (b, c|Γ)/P (a,Γ)

• Given an image’s code a and a set of basis functions Γ, we

select the most likely coefficients for describing it by com-

puting the maximum a-posteriori (MAP) estimates b∗ and

c∗.

P (b, c|a,Γ) ∝ P (a|b, c,Γ)P (b|Γ)P (c|Γ)

25

Objective function

• From this, we derive our objective function, minimization of

which is equivalent to finding the MAP estimates:

L = − logP (b, c|a,Γ)

∝
1

2σ2
n

∑
i,t

[e(i, t)]2 +
∑
j,t

S(bj(t)) +
∑
k,t

S(ck(t)) +
∑
j

R(bj(t))

26

