Metric Embedding
of Task-Specific Similarity

Greg Shakhnarovich
Brown University

jJoint work with Trevor Darrell (MIT)

August 19, 2006

Task-specific similarity

e A toy example:

-10
-10

Task-specific similarity

e A toy example:

-10
-10

Task-specific similarity

e A toy example:

-10
-10

The problem

e Learn similarity from examples of what is similar [or not].

— Binary similarity: for x,y € X

+1 if x and y are similar,

S(X7Y) — {

—1 if they are dissimilar.

e [wo goals in mind:

— Similarity detection: judge whether two entities are similar.
— Similarity search: given a query entity and a database, find
examples in a database that are similar to the query.

e Our approach: learn an embedding of the data into a space where
similarity corresponds to a simple distance.

Task-specific similarity

e Articulated pose:

Y

00

206
08
TYY
‘809
XX

Task-specific similarity

Related prior work

e Learning parametrized distance metric [Xing et al; Roweis|, such
as Mahalanobis distances.

e Lots of work on low-dimensional graph embedding (MDS, LLE,. . .)
- but unclear how to generalize without relying on distance in X'.

e Embedding known distance |Athitsos et al|: assumes known
distance, uses embedding to approximate/speed up.

e DISTBOOST |Hertz et al|: learning distance for classification /
clustering setup.

e Locality sensitive hashing: fast similarity search.

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

Locality Sensitive Hashing |Indyk et al

e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

11
°

Locality Sensitive Hashing |Indyk et al

e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

11

Locality Sensitive Hashing |Indyk et al

e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

111

Locality Sensitive Hashing |Indyk et al

e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

111

Locality Sensitive Hashing |Indyk et al

e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

1110

Locality Sensitive Hashing |Indyk et al

e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

PO . 0110

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

P .| 0110

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

1110 .0110

Locality Sensitive Hashing |Indyk et al
e Algorithm for finding a (€, 7)-neighbor of xy with high probability
in sublinear time O (N1/(179).

e Index the data by [random hash functions, and only search the
union of the [buckets where the query falls:

1110 .0110

Locality sensitive hashing |[Indyk et al]

e A family ‘H of functions is locality sensitive if

[V

Prum (h(xo) = h(x) | [[xo —x][| <7)
Pyup (h(x0) = h(x) | [[x0 — x| > R)

P1,
p2.

VAN

e Uses the gap between TP and FP rates;

— “amplified” by concatenating functions into a hash key.

e Projections on random lines are locality sensitive w.r.t. L, norms,
p < 2 |Gionis et al, Datar et al].

How is this relevant?

o LSH is excellent if L, is all we want.

e L, may not be a suitable “proxy” for &: we may
— “Waste" lots of bits on irrelevant features:

— Miss pairs similar under & but not close w.r.t. L,

e If we know what S is, may be able to analytically design embedding
of X into Ly space |Thaper&Indyk, Grauman&Darrell|.

e We will instead learn LSH-style binary functions that fit & as
conveyed by examples.

Our approach

e Given: pairs of similar [and pairs of dissimilar] examples, based on
the “hidden” binary similarity S.

e Two related tasks:

— Similarity judgment: S(x,y) =7
— Given a query xg; need to find {x; : S(x;,x0) = +1}.

e Our solution to both problems: a similarity sensitive embedding

H(x) = |a1h1(x),...,arhr(X)];

o We will learn h,,(x) € {0,1} and au,.

Desired embedding properties

Embedding H(x) = |a1h1(X),...,aphy(x)]:

e Rely on L; (= weighted Hamming) distance
|H (x1) — H(x2)|| = Z | P (X1) — hm(X2)]

e H is similarity sensitive: for some R, want

~ high Pe, syrpo(1H(x1) — H(x2)|| < R | S(x1.x2) = +1),

— low Py, xompx) ([H (x1) — H(x2)|| £ R | S(x1,x2) = —1).

e ||H(x)— H(y)| is a proxy for S.

10

Projection-based classifiers

e For a projection f : X — R, consider, for some T' € R,

1 if f(x)<T

hix; £,1) = {o f f(x)>T.

e This defines a simple similarity classifier of pairs:

c(x,y; £, T)=+1 < h(x; f,T)=h(y; f,T)

T g T I c(a,y; £,T) =c(a,z; f,T) = +1,
- c(a,a; f,T)=cl(q,b; f,T) =—1.

11

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar
pairs:

e For a moment, we focus on N positive pairs only.
e Sort the 2N values of f(x).

e Need to check at most 2N + 1 wvalues of T, and count
the number of pairs that are dissected (a ‘“bad” event).

12

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar
pairs:

e For a moment, we focus on [N positive pairs only.
e Sort the 2N values of f(x).

e Need to check at most 2N + 1 wvalues of T', and count
the number of pairs that are dissected (a ‘“bad” event).

- -
- ~

0

12

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar
pairs:

e For a moment, we focus on [N positive pairs only.

e Sort the 2N values of f(x).

e Need to check at most 2N + 1 wvalues of T', and count
the number of pairs that are dissected (a ‘“bad” event).

- -
- ~

0

12

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar
pairs:

e For a moment, we focus on [N positive pairs only.

e Sort the 2N values of f(x).

e Need to check at most 2N + 1 wvalues of T', and count
the number of pairs that are dissected (a ‘“bad” event).

&--

1
]
-’--

I

R 2
1
[|
L.
\

.

4

Y N P
|
\

(\9)
H == mm] ==

0

(\®)
H -

0

12

Selecting the threshold

Also need to consider negative examples (dissimilar pairs), and

estimate the gap:
true positive rate TP minus false positive rate FP.

.....

- il S

13

Selecting the threshold

Also need to consider negative examples (dissimilar pairs), and
estimate the gap:
true positive rate TP minus false positive rate FP.

00 2 0 1 2

v POS T el :

1o if e V=" T 1~

: :Q~ v (I | ;’ Q~-—|’

Do : L : f(x)
' 1+ NEG 1 o :

1o lemmmTTEme L !

Q@ :r'._q:_.:_‘. ® —® QL ——
0 1 2 2 3 1

13

Optimization of h(x; f,T)

e Objective (TP — FP gap):

NT N~
argmaxg le,le E c(x i1 X
5T = =1

e Parametric projection families, e.g. f(x) = Z 6. Xﬁl) (d2)

e “Soft” versions of h and ¢ make the gap differentiable w.r.t. 6,7T"

1
1 +exp(f(x)—1T))

c(x,y) = 4(h(x) = 1/2) (h(y) — 1/2)

h(x; f,T) =

14

Ensemble classifiers

e A weighted embedding H(x) = |a1h1(X), ..., arhprr(Xx)].

e Each h,,(x) defines a classifier ¢,,,. Together they form an ensemble
classifier of similarity:

C(x,y) = sgn (Z amcm(x,y)> .

m=1

e We will construct the ensemble of bit-valued hs by a greedy
algorithm based on AdaBoost (operting on the corresponding cs).

15

Boosting [Schapire et al|

e Assumes access to weak learner that can at every iteration m
produce a classifier ¢,,, better than chance.

e Main idea: maintain a distribution W,,,(¢) on the training examples,
and update it according to the prediction of ¢,,:

— If ¢, (%;) is correct, then W,,,11(7) goes down;
— Otherwise, W,,,11(%) increases (“steering” c¢,,+1 towards it.)

e Our examples are pairs, weak classifiers are thresholded projections.

e To evaluate threshold, we will calculate the weight of separated
pairs, rather than count them.

16

BoostPro
Given pairs (Xgl) (2)) labeled with [; = S(x; () 7(;2)):

1. Initialize weights W1(z), to uniform.
2. forallm=1,..., M do

3 Find (f*,T*) = argmax ; 1 r,(f,T') using gradient descent on
ZW (D)liem(xt, x)).

4. Set h,, = h(x; f*,T").
5: Set «, (see Boosting papers.)
6: Update weights: Wy,11(7) o< Wy, (7) exp (Licm (X, (1) §2))).

17

Similarity is a rare event

e In many domains: vast majority of possible pairs are negative.

— People’s poses, image patches, documents,...

e A reasonable approximation of the sampling process:

— Independently draw x,y from the data distribution.

= f(x), f(y) drawn from p(f(x)).

— Label (x,y) negative.

18

Similarity is a rare event

e In many domains: vast majority of possible pairs are negative.

— People’s poses, image patches, documents,...

e A reasonable approximation of the sampling process:

— Independently draw x,y from the data distribution.

= f(x), f(y) drawn from p(f(x)).

— Label (x,y) negative.

J&
© o oo ° o000 o

18

Similarity is a rare event

e In many domains: vast majority of possible pairs are negative.

— People’s poses, image patches, documents,...

e A reasonable approximation of the sampling process:

— Independently draw x,y from the data distribution.

= f(x), f(y) drawn from p(f(x)).

— Label (x,y) negative.

ny (1-1)
mr = Pr(f(x) <T)

J&
© o oo ° © 000 o

18

Similarity is a rare event

e In many domains: vast majority of possible pairs are negative.

— People’s poses, image patches, documents,...

e A reasonable approximation of the sampling process:

— Independently draw x,y from the data distribution.

= f(x), f(y) drawn from p(f(x)).

— Label (x,y) negative.

(1-m) 2

Ty

mr = Pr(f(x) <T)

J&
© o oo ° © 000 o

18

Similarity is a rare event

e In many domains: vast majority of possible pairs are negative.

— People’s poses, image patches, documents,...

e A reasonable approximation of the sampling process:

— Independently draw x,y from the data distribution.

= f(x), f(y) drawn from p(f(x)).

— Label (x,y) negative.

(1-m) 2

mr = Pr(f(x) <T)

J&
®© o oo ° o000 o

18

Semi-supervised setup

e Given similar pairs and unlabeled x1,...,xxy.
e Estimate TP rate as before.

e FP rate:

— Estimate the CDF of f(x); let 77 = P(f(x) < T).

— Then FP = 742 + (1 — 7p)?.

e Note: this means FP > 1/2 [Ke et al|.

19

BoostPro in a semi-supervised setup

e "Normal” boosting assumes positive and negative examples.

e Intuition: each unlabeled example x; represents all possible pairs
(x;,¥); those are, w.h.p., negative under our assumption.

e [wo distributions:

— W,.(j) on positive pairs, as before.
— Sin (i) on unlabeled (single) examples.

e Instead of ¢, (x; (1) gz)) use the expectation Ej |cp(xi,y)]| to

)

calculate the objectlve and set the weights.

20

Semi-supervised boosting: details

e Probability of misclassifying a negative (x,,¥):
Pj = h(xy f,T)m+ (1 = h(x;; f,T))(1 —).

o Byle(x;,y)] = P (+1) + (1= P) - (=1) = 2P, — 1.

e Modified boosting objective:

21

Results: Toy problems

10 10 10
5 5 5
0 & 0 0
5 5 5

g=h 0 0 oo 0 0 oo

10 10
5 5
o
5 -5
-0 -10

10 0 10 -0 0 1010 0 10

M =100, trained on 600 unlabeled points + 1,000 similar pairs

0

10

0

0 m

Results:

Toy problems

23

Results: UCI data sets

Data Set L PSH BoosTPRO M
MPG 13.9436 =+ s5.1276 10.7168 + 43401 7.4905 + 25007 180+ 20
CPU 37.9810 + 52720 59.3767 + 17.4186 0.0846 =+ 0.9953 115 + 48
Housing 26.5211 + 68080 13.8464 + 92756 13.8436 + sa188 210 + 28
Abalone 4.7816 + 05180 5.0842 + 0.4960 4.7602 + 0.4384 43 + 8
Census 2.493%x107 £33x108 | 2.237x 107 +32x10% | 1.566%x10? +24x10% | 49 4+ 10

Test error on regression benchmark data from UCl/Delve. Mean +
std. deviation of MSE using locally-weighted regression. The last
column shows the values of M (dimension of embedding H).
Similarity defined in terms of target function values.

24

Results: pose retrieval

H built with semi-supervised BOOSTPRO, on 200,000 examples;
M = 1400

25

Results: pose retrieval

0.4

0.351 L

- PSH
0.3F

BoostPro

K-NN recall rate

0.1F

-
-
-
B
————
-
-
-

- '
L f
\\\\\\\\\\\\\\\\\
‘‘‘‘‘‘‘‘‘‘‘
‘‘‘‘‘‘‘
\\\\\\
-
‘‘‘‘‘
-
"‘\
B

o
LAt
e

0.05

Recall for k-NN retrieval. For each value of k, the fraction of true
k-NN w.r.t. pose within the £-NN w.r.t. an image-based similarity
measure is plotted. Black dotted line: L; on EDH. Red dash-dot:

PSH. Blue solid: BoostPro, M=1000.

! 1 1 ! ! ! ! 1
3 o 7 10 15 25 50 100

Visual similarity of image patches

O » & & @ O P
& & ¢ o & ©®
e ® 9 e e & &

e Define two patches to be similar under any rotation and mild shift
(£ 4 pixels).

e Should be covered by many “reasonable” similarity definitions.

Descriptor 1: sparse overcomplete code

e Generative model of patches [Olshausené&Field]

990909090060 09090950000
9000000 CSG00930066080
909606090000 060900000000
9090900906960 060000600
0000P9000000000000090

e Very unstable under transformation, hence L7 is not a good proxy
for similarity.

e With BOOSTPRO, improvement in area under ROC from 0.56 to
0.68.

28

Descriptor 2: SIFT

e Scale-Invariant Feature Transform |[Lowe|

e Histogram of gradient magnitude and orientation within the region,
normalized by orientation and at an appropriate scale.

e Discriminative (can not generate a patch).

e Designed specifically to make two similar patches match.

29

0.49F
0.a8r
0.7

06

Oar

—— SIFT

U.4ar ——BoostPro on SIFT

0.3

0.&r
O1r

Ly on SIFT Ly on H(SIFT)

e Area under ROC curve: 0.8794 0.9633

Conclusions

e |t is beneficial to learn similarity directly for the task rather than
rely on the “default” distance.

e Key property of our approach: similarity search reduced to I;
neighbor search (thus can be done in sublinear time.)
e Most useful for:

— Regression and multi-label classification:;
— When large amounts of labeled data are available;
— When L, distance is not a good proxy for similarity.

31

Open questions

e What kinds of similarity concepts can we learn?
e How do we explore the space of projections more efficiently?
e Factorization of similarity.

e Combining unsupervised and supervised similarity learning for image
regions.

32

Questions ?..

33

