
Metric Embedding
of Task-Specific Similarity

Greg Shakhnarovich

Brown University

joint work with Trevor Darrell (MIT)

August 19, 2006

Task-specific similarity

• A toy example:

1

Task-specific similarity

• A toy example:

1

Task-specific similarity

• A toy example:

Norm Angle

1

The problem

• Learn similarity from examples of what is similar [or not].

– Binary similarity: for x,y ∈ X

S(x,y) =

{
+1 if x and y are similar,

−1 if they are dissimilar.

• Two goals in mind:

– Similarity detection: judge whether two entities are similar.

– Similarity search: given a query entity and a database, find

examples in a database that are similar to the query.

• Our approach: learn an embedding of the data into a space where

similarity corresponds to a simple distance.

2

Task-specific similarity

• Articulated pose:

3

Task-specific similarity

• Visual similarity of image patches:

4

Related prior work

• Learning parametrized distance metric [Xing et al ; Roweis], such

as Mahalanobis distances.

• Lots of work on low-dimensional graph embedding (MDS, LLE,. . .)

- but unclear how to generalize without relying on distance in X .

• Embedding known distance [Athitsos et al]: assumes known

distance, uses embedding to approximate/speed up.

• DistBoost [Hertz et al]: learning distance for classification /

clustering setup.

• Locality sensitive hashing: fast similarity search.

5

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1 0

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1 0 0110

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1 0 0110

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1 0 0110

6

Locality Sensitive Hashing [Indyk et al]

• Algorithm for finding a (ε, r)-neighbor of x0 with high probability

in sublinear time O
(
N1/(1+ε)

)
.

• Index the data by l random hash functions, and only search the

union of the l buckets where the query falls:

1

0 1

1

0

1 1 0 0110

6

Locality sensitive hashing [Indyk et al]

• A family H of functions is locality sensitive if

Ph∼U [H] (h(x0) = h(x) | ‖x0 − x‖ ≤ r) ≥ p1,

Ph∼U [H] (h(x0) = h(x) | ‖x0 − x‖ ≥ R) ≤ p2.

• Uses the gap between TP and FP rates;

– “amplified” by concatenating functions into a hash key.

• Projections on random lines are locality sensitive w.r.t. Lp norms,

p ≤ 2 [Gionis et al, Datar et al].

7

How is this relevant?

• LSH is excellent if Lp is all we want.

• Lp may not be a suitable “proxy” for S: we may

– “Waste” lots of bits on irrelevant features;

– Miss pairs similar under S but not close w.r.t. Lp

• If we know what S is, may be able to analytically design embedding

of X into L1 space [Thaper&Indyk, Grauman&Darrell].

• We will instead learn LSH-style binary functions that fit S as

conveyed by examples.

8

Our approach

• Given: pairs of similar [and pairs of dissimilar] examples, based on

the “hidden” binary similarity S.

• Two related tasks:

– Similarity judgment: S(x,y) =?
– Given a query x0; need to find {xi : S(xi,x0) = +1}.

• Our solution to both problems: a similarity sensitive embedding

H(x) = [α1h1(x), . . . , αMhM(x)] ;

• We will learn hm(x) ∈ {0, 1} and αm.

9

Desired embedding properties

Embedding H(x) = [α1h1(x), . . . , αMhM(x)]:

• Rely on L1 (= weighted Hamming) distance

‖H(x1)−H(x2)‖ =
M∑

m=1

αm|hm(x1)− hm(x2)|

• H is similarity sensitive: for some R, want

– high Px1,x2∼p(x)(‖H(x1)−H(x2)‖ ≤ R | S(x1,x2) = +1),
– low Px1,x2∼p(x)(‖H(x1)−H(x2)‖ ≤ R | S(x1,x2) = −1).

• ‖H(x)−H(y)‖ is a proxy for S.

10

Projection-based classifiers

• For a projection f : X → R, consider, for some T ∈ R,

h(x; f, T) =

{
1 if f(x) ≤ T

0 if f(x) > T.

• This defines a simple similarity classifier of pairs:

c(x,y; f, T) = +1 ⇐⇒ h(x; f, T) = h(y; f, T)

f (x)

qy z b a

T
h(x; f, T) = 1h(x; f, T) = 0

c(q,y; f, T) = c(q, z; f, T) = +1,

c(q,a; f, T) = c(q,b; f, T) = −1.

11

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar

pairs:

• For a moment, we focus on N positive pairs only.

• Sort the 2N values of f(x).

• Need to check at most 2N + 1 values of T , and count

the number of pairs that are dissected (a “bad” event).

f(x)

12

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar

pairs:

• For a moment, we focus on N positive pairs only.

• Sort the 2N values of f(x).

• Need to check at most 2N + 1 values of T , and count

the number of pairs that are dissected (a “bad” event).

f(x)

0

12

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar

pairs:

• For a moment, we focus on N positive pairs only.

• Sort the 2N values of f(x).

• Need to check at most 2N + 1 values of T , and count

the number of pairs that are dissected (a “bad” event).

f(x)

0 1

12

Selecting the threshold

Algorithm for selecting the threshold based on similar/dissimilar

pairs:

• For a moment, we focus on N positive pairs only.

• Sort the 2N values of f(x).

• Need to check at most 2N + 1 values of T , and count

the number of pairs that are dissected (a “bad” event).

f(x)

0 1 02 1 1 2 1 2 1 0

12

Selecting the threshold

Also need to consider negative examples (dissimilar pairs), and

estimate the gap:

true positive rate TP minus false positive rate FP.

POS

NEG
f(x)

13

Selecting the threshold

Also need to consider negative examples (dissimilar pairs), and

estimate the gap:

true positive rate TP minus false positive rate FP.

POS

NEG
f(x)

1

0

0

0

1

2

2 2

0

3

1 2

13

Optimization of h(x; f, T)

• Objective (TP− FP gap):

argmax
f,T

N+∑
i=1

c(x+
i1,x

+
i1)−

N−∑
j=1

c(x−j1,x
−
j1)

• Parametric projection families, e.g. f(x) =
∑

j θjx
p1

(d1
j)
xp2

(d2
j)

• “Soft” versions of h and c make the gap differentiable w.r.t. θ, T :

h(x; f, T) =
1

1 + exp (f(x)− T))

c(x,y) = 4 (h(x)− 1/2) (h(y)− 1/2)

14

Ensemble classifiers

• A weighted embedding H(x) = [α1h1(x), . . . , αMhM(x)].

• Each hm(x) defines a classifier cm. Together they form an ensemble

classifier of similarity:

C(x,y) = sgn

(
M∑

m=1

αmcm(x,y)

)
.

• We will construct the ensemble of bit-valued hs by a greedy

algorithm based on AdaBoost (operting on the corresponding cs).

15

Boosting [Schapire et al]

• Assumes access to weak learner that can at every iteration m

produce a classifier cm better than chance.

• Main idea: maintain a distribution Wm(i) on the training examples,

and update it according to the prediction of cm:

– If cm(xi) is correct, then Wm+1(i) goes down;

– Otherwise, Wm+1(i) increases (“steering” cm+1 towards it.)

• Our examples are pairs, weak classifiers are thresholded projections.

• To evaluate threshold, we will calculate the weight of separated

pairs, rather than count them.

16

BoostPro

Given pairs (x(1)
i ,x(2)

i) labeled with li = S(x(1)
i ,x(2)

i):

1: Initialize weights W1(i), to uniform.

2: for all m = 1, . . . ,M do

3: Find 〈f∗, T ∗〉 = argmaxf,T rm(f, T) using gradient descent on

rm(f, T) =
N∑

i=1

Wm(i)licm(x(1)
i ,x(2)

i).

4: Set hm ≡ h(x; f∗, T ∗).
5: Set αm (see Boosting papers.)

6: Update weights: Wm+1(i) ∝ Wm(i) exp
(
−licm(x(1)

i ,x(2)
i)
)
.

17

Similarity is a rare event

• In many domains: vast majority of possible pairs are negative.

– People’s poses, image patches, documents,...

• A reasonable approximation of the sampling process:

– Independently draw x,y from the data distribution.

– f(x), f(y) drawn from p(f(x)).
– Label (x,y) negative.

18

Similarity is a rare event

• In many domains: vast majority of possible pairs are negative.

– People’s poses, image patches, documents,...

• A reasonable approximation of the sampling process:

– Independently draw x,y from the data distribution.

– f(x), f(y) drawn from p(f(x)).
– Label (x,y) negative.

T

xf()

18

Similarity is a rare event

• In many domains: vast majority of possible pairs are negative.

– People’s poses, image patches, documents,...

• A reasonable approximation of the sampling process:

– Independently draw x,y from the data distribution.

– f(x), f(y) drawn from p(f(x)).
– Label (x,y) negative.

T

xf()

πT
(1 −π)

T

πT = Pr(f(x) ≤ T)

18

Similarity is a rare event

• In many domains: vast majority of possible pairs are negative.

– People’s poses, image patches, documents,...

• A reasonable approximation of the sampling process:

– Independently draw x,y from the data distribution.

– f(x), f(y) drawn from p(f(x)).
– Label (x,y) negative.

T

xf()

πT
(1 −π)

T
2

πT = Pr(f(x) ≤ T)

18

Similarity is a rare event

• In many domains: vast majority of possible pairs are negative.

– People’s poses, image patches, documents,...

• A reasonable approximation of the sampling process:

– Independently draw x,y from the data distribution.

– f(x), f(y) drawn from p(f(x)).
– Label (x,y) negative.

T

xf()

πT
(1 −π)

T
22

πT = Pr(f(x) ≤ T)

18

Semi-supervised setup

• Given similar pairs and unlabeled x1, . . . ,xN .

• Estimate TP rate as before.

• FP rate:

– Estimate the CDF of f(x); let πT = P̂ (f(x) ≤ T).
– Then F̂P = π2

T + (1− πT)2.

• Note: this means FP ≥ 1/2 [Ke et al].

19

BoostPro in a semi-supervised setup

• “Normal” boosting assumes positive and negative examples.

• Intuition: each unlabeled example xi represents all possible pairs

(xi,y); those are, w.h.p., negative under our assumption.

• Two distributions:

– Wm(j) on positive pairs, as before.

– Sm(i) on unlabeled (single) examples.

• Instead of cm(x(1)
i ,x(2)

i) use the expectation Ey [cm(xi,y)] to

calculate the objective and set the weights.

20

Semi-supervised boosting: details

• Probability of misclassifying a negative (xj,y):

Pj = h(xj; f, T)π + (1− h(xj; f, T))(1− π).

• Ey [c(xj,y)] = Pj · (+1) + (1− Pj) · (−1) = 2Pj − 1.

• Modified boosting objective:

r =
Np∑
i=1

W (i)c(x(1)
i ,x(2)

i) −
N∑

j=1

S(j)Ey [c(xj,y)]

=
Np∑
i=1

W (i)c(x(1)
i ,x(2)

i) −
N∑

j=1

Sj(2Pj − 1).

21

Results: Toy problems

M=100, trained on 600 unlabeled points + 1,000 similar pairs

22

Results: Toy problems

23

Results: UCI data sets

Data Set L1 PSH BoostPro M
MPG 13.9436 ± 5.1276 10.7168 ± 4.3401 7.4905 ± 2.5907 180± 20
CPU 37.9810 ± 5.2729 59.3767 ± 17.4186 9.0846 ± 0.9953 115 ± 48
Housing 26.5211 ± 6.8080 13.8464 ± 9.2756 13.8436 ± 8.4188 210 ± 28
Abalone 4.7816 ± 0.5180 5.0842 ± 0.4960 4.7602 ± 0.4384 43 ± 8
Census 2.493×109 ± 3.3×108 2.237×109 ± 3.2×108 1.566×109 ± 2.4×108 49 ± 10

Test error on regression benchmark data from UCI/Delve. Mean ±
std. deviation of MSE using locally-weighted regression. The last

column shows the values of M (dimension of embedding H).

Similarity defined in terms of target function values.

24

Results: pose retrieval

Input 3 nearest neighbors in H

H built with semi-supervised BoostPro, on 200,000 examples;

M = 1400

25

Results: pose retrieval

Recall for k-NN retrieval. For each value of k, the fraction of true

k-NN w.r.t. pose within the k-NN w.r.t. an image-based similarity

measure is plotted. Black dotted line: L1 on EDH. Red dash-dot:

PSH. Blue solid: BoostPro, M=1000.

26

Visual similarity of image patches

• Define two patches to be similar under any rotation and mild shift

(± 4 pixels).

• Should be covered by many “reasonable” similarity definitions.

27

Descriptor 1: sparse overcomplete code

• Generative model of patches [Olshausen&Field]

• Very unstable under transformation, hence L1 is not a good proxy

for similarity.

• With BoostPro, improvement in area under ROC from 0.56 to

0.68.

28

Descriptor 2: SIFT

• Scale-Invariant Feature Transform [Lowe]

• Histogram of gradient magnitude and orientation within the region,

normalized by orientation and at an appropriate scale.

• Discriminative (can not generate a patch).

• Designed specifically to make two similar patches match.

29

Results

• Area under ROC curve:
L1 on SIFT L1 on H(SIFT)

0.8794 0.9633

30

Conclusions

• It is beneficial to learn similarity directly for the task rather than

rely on the “default” distance.

• Key property of our approach: similarity search reduced to L1

neighbor search (thus can be done in sublinear time.)

• Most useful for:

– Regression and multi-label classification;

– When large amounts of labeled data are available;

– When Lp distance is not a good proxy for similarity.

31

Open questions

• What kinds of similarity concepts can we learn?

• How do we explore the space of projections more efficiently?

• Factorization of similarity.

• Combining unsupervised and supervised similarity learning for image

regions.

32

Questions ?..

33

