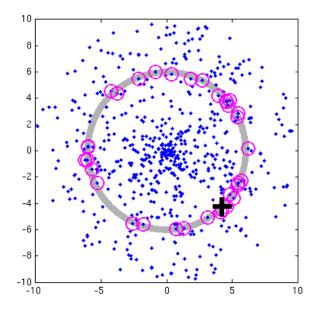
Metric Embedding of Task-Specific Similarity

Greg Shakhnarovich Brown University

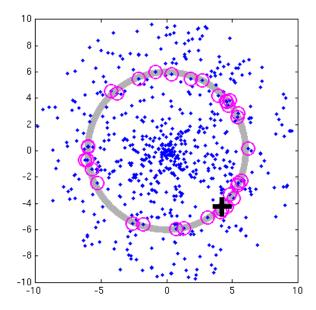
joint work with Trevor Darrell (MIT)

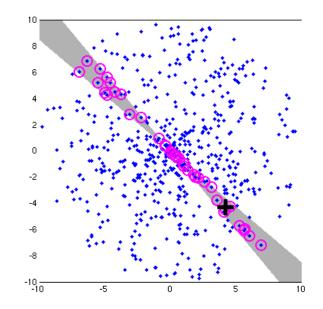
August 19, 2006

• A toy example:

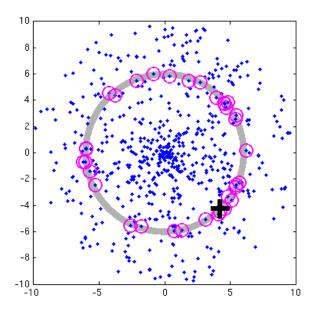


• A toy example:





• A toy example:



Norm



Angle

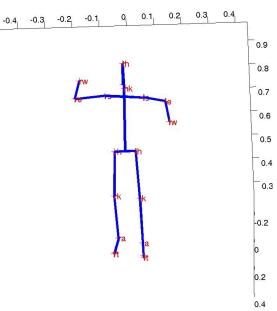
The problem

- Learn similarity from examples of what is similar [or not].
 - Binary similarity: for $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

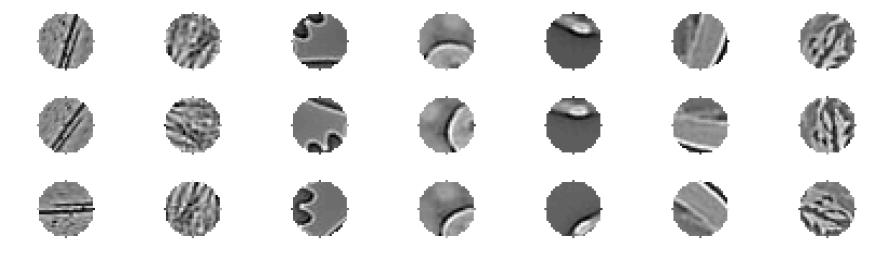
$$\mathcal{S}(\mathbf{x}, \mathbf{y}) = egin{cases} +1 & ext{if } \mathbf{x} ext{ and } \mathbf{y} ext{ are similar,} \\ -1 & ext{if they are dissimilar.} \end{cases}$$

- Two goals in mind:
 - Similarity detection: judge whether two entities are similar.
 - Similarity search: given a query entity and a database, find examples in a database that are similar to the query.
- Our approach: learn an *embedding* of the data into a space where similarity corresponds to a simple distance.

• Articulated pose:



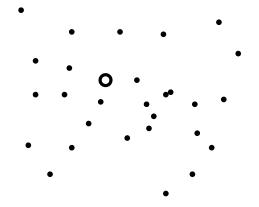
• Visual similarity of image patches:



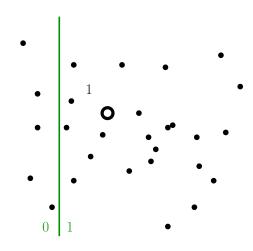
Related prior work

- Learning parametrized distance metric [Xing *et al*; Roweis], such as Mahalanobis distances.
- Lots of work on low-dimensional graph embedding (MDS, LLE, . .)
 but unclear how to generalize without relying on distance in X.
- Embedding known distance [Athitsos *et al*]: assumes known distance, uses embedding to approximate/speed up.
- DISTBOOST [Hertz *et al*]: learning distance for classification / clustering setup.
- Locality sensitive hashing: fast similarity search.

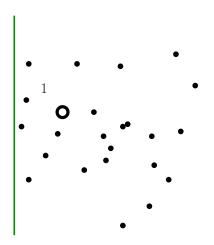
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



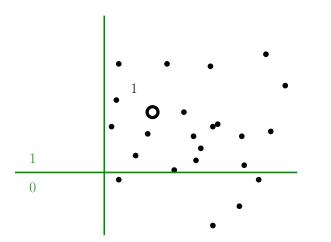
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



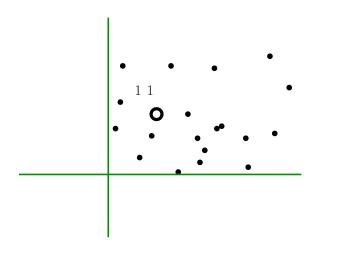
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



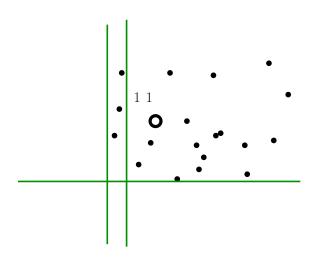
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



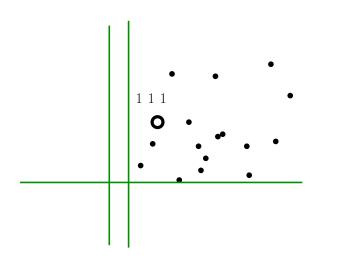
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



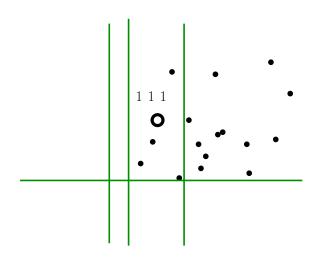
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



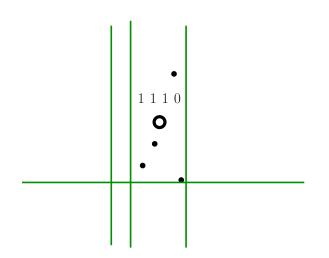
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:

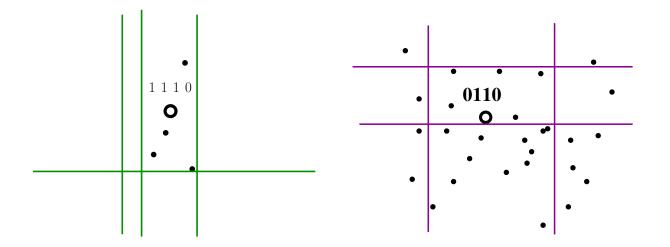


- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:

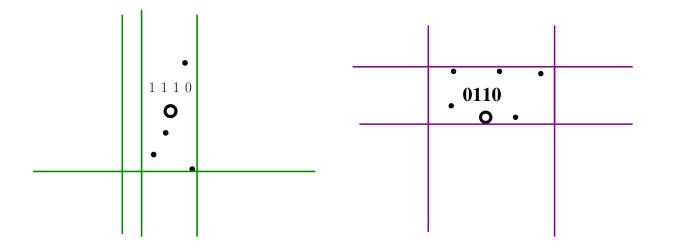


- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:

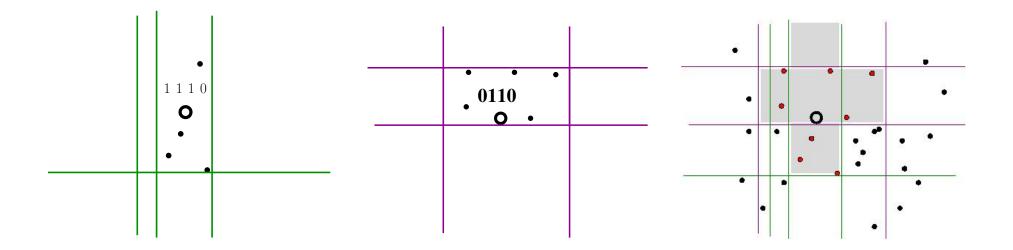
- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



- Algorithm for finding a (ϵ, r) -neighbor of \mathbf{x}_0 with high probability in sublinear time $O\left(N^{1/(1+\epsilon)}\right)$.
- Index the data by *l* random hash functions, and only search the union of the *l* buckets where the query falls:



• A family $\mathcal H$ of functions is *locality sensitive* if

$$P_{h\sim U[\mathcal{H}]}(h(\mathbf{x}_0) = h(\mathbf{x}) \mid \|\mathbf{x}_0 - \mathbf{x}\| \le r) \ge p_1,$$

$$P_{h\sim U[\mathcal{H}]}(h(\mathbf{x}_0) = h(\mathbf{x}) \mid \|\mathbf{x}_0 - \mathbf{x}\| \ge R) \le p_2.$$

- Uses the gap between TP and FP rates;
 - "amplified" by concatenating functions into a hash key.
- Projections on random lines are locality sensitive w.r.t. L_p norms, $p \leq 2$ [Gionis *et al*, Datar *et al*].

How is this relevant?

- LSH is excellent if L_p is all we want.
- L_p may not be a suitable "proxy" for \mathcal{S} : we may
 - "Waste" lots of bits on irrelevant features;
 - Miss pairs similar under ${\cal S}$ but not close w.r.t. L_p
- If we know what S is, may be able to analytically design *embedding* of \mathcal{X} into L_1 space [Thaper&Indyk, Grauman&Darrell].
- We will instead *learn* LSH-style binary functions that fit \mathcal{S} as conveyed by examples.

Our approach

- Given: pairs of similar [and pairs of dissimilar] examples, based on the "hidden" binary similarity S.
- Two related tasks:
 - Similarity judgment: $S(\mathbf{x}, \mathbf{y}) = ?$
 - Given a query \mathbf{x}_0 ; need to find $\{\mathbf{x}_i : S(\mathbf{x}_i, \mathbf{x}_0) = +1\}$.
- Our solution to both problems: a similarity sensitive embedding

$$H(\mathbf{x}) = [\alpha_1 h_1(\mathbf{x}), \dots, \alpha_M h_M(\mathbf{x})];$$

• We will learn $h_m(\mathbf{x}) \in \{0, 1\}$ and α_m .

Desired embedding properties

Embedding $H(\mathbf{x}) = [\alpha_1 h_1(\mathbf{x}), \dots, \alpha_M h_M(\mathbf{x})]$:

• Rely on L_1 (= weighted Hamming) distance

$$||H(\mathbf{x}_1) - H(\mathbf{x}_2)|| = \sum_{m=1}^{M} \alpha_m |h_m(\mathbf{x}_1) - h_m(\mathbf{x}_2)|$$

- H is similarity sensitive: for some R, want
 - high $P_{\mathbf{x}_1,\mathbf{x}_2 \sim p(\mathbf{x})}(||H(\mathbf{x}_1) H(\mathbf{x}_2)|| \le R | \mathcal{S}(\mathbf{x}_1,\mathbf{x}_2) = +1)$, - low $P_{\mathbf{x}_1,\mathbf{x}_2 \sim p(\mathbf{x})}(||H(\mathbf{x}_1) - H(\mathbf{x}_2)|| \le R | \mathcal{S}(\mathbf{x}_1,\mathbf{x}_2) = -1)$.
- $||H(\mathbf{x}) H(\mathbf{y})||$ is a proxy for \mathcal{S} .

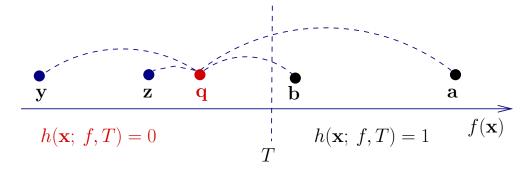
Projection-based classifiers

• For a projection $f: \mathcal{X} \to \mathbb{R}$, consider, for some $T \in \mathbb{R}$,

$$h(\mathbf{x}; f, T) = \begin{cases} 1 & \text{if } f(\mathbf{x}) \leq T \\ 0 & \text{if } f(\mathbf{x}) > T. \end{cases}$$

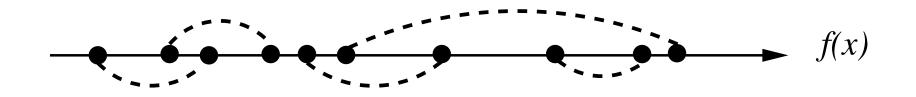
• This defines a simple similarity classifier of *pairs*:

$$c(\mathbf{x}, \mathbf{y}; f, T) = +1 \iff h(\mathbf{x}; f, T) = h(\mathbf{y}; f, T)$$



 $c(\mathbf{q}, \mathbf{y}; f, T) = c(\mathbf{q}, \mathbf{z}; f, T) = +1,$ $c(\mathbf{q}, \mathbf{a}; f, T) = c(\mathbf{q}, \mathbf{b}; f, T) = -1.$

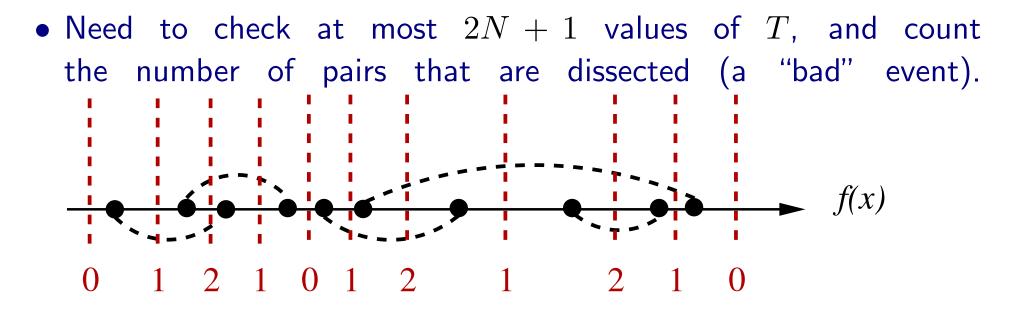
- For a moment, we focus on N positive pairs only.
- Sort the 2N values of $f(\mathbf{x})$.
- Need to check at most 2N + 1 values of T, and count the number of pairs that are dissected (a "bad" event).



- For a moment, we focus on N positive pairs only.
- Sort the 2N values of $f(\mathbf{x})$.
- Need to check at most 2N + 1 values of T, and count the number of pairs that are dissected (a "bad" event).

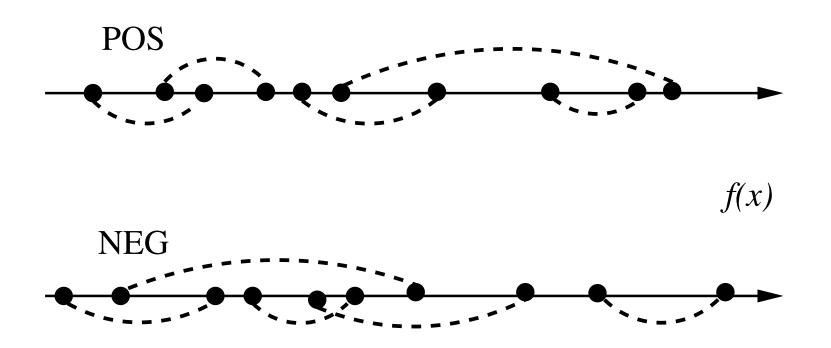
- For a moment, we focus on N positive pairs only.
- Sort the 2N values of $f(\mathbf{x})$.
- Need to check at most 2N + 1 values of T, and count the number of pairs that are dissected (a "bad" event). f(x)0 1

- For a moment, we focus on N positive pairs only.
- Sort the 2N values of $f(\mathbf{x})$.



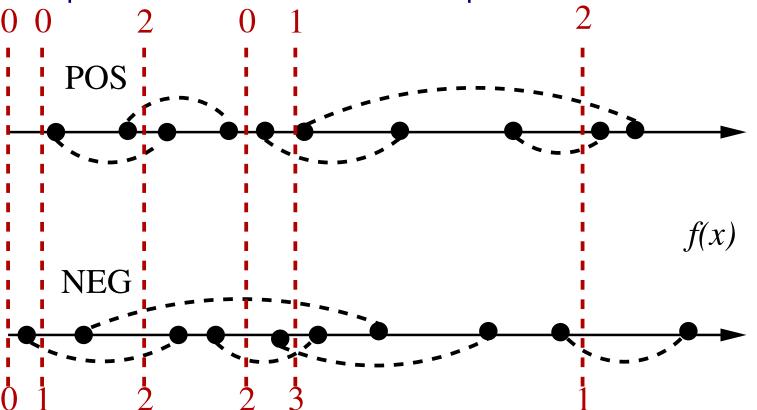
Also need to consider negative examples (dissimilar pairs), and estimate the *gap*:

true positive rate TP minus false positive rate FP.



Also need to consider negative examples (dissimilar pairs), and estimate the *gap*:

true positive rate TP minus false positive rate FP.



Optimization of $h(\mathbf{x}; f, T)$

• Objective (TP – FP gap):

$$\underset{f,T}{\operatorname{argmax}} \sum_{i=1}^{N^+} c(\mathbf{x}_{i1}^+, \mathbf{x}_{i1}^+) - \sum_{j=1}^{N^-} c(\mathbf{x}_{j1}^-, \mathbf{x}_{j1}^-)$$

- Parametric projection families, e.g. $f(\mathbf{x}) = \sum_j \theta_j \mathbf{x}_{(d_j^1)}^{p_1} \mathbf{x}_{(d_j^2)}^{p_2}$
- "Soft" versions of h and c make the gap differentiable w.r.t. θ, T :

$$h(\mathbf{x}; f, T) = \frac{1}{1 + \exp(f(\mathbf{x}) - T))}$$
$$c(\mathbf{x}, \mathbf{y}) = 4(h(\mathbf{x}) - 1/2)(h(\mathbf{y}) - 1/2)$$

Ensemble classifiers

- A weighted embedding $H(\mathbf{x}) = [\alpha_1 h_1(\mathbf{x}), \dots, \alpha_M h_M(\mathbf{x})].$
- Each $h_m(\mathbf{x})$ defines a classifier c_m . Together they form an *ensemble* classifier of similarity:

$$C(\mathbf{x}, \mathbf{y}) = \operatorname{sgn}\left(\sum_{m=1}^{M} \alpha_m c_m(\mathbf{x}, \mathbf{y})\right)$$

• We will construct the ensemble of bit-valued hs by a greedy algorithm based on AdaBoost (operting on the corresponding cs).

Boosting [Schapire *et al*]

- Assumes access to weak learner that can at every iteration m produce a classifier c_m better than chance.
- Main idea: maintain a distribution $W_m(i)$ on the training examples, and update it according to the prediction of c_m :
 - If $c_m(\mathbf{x}_i)$ is correct, then $W_{m+1}(i)$ goes down;
 - Otherwise, $W_{m+1}(i)$ increases ("steering" c_{m+1} towards it.)
- Our examples are *pairs*, weak classifiers are thresholded projections.
- To evaluate threshold, we will calculate the weight of separated pairs, rather than count them.

BoostPro

Given pairs $(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)})$ labeled with $l_i = \mathcal{S}(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)})$:

- 1: Initialize weights $W_1(i)$, to uniform.
- 2: for all $m = 1, \ldots, M$ do
- 3: Find $\langle f^*, T^* \rangle = \operatorname{argmax}_{f,T} r_m(f,T)$ using gradient descent on

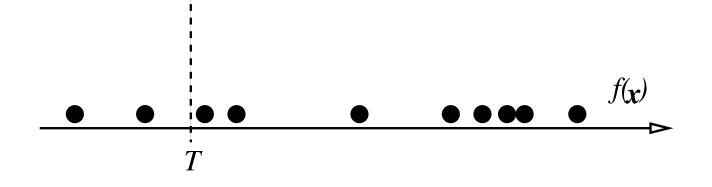
$$r_m(f,T) = \sum_{i=1}^N W_m(i) l_i c_m(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}).$$

4: Set $h_m \equiv h(\mathbf{x}; f^*, T^*)$.

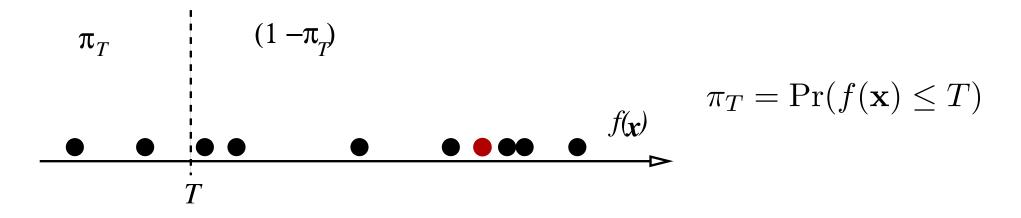
- 5: Set α_m (see Boosting papers.)
- 6: Update weights: $W_{m+1}(i) \propto W_m(i) \exp\left(-l_i c_m(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)})\right)$.

- In many domains: vast majority of possible pairs are negative.
 - People's poses, image patches, documents,...
- A reasonable approximation of the sampling process:
 - Independently draw \mathbf{x}, \mathbf{y} from the data distribution.
 - $f(\mathbf{x})$, $f(\mathbf{y})$ drawn from $p(f(\mathbf{x}))$.
 - Label (\mathbf{x}, \mathbf{y}) negative.

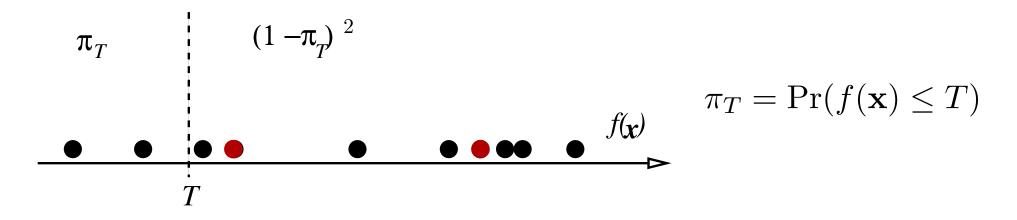
- In many domains: vast majority of possible pairs are negative.
 - People's poses, image patches, documents,...
- A reasonable approximation of the sampling process:
 - Independently draw \mathbf{x}, \mathbf{y} from the data distribution.
 - $f(\mathbf{x})$, $f(\mathbf{y})$ drawn from $p(f(\mathbf{x}))$.
 - Label (\mathbf{x}, \mathbf{y}) negative.



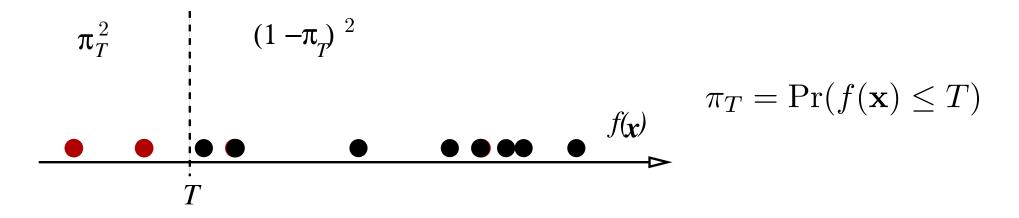
- In many domains: vast majority of possible pairs are negative.
 - People's poses, image patches, documents,...
- A reasonable approximation of the sampling process:
 - Independently draw \mathbf{x}, \mathbf{y} from the data distribution.
 - $f(\mathbf{x})$, $f(\mathbf{y})$ drawn from $p(f(\mathbf{x}))$.
 - Label (\mathbf{x}, \mathbf{y}) negative.



- In many domains: vast majority of possible pairs are negative.
 - People's poses, image patches, documents,...
- A reasonable approximation of the sampling process:
 - Independently draw \mathbf{x}, \mathbf{y} from the data distribution.
 - $f(\mathbf{x})$, $f(\mathbf{y})$ drawn from $p(f(\mathbf{x}))$.
 - Label (\mathbf{x}, \mathbf{y}) negative.



- In many domains: vast majority of possible pairs are negative.
 - People's poses, image patches, documents,...
- A reasonable approximation of the sampling process:
 - Independently draw \mathbf{x}, \mathbf{y} from the data distribution.
 - $f(\mathbf{x})$, $f(\mathbf{y})$ drawn from $p(f(\mathbf{x}))$.
 - Label (\mathbf{x}, \mathbf{y}) negative.



Semi-supervised setup

- Given similar pairs and unlabeled $\mathbf{x}_1, \ldots, \mathbf{x}_N$.
- Estimate TP rate as before.
- FP rate:
 - Estimate the CDF of $f(\mathbf{x})$; let $\pi_T = \hat{P}(f(\mathbf{x}) \leq T)$.
 - Then $\hat{FP} = \pi_T^2 + (1 \pi_T)^2$.
- Note: this means $FP \ge 1/2$ [Ke *et al*].

BoostPro in a semi-supervised setup

- "Normal" boosting assumes positive and negative examples.
- Intuition: each unlabeled example \mathbf{x}_i represents *all* possible pairs $(\mathbf{x}_i, \mathbf{y})$; those are, w.h.p., negative under our assumption.
- Two distributions:
 - $W_m(j)$ on positive pairs, as before. - $S_m(i)$ on unlabeled (single) examples.
- Instead of $c_m(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)})$ use the expectation $E_{\mathbf{y}}[c_m(\mathbf{x}_i, \mathbf{y})]$ to calculate the objective and set the weights.

Semi-supervised boosting: details

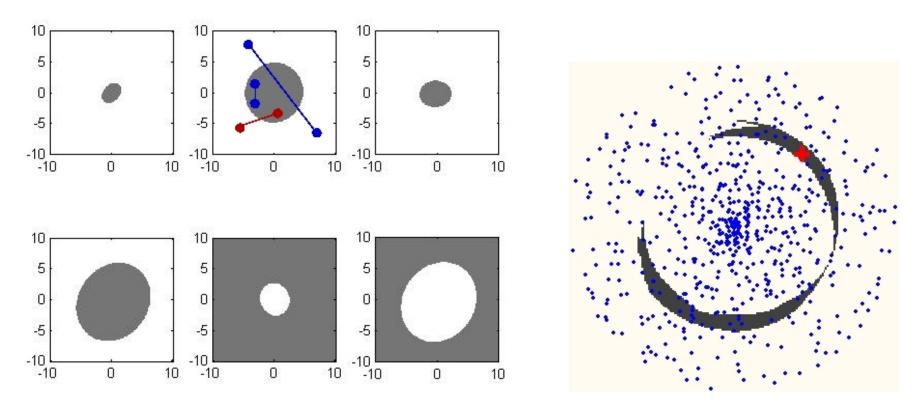
• Probability of misclassifying a negative $(\mathbf{x}_j, \mathbf{y})$:

$$P_j = h(\mathbf{x}_j; f, T)\pi + (1 - h(\mathbf{x}_j; f, T))(1 - \pi).$$

- $E_{\mathbf{y}}[c(\mathbf{x}_j, \mathbf{y})] = P_j \cdot (+1) + (1 P_j) \cdot (-1) = 2P_j 1.$
- Modified boosting objective:

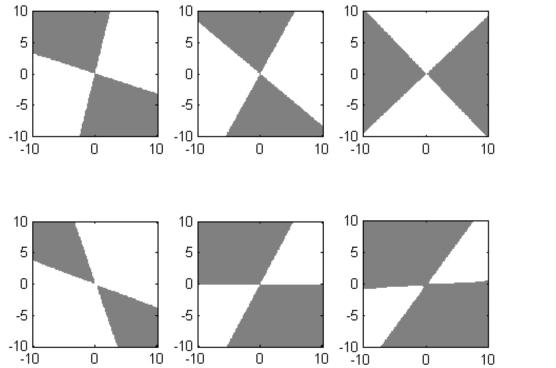
$$r = \sum_{i=1}^{N_p} W(i)c(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}) - \sum_{j=1}^N S(j)E_{\mathbf{y}}[c(\mathbf{x}_j, \mathbf{y})]$$
$$= \sum_{i=1}^{N_p} W(i)c(\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}) - \sum_{j=1}^N S_j(2P_j - 1).$$

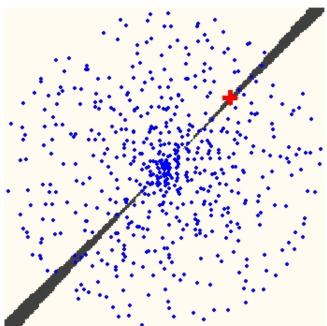
Results: Toy problems



 $M{=}100$, trained on 600 unlabeled points + 1,000 similar pairs

Results: Toy problems





Results: UCI data sets

Data Set	L_1	PSH	BoostPro	M
MPG	13.9436 ± 5.1276	$10.7168 \pm \textbf{4.3401}$	7.4905 ± 2.5907	180± 20
CPU	$37.9810 ~\pm 5.2729$	$59.3767 \pm {\scriptstyle 17.4186}$	$9.0846 \pm \textbf{0.9953}$	$ $ 115 \pm 48
Housing	$26.5211 ~\pm \textbf{6.8080}$	13.8464 ± 9.2756	$13.8436 \pm {\scriptstyle 8.4188}$	210 ± 28
Abalone	$4.7816 \pm \textbf{0.5180}$	$5.0842 \pm \textbf{0.4960}$	$4.7602 \pm \textbf{0.4384}$	43 ± 8
Census	$2.493{\times}10^9 ~\pm {\scriptstyle 3.3{\times}10^8}$	$2.237{\times}10^9{\scriptstyle~\pm~3.2{\times}10^8}$	$1.566{ imes}10^9$ \pm 2.4 ${ imes}10^8$	49 ± 10

Test error on regression benchmark data from UCI/Delve. Mean \pm std. deviation of MSE using locally-weighted regression. The last column shows the values of M (dimension of embedding H). Similarity defined in terms of target function values.

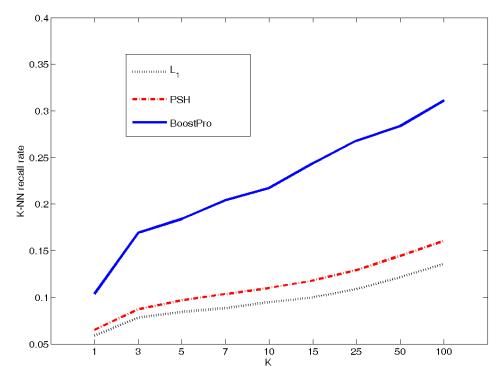
Results: pose retrieval

Input

3 nearest neighbors in H

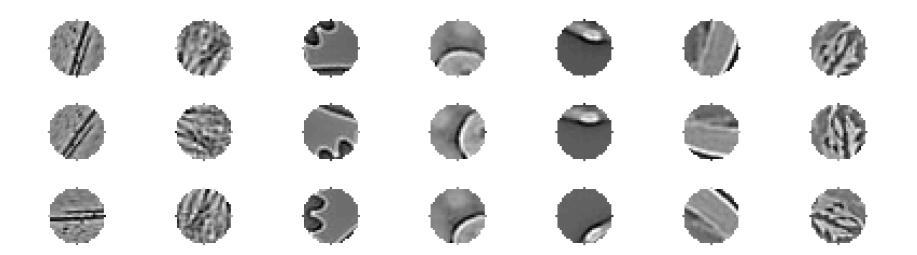
H built with semi-supervised ${\rm BOOSTPRO},$ on 200,000 examples; M=1400

Results: pose retrieval



Recall for k-NN retrieval. For each value of k, the fraction of true k-NN w.r.t. pose within the k-NN w.r.t. an image-based similarity measure is plotted. Black dotted line: L_1 on EDH. Red dash-dot: PSH. Blue solid: BoostPro, M=1000.

Visual similarity of image patches



- Define two patches to be similar under any rotation and mild shift $(\pm 4 \text{ pixels})$.
- Should be covered by many "reasonable" similarity definitions.

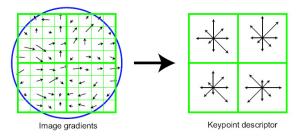
Descriptor 1: sparse overcomplete code

• Generative model of patches [Olshausen&Field]

- Very unstable under transformation, hence L₁ is not a good proxy for similarity.
- With BOOSTPRO, improvement in area under ROC from 0.56 to 0.68.

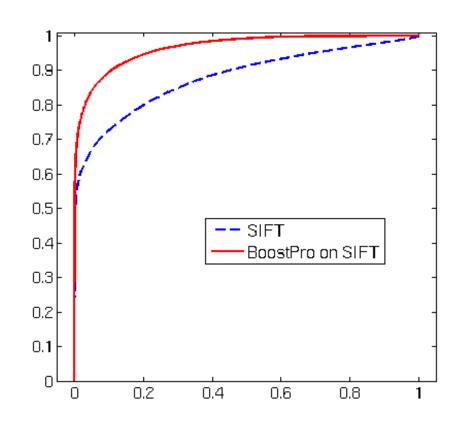
Descriptor 2: SIFT

• Scale-Invariant Feature Transform [Lowe]



- Histogram of gradient magnitude and orientation within the region, normalized by orientation and at an appropriate scale.
- Discriminative (can not generate a patch).
- Designed specifically to make two similar patches match.

Results



• Area under ROC curve:

 $L_1 \text{ on SIFT} \quad L_1 \text{ on } H(\text{SIFT}) \\ 0.8794 \qquad 0.9633$

Conclusions

- It is beneficial to learn similarity directly for the task rather than rely on the "default" distance.
- Key property of our approach: similarity search reduced to L_1 neighbor search (thus can be done in sublinear time.)
- Most useful for:
 - Regression and multi-label classification;
 - When large amounts of labeled data are available;
 - When L_p distance is not a good proxy for similarity.

Open questions

- What kinds of similarity concepts can we learn?
- How do we explore the space of projections more efficiently?
- Factorization of similarity.
- Combining unsupervised and supervised similarity learning for image regions.

Questions ?..