
Learning to Label Aerial Images from Noisy Data

Volodymyr Mnih vmnih@cs.toronto.edu

Department of Computer Science, University of Toronto

Geoffrey Hinton hinton@cs.toronto.edu

Department of Computer Science, University of Toronto

Abstract

When training a system to label images, the
amount of labeled training data tends to be
a limiting factor. We consider the task of
learning to label aerial images from existing
maps. These provide abundant labels, but
the labels are often incomplete and some-
times poorly registered. We propose two
robust loss functions for dealing with these
kinds of label noise and use the loss func-
tions to train a deep neural network on two
challenging aerial image datasets. The ro-
bust loss functions lead to big improvements
in performance and our best system substan-
tially outperforms the best published results
on the task we consider.

1. Introduction

Information extracted from photographs of the earth’s
surface that were taken by airborne sensors has found
applications in a wide range of areas including ur-
ban planning, crop and forest management, disaster
relief, and climate modeling. Relying on human ex-
perts for extracting information from aerial imagery is
both slow and costly, so automatic aerial image inter-
pretation has received much attention in the remote
sensing community. So far, there are only a few, semi-
automated systems that operate in limited domains
(Mayer, 2008), but recent applications of large-scale
machine learning to aerial image interpretation have
produced object detectors with impressive levels of ac-
curacy on challenging high-resolution data (Kluckner
& Bischof, 2009; Kluckner et al., 2009; Mnih & Hinton,
2010).

In machine learning applications, aerial image inter-
pretation is usually formulated as a pixel labeling task.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

The goal is to produce either a complete semantic seg-
mentation of an aerial image into classes such as build-
ing, road, tree, grass, and water (Kluckner & Bischof,
2009; Kluckner et al., 2009) or a binary classification of
the image for a single object class (Dollar et al., 2006;
Mnih & Hinton, 2010). In both scenarios, the avail-
ability of accurately labeled data for training tends
to be the limiting factor. Hand-labeled data tends to
be reasonably accurate, but the cost of hand-labeling
and the lack of publicly available hand-labeled datasets
strongly restricts the size of the training and test sets
for aerial image labeling tasks.

At present, maps of many major cities not only pro-
vide the locations of most roads and parks, but also
the locations of buildings. So one alternative to using
hand-labeled data is to use maps from projects such
as OpenStreetMap for constructing the labels. For ob-
ject types covered by these maps, it is now possible
to construct datasets that are much larger than the
ones that have been hand-labeled. While the use of
these larger datasets has improved the performance
of machine learning methods on some aerial image
recognition tasks (Mnih & Hinton, 2010), datasets con-
structed from maps suffer from two types of label noise:

• Omission noise occurs when an object that ap-
pears in an aerial image does not appear in the
map. This is the case for many buildings (even in
major cities) due to incompleteness of the maps.
It is also true for small roads and alleys, which
tend to be omitted from maps, often with no clear
criterion for when they should be omitted.

• Registration noise occurs when the location of
an object in a map is inaccurate. Such errors are
quite common because not requiring pixel level
accuracy makes maps cheaper to produce for hu-
man experts without significantly reducing their
usefulness for most purposes.

The presence of these kinds of errors in the training
labels significantly reduces the accuracy of classifiers
trained on this data.

Learning to Label Aerial Images from Noisy Data

(a) (b)

Figure 1. Road locations derived from a map are shown
in red. (a) Example of omission noise. (b) Example of
registration noise.

In this paper, we show how one can deal with the pres-
ence of both kinds of noise in the training labels. We
present two robust loss functions, one that reduces the
effect of omission errors on the resulting classifier, and
one that accounts for both omission and registration
errors in the training data. After incorporating these
improvements into a deep learning framework we ob-
tain a substantial improvement in the state of the art
on the largest and most challenging road detection
dataset.

2. Problem Formulation

We will consider aerial image labeling tasks with bi-
nary labels, where the goal is to label all pixels be-
longing to an object class of interest with 1’s and all
other pixels with 0’s. Road and building detection are
two examples of such problems. We adopt a problem
setup that closely resembles the patch-based approach
used for road detection in (Mnih & Hinton, 2010).

Let S be an aerial/satellite image and M̃ be the corre-
sponding map image of equal size produced from the
given map1. M̃i,j = 1 whenever the pixel at location

(i, j) contains the object of interest and M̃i,j = 0 oth-
erwise. The goal is to learn to predict patches of map
M̃ from patches of S, and following a probabilistic ap-
proach, we model the distribution

P (n(M̃i,j , wm)|n(Si,j , ws)), (1)

where n(Ii,j , w) is the w×w patch of image I centered
at location (i, j). Typically wm is set to be smaller
than ws because some context is required to predict
the value of a map pixel. While wm can be set to
1 to predict one pixel at a time, it is generally more
efficient to predict a small patch of labels from the
same context.

1We use the same approach for generating soft binary
maps from vector maps described in (Mnih & Hinton,
2010).

3. Deep Learning Framework

To simplify notation, we will use vectors s and m̃ to
denote the aerial image patch n(Si,j , ws) and the map

patch n(M̃i,j , wm) respectively. Following earlier work
(Mnih & Hinton, 2010) we assume conditional inde-
pendence of the map pixels and model the map distri-
bution

p(m̃|s) =

w2
m∏

i=1

p(m̃i|s) (2)

using a neural network. We assume that each p(m̃i|s)
is a Bernoulli distribution whose mean value is deter-
mined by the ith output unit of the neural network.
We will refer to this as the noise free model.

3.1. Network Architecture

Unlike earlier work, we use a deep neural network to
model the map distribution. The input to the neural
network is a ws by ws patch of an aerial image encoded
in the RGB color space, while the output is a wm by
wm map patch. The input layer is followed by three
hidden layers all of which make use of the rectified
linear activation function (Nair & Hinton, 2010), for
which the output is defined as max(0, input). Rectified
linear units have been found to be better than logis-
tic units on various image classification tasks and we
find that this advantage also exists on image labeling
tasks (Nair & Hinton, 2010).

The first two hidden layers in our network are locally
connected layers, in which each hidden unit is con-
nected to only a small subset of the input units. To
precisely define the connectivity pattern, assume that
the input units of a locally connected layer make up a
win×win image, possibly consisting of multiple chan-
nels. The input image is divided into evenly spaced
filter sites by moving a wf × wf window over the im-
age by a stride of wstr vertically and horizontally, for
a total of ((win − wf)/wstr + 1)

2
filters sites. A dif-

ferent set of f filters of size wf × wf and consisting
of the same number of channels as the input image is
applied at each filter site. Hence, a single locally con-
nected layer results in f · ((win − wf)/wstr + 1)

2
hid-

den units. The hidden units of one locally connected
layer can then act as the input to another locally con-
nected layer by viewing the hidden units as a square
image with f channels and width (win−wf)/wstr + 1.
Unlike a convolutional or tiled net, there is no weight-
sharing of any kind.

The third hidden layer is fully connected, with each
unit connected to every unit in the preceding hidden
layer. The output layer consists of w2

p logistic units for

Learning to Label Aerial Images from Noisy Data

which the output is 1/(1 + exp(−input)). Typically,
wp = wm and each output unit models the probability
that the corresponding pixel in the wm by wm output
map patch belongs to the class of interest.

The values of the parameters such as the number of
filters f , their width wf , and stride wstr should vary
from problem to problem. The settings we use in our
experiments are described in Section 6.

3.2. Preprocessing

We preprocess each input patch by subtracting the
mean value of the pixels in that patch from all pix-
els and then dividing by the standard deviation found
over all pixels in the dataset. This type of prepro-
cessing achieves some contrast normalization between
different patches.

3.3. Learning

We learn the parameters of the neural network by min-
imizing the negative log likelihood of the training data.
For the model given in Equation 2 the negative log like-
lihood takes the form of a cross entropy between the
patch m̃ derived from the given map and the predicted
patch m̂

w2
m∑

i=1

(m̃i ln m̂i + (1− m̃i) ln(1− m̂i)) . (3)

We optimize this objective function using mini-
batched stochastic gradient descent with momentum.

3.4. Discussion of Architecture

Our general architecture has some similarity to various
convolutional architectures that have recently become
popular (Lee et al., 2009; Kavukcuoglu et al., 2010). In
fact, the locally connected layers can be seen as convo-
lutional layers with untied weights. Weight-sharing in
convolutional architectures is advantageous on smaller
datasets because it helps reduce overfitting by restrict-
ing the number of parameters, but we do not need such
a restriction because the abundance of labels, com-
bined with random rotations, allows us to avoid over-
fitting by training on millions of labeled aerial image
patches. Like convolutional architectures, our locally
connected architecture is computationally and statisti-
cally more efficient than a fully connected architecture.

3.5. Unsupervised Pretraining

Initializing neural networks using unsupervised learn-
ing methods is known to improve performance on a va-
riety of vision tasks (Hinton et al., 2006; Krizhevsky,
2011; Mnih & Hinton, 2010). We use unsupervised pre-

training to initialize the deep neural network following
the approach described in (Nair & Hinton, 2010) for
training Restricted Boltzmann Machines with rectified
linear units.

4. Dealing With Omission Noise

Omission noise, as shown in Figure 1(a), occurs when
some map pixels are labeled as not belonging to the
object class of interest when they, in fact, do. When
trained on data containing a substantial number of
such pixels a classifier will be penalized for correctly
predicting the value of 1 for pixels affected by omission
noise. This will cause a classifier to be less confident
and potentially increase the false negative rate.

We propose using a robust loss function that explicitly
models asymmetric omission noise in order to reduce
its effect on the final classifier. The noise-free model of
the data from Equation 2 assumes that the observed
labels m̃ are generated directly from the aerial im-
age s. In order to model label noise, we assume that
a true, uncorrupted, and unobserved map patch m is
first generated from the aerial image patch s according
to some distribution p(m|s). The corrupted, observed
map m̃ is then generated from the uncorrupted m ac-
cording to a noise distribution p(m̃|m). For simplicity,
our omission model assumes that conditioned on m, all
components of m̃ are independent and that each m̃i

is independent of all mj for j 6= i. The observed map
distribution that corresponds to this model can then
be obtained by marginalizing out m, leading to

p(m̃|s) =
∑
m

p(m̃|m)p(m|s) (4)

=

w2
m∏

i=1

∑
mi

p(m̃i|mi)p(mi|s). (5)

The noise distribution p(m̃i|mi) is assumed to be the
same for all pixels i, and is determined by parameters

θ0 = p(m̃i = 1|mi = 0) and,

θ1 = p(m̃i = 0|mi = 1).

For modeling omission noise we set θ0 � θ1 because
the probability that the observed label m̃i is 1 given
that the true label mi is 0 should be very close to 0,
while the probability that the observed m̃i is 0 given
that the true label mi is 1 should still be small but not
as close to 0 as θ0.

We refer to this model as the asymmetric Bernoulli
noise model, or the ABN model for short. In the noise-
free scenario we described in the previous section, the

Learning to Label Aerial Images from Noisy Data

0.0 0.2 0.4 0.6 0.8 1.0
m̂i

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

∂
ln
p
(m̃

i|s
)/
∂
x
i

Noise free model
ABN model

Figure 2. The derivative of the log probability with respect
to the input to the ith output unit for varying predictions
m̂i is shown. The observed value m̃i is set to 0 while the
parameters of the ABN model are θ0 = 0.001 and θ1 =
0.05. The noise free model penalizes incorrect predictions
more than the ABN model, which penalizes incorrect but
confident predictions less.

map distribution in Equation 2 was modelled directly
by a deep neural network. In the noisy setting, we can
use the neural network to model the true map distri-
bution p(m|s). Learning can still be done efficiently by
minimizing the negative log probability of the training
data under the ABN model given in Equation 5. Since
the ABN model factorizes over the pixels i and there
is only a single Bernoulli latent variable mi for each
pixel i, the derivative of the negative log probability
can be found directly.

In the noise-free scenario, the derivative of the nega-
tive log probability with respect to the input to the
ith output unit of the neural network takes the form
m̃i − m̂i. The learning procedure is trying to make
the prediction m̂i close to the observed label m̃i. Un-
der the ABN model, this derivative takes the form
p(mi = 1|m̃i, s) − m̂i. Hence, the learning procedure
is trying to make the prediction m̂i close to the pos-
terior probability that the unobserved true label mi

is 1. This has the effect that the neural network gets
penalized less for making a confident but incorrect pre-
diction. Figure 2 demonstrates how the derivatives for
the noise-free and the ABN models differ as a function
of the prediction m̂i.

5. Dealing With Registration Noise

Registration noise occurs when an aerial image and
the corresponding map are not perfectly aligned. As
shown in Figure 1(b), the error in alignment between
the map and the aerial image can vary over the dataset
and cannot be corrected by a global translation. Our
approach attempts to eliminate registration errors us-
ing local translations of the labels.

We extend the robust loss function we introduced in
the previous section for dealing with omission noise
to also handle local registration errors. As with the

ABN model, we introduce a generative model of the
observed map patches. On a high level, the generative
model works by first generating an uncorrupted and
perfectly registered map from the aerial image, then
selecting a random subpatch of the true map, and fi-
nally generating the observed map by corrupting the
selected subpatch with asymmetric noise. More for-
mally, the generative process is as follows:

1) An uncorrupted and perfectly registered true map
patch m of size wm′ ×wm′ is generated from s accord-
ing to p(m|s). We set wm′ = wm + 2tmax where tmax

is the maximum possible registration error/translation
between the map and aerial image measured in pixels.

2) A translation variable t is sampled from some distri-
bution p(t) over T + 1 possible values 0, . . . , T . In this
paper, we use T = 8, where t = 0 corresponds to no
translation while 1, . . . , T index 8 possible translations
by tmax pixels in the vertical and horizontal directions
as well as their combinations (see Figure 3).

3) An observed map is sampled from the translational
noise distribution

p(m̃|m, t) = p(m̃|Crop(m, t)) (6)

=

w2
m∏

i=1

pABN (m̃i|Crop(m, t)i), (7)

where Crop(m, t) selects a wm by wm subpatch from
the wm′ by wm′ patch m according to the translation
variable t as shown in Figure 3, and pABN (m̃i|mi) is
the pixelwise asymmetric binary noise model defined
in the previous section.

For simplicity we assume that p(t = i) = (1 − p(t =
0))/T for all i 6= 0 and parameterize p(t) using only a
single parameter θt = p(t = 0). Hence, we use a to-
tal of four parameters: tmax, θt, and two parameters
needed to define pABN (m̃i|mi). We refer to this gen-
erative model as the translational asymmetric binary
noise model, or the TABN model for short.

5.1. Learning

The observed map distribution under the TABN model
is given by

p(m̃|s) =

T∑
t=0

p(t)
∑
m

p(m̃|m, t)p(m|s). (8)

We set the parameters of p(t) and p(m̃|m, t) using a
validation set and learn the parameters of p(m|s) by
minimizing the negative log likelihood in Equation 8
using the EM-algorithm. The required EM updates
can be performed efficiently.

M-step: Since p(m|s) is modelled by a neural net-

Learning to Label Aerial Images from Noisy Data

t=1 t=2t=2 t=3

t=4 t=0 t=5

t=6 t=7 t=8

Figure 3. Demonstration of the Crop(m, t) function used
in this paper. For each dark gray patch representing m,
the lighter gray subpatch highlights the area cropped by
Crop(m, t) for the stated translation parameter t.

work, we cannot do a full M-step and instead do an
approximate partial M-step by doing a single gradient
descent update of the neural network parameters on a
mini-batch of training cases. The required derivative
of the expected log likelihood is

∂

∂xi

∑
t

∑
m

p(m, t|m̃, s) ln p(m|s) = p(mi = 1|m̃, s)− m̂i

where m̂i is value of the ith output unit of the neural
network and xi is the input to the ith output unit.
The updates for all weights of the neural network can
be computed from the above equation using backprop-
agation.

E-step: The role of the E-step is to compute
p(mi|m̃, s) for use in the M-step, and as we will show,
this computation can be done in time T · w2

m by ex-
ploiting the structure of the noise model.

We first define Ct to be the set of indices of pixels of m
that are cropped for transformation t. Since this set
will have w2

m entries we will slightly abuse notation
and also use it to index into m̃. By defining

Pt =
∏
i∈Ct

(∑
mi

p(m̃i|mi)p(mi|s)

)
, (9)

the observed map distribution can be rewritten as
p(m̃|s) =

∑
t p(t) · Pt. Now using the identity

p(mi|m̃, s) =

∑
t

∑
m−i

p(t)p(m̃|m, t)p(m|s)

 /p(m̃|s),

(10)
where m−i denotes all entries of m other than i,
p(mi|m̃, s) can be expressed as[∑

t

p(t) · Pt ·
p(m̃i|mi)p(mi|s)∑
mi
p(m̃i|mi)p(mi|s)

]
/

[∑
t

p(t) · Pt

]
.

(11)

Figure 4. Demonstration of the translational noise model
on road detection data. Top row - the target values m̃ pro-
duced from the given map, middle row - model prediction
m̂, bottom row - inferred marginal means for the poste-
rior over the uncorrupted labels p(m|m̃, s). Each column
corresponds to a training case.

We note that the width of patches to which the noise
model is applied (wm′) can be different from the width
of patches predicted by the neural network (wp). This
allows us to decouple the size of patch for which regis-
tration error is assumed to be constant from the size of
predicted patch. In this paper we used wm′ = 4wp. In
this case, we construct the wm′ ×wm′ patch m̂ out of
16 non-overlapping wp × wp patches predicted by the
neural net. We then find the wm′ ×wm′ patch of pos-
terior marginals p(mi|m̃, s) as described above, break
it up into 16 non-overlapping wp×wp subpatches, and
backpropagate the derivatives from all the subpatches
through the neural network.

5.2. Model Demonstration

While we delay quantitative results until Section 6,
Figure 4 shows some qualitative results that demon-
strate the workings of the translational noise model.
This example was constructed using a road detector
trained on poorly registered road data with the trans-
lational noise model. The model uses the target la-
bels produced from the given map (top row) and the
model’s predictions (middle row) to obtain realigned
data (bottom row) through the posterior p(m|m̃, s).

6. Results

6.1. Datasets and Metrics

We evaluate our deep learning framework along with
the proposed noise models on the problem of road de-
tection. We use the URBAN1 and URBAN2 datasets
that were used in (Mnih & Hinton, 2010) to evaluate
a road detection system because these are the largest
and arguably most challenging aerial image labeling
datasets with published results. The URBAN1 dataset
consists of over 500 square kilometers of training data

Learning to Label Aerial Images from Noisy Data

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P

re
ci

si
on

MH 2010
NF
ABN
ABN-P

(a) Precision/recall on the URBAN1 test set.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

MH 2010
NF
ABN
ABN-P

(b) Precision/recall on the URBAN2 test set.

Figure 5. Comparison of models trained on the URBAN1 dataset.

and 48 square kilometers of test data at a resolution of
1.2m per pixel. This dataset contains both urban and
suburban areas of a large city and has relatively few
registration problems but does contain omission errors.
The URBAN2 dataset consists of a 28 square kilome-
ter subset of a different city than the one covered by
URBAN1 and has significant registration problems in
addition to containing omission errors. In earlier work,
the URBAN2 dataset was only used for testing due to
its registration problems. We created an additional
training set out of roughly 250 square kilometers of
imagery by using the entire city covered by URBAN2
in order to study the effects of registration noise on
the training process.

We follow the standard evaluation protocol for road
detection problems which involves computing preci-
sion/recall plots (Wiedemann et al., 1998). Since the
ground truth road locations can suffer from registra-
tion problems, it is common practice to use a buffer
when computing precision and recall. If a buffer of ρ
pixels is used, then a pixel predicted as road is con-
sidered to be correctly classified if there is a true road
pixel within ρ pixels. Similarly, a true road pixel is
considered to be correctly classified for computing re-
call if there is a predicted road pixel within ρ pixels.
We use a buffer of 3 pixels in our evaluations.

6.2. Experimental Setup

To make our results comparable to the best published
results on URBAN1 and URBAN2 we used an experi-
mental setup similar to the one used in (Mnih & Hin-
ton, 2010). We trained neural networks to predict 16
by 16 patches of map from 64 by 64 patches of aerial
image. In most experiments we used the three hid-
den layer neural net described in Section 3. The first
hidden layer used filter width 12 with stride 4 and 64

filters at each site. The second hidden layer used filter
width 4 with stride 2 and 256 filters at each site. The
third hidden layer had 4096 hidden units.

The best published results on this data (Mnih & Hin-
ton, 2010) make use of a postprocessing procedure that
improves the predictions of a base model by training
a new predictor that takes a patch of predictions of
the base model as input instead of the aerial image.
This procedure tends to fill in short gaps in the pre-
dicted road network as well as remove spurious bits of
road. The neural network we use for post-processing
predicts a 16 by 16 map patch from a 64 by 64 patch
of predictions. The network has two locally connected
hidden layers with the same connectivity as the first
two layers of our three layer network.

We trained all models using mini-batch stochastic gra-
dient descent with a fixed learning rate. We used mini-
batches of size 64 and momentum of 0.9. Model pa-
rameters were either tuned on the URBAN1 valida-
tion set (filter sizes and strides) or set once (number
of filters or hidden units) and held fixed for all ex-
periments. All post-processing nets were trained for
8 epochs while base predictor networks were trained
for 20 epochs. Our models were trained using con-
sumer GPUs and took about a day to train. We used
the CudaMat (Mnih, 2009) and Gnumpy (Tieleman,
2010) Python libraries to implement the algorithms.

6.3. Training on URBAN1

We train three different models on the URBAN1 train-
ing set and evaluate them on the URBAN1 and UR-
BAN2 test sets. Figure 5 shows the precision recall
curves on the test sets. The model denoted by NF is
the three layer network described in the previous sec-
tion trained using the noise-free model of Equation 2.

Learning to Label Aerial Images from Noisy Data

To investigate the effectiveness of the ABN loss func-
tion we used it to train a model with the same archi-
tecture as NF. For this model, shown as ABN, we used
the parameter values θ0 = 0.001 and θ1 = 0.05. There
is a clear improvement in both precision and recall
from training with this robust loss function. Neural
networks trained with the ABN loss tend to be much
more confident in their predictions because they are
not penalized as much on the noisy training cases. We
also experimented with using the TABN loss function
for training on the URBAN1 data but found that this
led to nearly identical performance as with the ABN
loss. One possible reason for this is that the ABN loss
function offers some robustness to translation noise in
addition to omission noise. Since the URBAN1 train-
ing set has only minor registration problems the added
robustness from using the TABN loss does not seem
to help.

The best published results for URBAN1 and URBAN2
(Mnih & Hinton, 2010) are included in the plot as
MH2010. This model uses a fully connected single
hidden layer neural net as a base predictor, followed
by a fully connected post processing net. For high re-
call levels, our ABN model outperforms the MH2010
model by a wide margin on both datasets. When we
also train a post-processing neural network (ABN-P)
on the outputs of the ABN model we see a further im-
provement in precision and recall. At low recall levels,
MH2010 and NF outperform ABN and ABN-P on the
URBAN2 test set, likely because the test set is poorly
registered. The noise model allows ABN and ABN-P
to make more confident predictions, which lowers pre-
cision on parts where the ground truth is misaligned.

6.4. Training on URBAN2

While the URBAN1 dataset contains relatively few
registration problems, with most road labels within
one or two meters of the true locations, road cen-
terlines in the URBAN2 dataset are often more than
5 meters away from their true locations. We train
four models on the URBAN2 training set and evalu-
ate them on the URBAN1 test set. We do not evaluate
on the URBAN2 test set because we used the entire
city for training due to it being quite small.

Figure 6 shows precision/recall curves on the URBAN1
test set for four models trained on the URBAN2 train-
ing set and demonstrates the clear advantage of using
robust loss functions on this task. The neural network
trained without a noise model, denoted NF, does very
poorly, achieving recall of about 0.3 at 0.9 precision.
The neural network trained with the ABN model, de-
noted ABN, achieves double the recall at 0.9 precision

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

NF
ABN
TABN
TABN-P

Figure 6. Models trained on the poorly registered UR-
BAN2 dataset evaluated on the URBAN1 test set.

when compared to NF. Unlike for models trained on
URBAN1, we get a huge improvement in the precision
recall curve from training a network with the TABN
model 2. At 0.9 precision, the TABN model obtains re-
call of roughly 0.75, which is 2.5 times higher than that
of the same network trained without a noise model
(NF). Finally, we trained a post-processing network
on the outputs of TABN, improving recall to 0.8 for
precision 0.9. This last network, denoted TABN-P,
was also trained using the translational noise model.

While the performance of these models is worse than
for models trained on URBAN1, a gap in performance
is to be expected. In addition to its registration prob-
lems, the URBAN2 training set is less than half the
size of the URBAN1 training set and covers mostly
suburban areas which do not resemble the more urban
areas in the URBAN1 test set.

7. Related Work

We are not aware of any work related to image labeling
that specifically addresses learning from noisy labels.
(He & Zemel, 2008) pointed out that the lack of ac-
curately labeled data is a bottleneck in general image
labeling and considered the related problem of learn-
ing to label images from incomplete observations. The
presence of label noise in the aerial image data was ad-
dressed in (Kluckner & Bischof, 2009), but it was only
used to motivate the use of random forests which can
tolerate some mislabeling of the data without having
an explicit noise model.

The general problem of learning from noisy labels has
been considered in a variety of settings. In particular,
the idea of modeling true unobserved labels as latent

2The TABN model used the parameter values θ0 =
0.001, θ1 = 0.05, and θt = 0.85.

Learning to Label Aerial Images from Noisy Data

variables is widely used. For example, (Pal et al., 2007)
also uses an asymmetric Bernoulli noise model, but in
the context of information extraction.

The idea of automatically aligning data has been ex-
plored in unsupervised learning, where (Frey & Jojic,
1999) incorporated latent variables encoding spatial
transformations into a mixture modeling framework,
allowing it to simultaneously align and cluster images.

8. Conclusions

Maps provide a very rich source of labels for systems
that learn to interpret aerial images and this makes
it possible to use systems with a very large number
of parameters such as deep neural networks trained
on large image patches. However, the performance
of these systems is significantly degraded by missing
labels and poor registration. We have shown that it is
possible to significantly improve performance by using
robust loss functions that treat the target labels as
noisy observations of true labels. During learning, a
version of the EM algorithm is used to infer the true
labels and these inferred labels are then used as the
targets for training the parameters.

References

Dollar, Piotr, Tu, Zhuowen, and Belongie, Serge. Su-
pervised learning of edges and object boundaries.
In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recog-
nition, pp. 1964–1971, 2006.

Frey, Brendan J. and Jojic, Nebojsa. Estimating mix-
ture models of images and inferring spatial transfor-
mations using the em algorithm. In In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 416–422, 1999.

He, Xuming and Zemel, Richard S. Learning hybrid
models for image annotation with partially labeled
data. In NIPS, pp. 625–632, 2008.

Hinton, Geoffrey E., Osindero, Simon, and Teh, Yee-
Whye. A fast learning algorithm for deep belief nets.
Neural Comput., 18:1527–1554, July 2006.

Kavukcuoglu, Koray, Sermanet, Pierre, Boureau, Y-
Lan, Gregor, Karol, Mathieu, Michaël, and LeCun,
Yann. Learning convolutional feature hierachies for
visual recognition. In Advances in Neural Informa-
tion Processing Systems (NIPS 2010), 2010.

Kluckner, Stefan and Bischof, Horst. Semantic classi-
fication by covariance descriptors within a random-

ized forest. In Computer Vision Workshops (ICCV),
pp. 665–672. IEEE, 2009.

Kluckner, Stefan, Mauthner, Thomas, Roth, Peter M.,
and Bischof, Horst. Semantic classification in aerial
imagery by integrating appearance and height infor-
mation. In ACCV, volume 5995 of Lecture Notes in
Computer Science, pp. 477–488. Springer, 2009.

Krizhevsky, Alex. Convolutional deep belief networks
on cifar-10. Technical report, University of Toronto,
2011.

Lee, Honglak, Grosse, Roger, Ranganath, Rajesh, and
Ng, Andrew Y. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical
representations. In Proceedings of the 26th Inter-
national Conference on Machine Learning, pp. 609–
616, 2009.

Mayer, Helmut. Object extraction in photogrammetric
computer vision. ISPRS Journal of Photogrammetry
and Remote Sensing, 63(2):213–222, March 2008.

Mnih, Volodymyr. Cudamat: a CUDA-based matrix
class for python. Technical Report UTML TR 2009-
004, Department of Computer Science, University of
Toronto, November 2009.

Mnih, Volodymyr and Hinton, Geoffrey. Learning to
detect roads in high-resolution aerial images. In Pro-
ceedings of the 11th European Conference on Com-
puter Vision (ECCV), September 2010.

Nair, Vinod and Hinton, Geoffrey E. Rectified linear
units improve restricted boltzmann machines. In
ICML, pp. 807–814, 2010.

Pal, Chris, Mann, Gideon, and Minerich, Richard.
Putting semantic information extraction on the
map. In Sixth International Workshop on Informa-
tion Integration on the Web, 2007.

Tieleman, T. Gnumpy: an easy way to use GPU
boards in Python. Technical Report UTML TR
2010-002, University of Toronto, Department of
Computer Science, 2010.

Wiedemann, Christian, Heipke, Christian, Mayer, Hel-
mut, and Jamet, Olivier. Empirical evaluation of au-
tomatically extracted road axes. In Empirical Evalu-
ation Techniques in Computer Vision, pp. 172–187,
1998.

