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Abstract

The importance of sampling methods in machine learning is growing due to an ever-increasing

number of datasets containing millions of records of biological, medical, or other types of

data. Such datasets are often beyond the reach of many standard machine learning tech-

niques because of high computational or space complexity ofthe algorithms. When mak-

ing even a single pass through the data is prohibitive, sampling may offer a good solution.

However, whenever sampling is employed, it is necessary to determine when to stop sam-

pling in a principled manner. Taking too few samples may result in an algorithm that is not

theoretically sound, while taking too many may waste valuable computational resources.

We use the problem of estimating the mean of a bounded random variable up to a given

relative error to show how the recently introduced empirical Bernstein bounds can be used

to develop efficient stopping rules. We propose several new stopping rules, prove bounds on

their expected stopping times, and demonstrate experimentally that the new rules can stop

much earlier than the best competitors while offering the same probabilistic guarantees.
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Chapter 1

Introduction

Consider the problem of deciding which of two poker players is better and by how much. It

would not be unreasonable to define the better player as the one that would on average win

more money per hand if the two players were to play an infinite number of hands. Since we

cannot make the players play an infinite number of hands, an obvious approach is to make

them play some finite number and declare the one who has won more money as the better

player.

The problem becomes one of deciding how many hands need to be played. Clearly we

want this number to be as small as possible. However, the fewer hands are played, the higher

the probability that the weaker player wins more money through pure luck. These two

competing objectives can be balanced by requiring that the number of hands to be played

is as small as possible to guarantee that the wrong player is declared as being stronger with

probability not exceeding some small threshold.

To define the problem more precisely, letX1,X2,X3, . . . be independent, identically

distributed (iid) random variables with meanµ. We will refer to an algorithm as a stopping

rule if at timet it observesXt and based on past observations decides whether to stop or

continue sampling. If a stopping ruleS returnsµ̂ that satisfies

P [|µ̂− µ| ≤ ǫ|µ|] ≥ 1− δ, (1.1)

thenS is a (ǫ, δ)-stopping rule and̂µ is an(ǫ, δ)-approximation ofµ. If we let Xi be the

random payoff for the first player for theith hand, we recall that, by our earlier definition,

the first player is better ifµ is greater than 0, the second player is better whenµ is less

than 0, and the magnitude ofµ is the margin by which one of the players is stronger. By

choosingǫ = 1/2, given any0 < δ < 1, if µ̂ is an(ǫ, δ)-approximation toµ thenµ̂ and

µ will assume the same sign. Hence, an(ǫ, δ)-stopping rule can be used to solve the poker
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problem.1

In general, estimating the expected value of a random variable through sampling, or

Monte Carlo estimation, is a fundamental tool in many areas of science. In a clinical trial,

one may be interested in estimating the probability that a new treatment succeeds, which

can be seen as the expected value of an indicator random variable. A mathematician may

be interested in approximating the permanent of a0 − 1 matrix through sampling because

exact computation of this quantity is NP-hard.

In machine learning, the importance of sampling methods is growing due to an ever

increasing number of datasets containing millions of records of biological, medical, or other

types of data. Such datasets are often beyond the reach of many standard machine learning

techniques because of poor computational or space complexity of the algorithms. In these

cases, when even a single pass through a dataset can be prohibitive, sampling has emerged

as a promising tool for scaling up machine learning algorithms [3, 8, 11].

As in the poker problem, whenever sampling is employed, a wayof determining when

enough samples have been taken is necessary, leading to the above describedstopping prob-

lem. Taking too few samples may lead to a high-variance unreliable estimate. Taking too

many samples, on the other hand, will produce an accurate estimate, but may be costly in

terms of computational or laboratory resources.

Motivated by the above examples, this thesis examines the problem of finding an effi-

cient (ǫ, δ)-stopping rule for bounded random variables. We consider the case of bounded

random variables because it is possible to use finite sample tail bounds to obtain stopping

rules with strict probabilistic guarantees for this setting. Although it would be possible to

extend the results to the unbounded case when the random variables satisfy certain moment

conditions (e.g., if they are sub-Gaussian) for the sake of simplicity we will not deal with

this case here. We use the recently-introduced empirical Bernstein bounds to develop a new

algorithm, EBGStop, that requires on the order of

max

(

σ2

ǫ2µ2
,

R

ǫ|µ|

)(

log log
R

ǫ|µ| + log
3

δ

)

(1.2)

samples to find an(ǫ, δ)-approximation of a random variable with rangeR (Theorem 4).

Since, as it follows from a lower bound by Dagum et al. [4], anyalgorithm must take at

least on the order of

max

(

σ2

ǫ2µ2
,

R

ǫ|µ|

)

· log 2

δ
, (1.3)

1In the poker problem assuming that the payoffs areiid rules out players who adapt their strategy between
games. Poker programs will often meet this condition.
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samples (cf. Theorems 1 & 3), EBGStop is close to achieving the optimal bound. We also

show that EBGStop often stops much earlier than the best known stopping rule for bounded

random variables in practice. Most of our results on(ǫ, δ)-approximations have appeared

in [12], but the treatment provided by this thesis is more complete.

We then apply our techniques to the problem of estimating themean of a bounded

random variable up toǫ absoluteerror with probability at least1 − δ. We present a simple

algorithm that requires on the order of

max

(

σ2

ǫ2
,
R

ǫ

)[

log log
R

ǫ
+ log

3

δ

]

(1.4)

samples. While our algorithm often requires much fewer samples than the standard ap-

proach of taking
R2

2ǫ2
· log 2

δ
(1.5)

samples, our approach often stops later when the variance islarge. We then introduce a

stopping rule that uses a mixture of two stopping rules and show that it often stops much

earlier than the standard approach while never exceeding its stopping time by more than a

constant.
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Chapter 2

Related Work

In this chapter, we present the relevant work on(ǫ, δ)-stopping rules. We start by examining

sound(ǫ, δ)-stopping rules and then consider some approximate approaches based on the

central limit theorem.

2.1 Algorithm AA

Dagum et al. [4] present an algorithm for finding an(ǫ, δ)-approximation of the mean of

a random variable distributed in[0, 1]. Their approximation algorithm, referred to asAA
for short, is optimal in the sense that the expected number ofsamples it takes is within a

universal multiplicative constant of any other algorithm for finding an(ǫ, δ)-approximation.

The next theorem proved by Dagum et al. [4] about(ǫ, δ)-approximations is the key to

understanding howAA works. But before the theorem let us introduce formally introduce

the concept of universal(ǫ, δ)-stopping rules:

Definition 1. Consider a stopping ruleS. Let a distributionD be supported on[0, 1],

µ > 0 be its expected value,̂µ(ǫ,δ) be the approximation toµ returned byS when run with

parameters(ǫ, δ) on iid samples drawn from the distributionD, and letN(ǫ,δ) be the time

when the rule stops. If for any such distributionD and any(ǫ, δ) ∈ (0, 1)2 it holds that

1. E[N(ǫ,δ)] <∞, and

2. P
[

µ(1− ǫ) ≤ µ̂(ǫ,δ) ≤ µ(1 + ǫ)
]

> 1− δ,

thenS is called auniversal(ǫ, δ)-stopping rule.

Theorem 1. Let S be a universal(ǫ, δ)-stopping rule. Pick any(ǫ, δ) ∈ (0, 1)2 and any

distribution D supported on[0, 1] whose mean is positive. LetN(ǫ,δ) be the time whenS

4



stops on this problem with parameters(ǫ, δ). Then

E[N(ǫ,δ)] ≥ c ·max (σ2, ǫµ) · 1

ǫ2µ2
log

2

δ
, (2.1)

whereµ is the mean ofD andσ2 is its variance, andc > 0 is a constant that is independent

of S, D, ǫ, andδ.

Theorem 1 gives the minimum number of samples an algorithm needs to take on the

average in order to always produce an(ǫ, δ)-approximation ofµ. TheAA algorithm can be

seen as an attempt to reverse-engineer an optimal stopping rule through Theorem 1.

First, Dagum et al. found a constantc′ that guarantees that ifn = c′ · max (σ2, ǫµ) ·
1

ǫ2µ2 log 2
δ andµ̂ = 1

n

∑n
i=1 Xi, then

P [|µ̂− µ| ≤ ǫµ] ≥ 1− δ.

If µ andσ2 were known, one could computen and simply averagen samples to obtain

an (ǫ, δ)-approximation ofµ. However,µ is the quantity of interest in the first place, so

Dagum et al. instead compute an upper bound onn using approximations ofµ andσ2 that

are within a constant factor of the true values with high probability.

To obtain approximations ofµ andσ2 that are used to computeN , Dagum et al. use the

Stopping Rule Algorithm (SR), pseudocode for which appearsas Algorithm 1. LikeAA,

givenǫ > 0 andδ ∈ (0, 1) the SR algorithm returns an(ǫ, δ)-approximation ofµ. However,

the expected number of samples taken by SR is on the order of1
ǫ2µ

log 2
δ , suggesting that

there may be a more efficient algorithm that, in some cases, would take1/ǫ times fewer

samples.

Algorithm 1 Stopping Rule Algorithm
t← 0
S ← 0
Υ← 4(e− 2) log(2/δ)/ǫ2

Υ1 ← 1 + (1 + ǫ)Υ
while S ≤ Υ1 do

t← t + 1
ObtainXt

S ← S + Xt

end while
return Υ1/t

Pseudocode for theAA algorithm is presented as Algorithm 2, where, for clarity,

X1,X2, . . . and X ′
1,X

′
2, . . . denote two groups ofiid random variables distributed with

5



meanµ andσ2. There are three steps to the algorithm. In the first step, theSR algorithm

is used to obtain a(min (1/2,
√

ǫ), δ/3)-approximation ofµ. In the second step, a high-

probability estimate ofσ2 is found by using the estimate ofµ to determine the necessary

number of samples. Finally, the estimates ofµ andσ2 are combined into an estimate of

max (σ2, ǫµ), which in turn is used to determine the number of samples necessary to obtain

an (ǫ, δ)-approximation ofµ. Note that the third step reuses the samples used in the first

step before obtaining new ones.

Algorithm 2 AlgorithmAA
Υ1 ← 2(1 +

√
ǫ)(1 + 2

√
ǫ)(1 + log 3

2/ log 2
δ )Υ

/* Use the Stopping Rule Algorithm onX1,X2, . . . to find approximation ofµ */
µ̂′ ← (min (1/2,

√
ǫ), δ/2)-approximation ofµ

/* Find approximation ofmax (σ2, ǫµ) usingX ′
1,X

′
2, . . .

N ← Υ1 · ǫ/µ̂′

S ← 0
for i = 1, . . . , N do

S ← S + (X ′
2i−1 −X ′

2i)
2/2

end for
ρ← max (S/N, ǫµ̂′)

/* Find final approximation ofµ usingX1,X2, . . . */
N ← Υ1 · ρ/µ̂′2

S ← 0
for i = 1, . . . , N do

S ← S + Xi

end for
µ̂← S/N

return µ̂

Finally, Dagum et al. prove that for any random variableX distributed in[0, 1], ǫ > 0,

andδ ∈ (0, 1), if µ̂ is the estimate produced byAA andN is the stopping time ofAA, then

AA satisfies the conditions of Theorem 1 and there exists a universal constantc such that

E[N ] ≤ c ·max(σ2, ǫµ) · 1

µ2ǫ2
log

2

δ
. (2.2)

It seems that extending theAA algorithm to the more general setting of bounded ran-

dom variables should be trivial, but this is not the case. Themain technique used by the

AA algorithm relies heavily on the fact that the sum ofn samples from a nonnegative ran-

dom variable is non-decreasing as a function ofn. This is not true for a sum ofn bounded

6



random variables, henceAA cannot be extended to this case. Nevertheless, the results of

Dagum et al. provide important insights into our problem.

2.2 Nonmonotonic Adaptive Sampling

Domingo et al. [6] propose the Nonmonotonic Adaptive Sampling (NAS) algorithm for

finding an(ǫ, δ)-approximation of the mean of a bounded random variable. Pseudocode for

the NAS algorithm is shown as Algorithm 3.

Algorithm 3 Algorithm NAS
α←∞
u← 0
t← 0
while |u| < α(1 + 1/ǫ) do

t← t + 1
ObtainXt

u← X t

α←
√

(1/2n) log(n(n + 1)/δ)
end while
return Xt

The idea behind the NAS algorithm is simple. After observingt samples, a1 − dt

confidence interval forµ, wheredt = δ/(t(t + 1)), is constructed aroundXt using Ho-

effding’s inequality. Settingα to be half the width of this confidence interval, the algorithm

terminates if|X t| < α(1 + 1/ǫ) and returnsX t. To see whyXt is an(ǫ, δ) approximation

when NAS terminates, suppose that the NAS algorithm stoppedaftert samples and that all

confidence intervals containµ. It follows that

|X t − µ| ≤ α ≤ ǫ(|X t| − α) ≤ ǫ|µ|. (2.3)

The first and third inequalities follow from the fact that allthe confidence intervals hold,

while the second inequality can be obtained by rearranging the stopping condition. Finally,

it follows by the union bound that Equation (2.3) holds with probability at least1− δ since

∞
∑

t=1

δ

t(t + 1)
≤ δ. (2.4)

Hence, upon termination of the NAS algorithm,Xt is an(ǫ, δ)-approximation ofµ.

Domingo et al. argue that given anyǫ > 0, δ > 0, and ifX1,X2, . . . are iid bounded

random variables with meanµ 6= 0, then there exists a universal constantc such that

E[N ] ≤ c · 1

µ2ǫ2
·
(

log
1

ǫ|µ| + log
2

δ

)

. (2.5)
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Unlike the equivalent bound for theAA algorithm, Equation (2.5) contains an additional

log(1/ǫ|µ|) term. This term comes from the use of a union bound. Domingo etal. also

show that it can be reduced tolog log(1/ǫ|µ|) through the use of “geometric sampling”.1

Concentrating on non-negative valued random variables, itis also interesting to note that

the bound for the NAS algorithm does not contain themax(σ2, ǫµ) term that is present in

Equation (2.2), suggesting that NAS will perform poorly when max(σ2, ǫµ)≪ 1.

2.3 Asymptotic Approaches

TheAA and NAS algorithms rely, directly or indirectly, on finite sample tail bounds, such

as Hoeffding’s inequality. An alternative approach is to use deviation bounds based on the

Central Limit Theorem [15]. While such an approach can only offer asymptotic guaran-

tees, it can result in earlier stopping times. In this section, we discuss several asymptotic

approaches to finding(ǫ, δ)-approximations and provide some insight into how they can

fail.

Let X1,X2, . . . areiid random variables with finite meanµ and finite varianceσ2 > 0,

and letΦ = 1− Φ, whereΦ denotes the standard normal cumulative density function. Let

Xt be the average ofX1,X2, . . . ,Xt, Vt be the empirical variance:

X t =
1

t

t
∑

s=1

Xs,

Vt =
1

t

t
∑

s=1

(Xs −Xt)
2.

(2.6)

ThenVt converges toσ2 in distribution and hence according to the Central Limit Theorem

(Theorem1.13 in [5]) and Slutsky’s Theorem (Theorem1.5 in [5]),

P

[
√

t(X t − µ)√
Vt

> u

]

→ Φ(u)

If we define

ct =
Φ
−1

(δ/2)
√

Vt√
t

, (2.7)

thenlimt→∞ P
[∣

∣X t − µ
∣

∣ ≤ ct

]

= 1− δ, hence, in the limit,(X t − ct,X t + ct) is a1− δ

confidence interval forµ. Such approximate confidence intervals are generally much tighter

than confidence intervals obtained from Hoeffding’s inequality or the empirical Bernstein

bound.
1Geometric sampling will be explained in Chapter 4.
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Domingo et al. analyze a version of the NAS algorithm that uses CLT-based confidence

intervals [6]. They argue that the expected number of samples required by this variant of

NAS still scales with1/ǫ2µ2, but the constants are significantly reduced, resulting in earlier

stopping times. However, Domingo et al. do not consider the effect of the variance in their

analysis, which suggests that it may be possible to prove a tighter bound.

A similar approach was taken by Holmes et al., who developed an asymptotic(ǫ, δ)-

stopping rule for the purpose of approximating intractablestatistical summations [11].

Their Monte Carlo approximation algorithm, which we will refer to as MCA, is shown

as Algorithm 4. The MCA algorithm is representative of asymptotic approaches to stop-

ping in that it makes use of CLT-based confidence intervals and it does not make use of a

union bound [14].

Algorithm 4 Algorithm MCA
t← 0
tneeded ← tmin

while t < tneeded do
while t < tneeded do

t← t + 1
ObtainXt

end while
tneeded ← z2

δ/2
(1+ǫ)2

ǫ2 · Vt

X
2

t

end while
return Xt

Holmes et al. derive MCA from the observation that ifc is half the width of a1 − δ

confidence interval forµ as defined by Equation 2.7, thenµ̂ is an(ǫ, δ)-approximation ofµ

wheneverc ≤ ǫ(µ̂− c). This is in fact the stopping condition used by the CLT-basedNAS

algorithm, but unlike the NAS algorithm, MCA does not check the stopping condition after

each sample. Instead, the MCA algorithm begins by taking some predetermined number

of samplestmin before checking the stopping condition for the first time. Holmes et al.

observe that if the stopping condition is not satisfied, one can rewrite it as

t ≥ z2
δ/2

(1 + ǫ)2

ǫ2
· Vt

X
2
t

, (2.8)

wherezδ is a1−δ quantile of a standard normal distribution, to obtain a lower bound on the

number of required samples. In MCA, Equation 2.8 is used to determine when the stopping

condition should be checked next if it is not already satisfied.

The MCA algorithm is closely related to Stein’s two-stage method for finding fixed

width confidence intervals (see Chapter 13 of [13]), a problem we will consider in Chap-

9



tmin 30 100 500
Laplace(0.1, 1) 0.355 0.222 0.131

Gaussian(0.1, 1) 0.251 0.159 0.103

Table 2.1: Probability of MCA failing for different values of tmin, ǫ = 0.1, andδ = 0.1.

ter 6. Given a sequence ofiid random variablesX1,X2, . . . with meanµ and varianceσ2,

both unknown, the goal is to find a confidence interval of width2ǫ that containsµ with

probability at least1− δ. Stein’s two-stage procedure begins by taking some fixed number

m samples in the first stage. Using these samples, a stopping timeT is computed as

T = max

(

m, t2(m−1,δ/2)

Vm

ǫ2
+ 1)

)

,

t(m,δ) is the1 − δ quantile of Student’st-distribution withm degrees of freedom. In the

second stage, Stein’s procedure takes a furtherT − m samples. WhenXi are normally

distributed, this procedure has been shown to take roughly twice as many samples as a

stopping rule that knows the true variance. Nevertheless, the rule gives the desired coverage

in this case.

One important question is what effect does the use of approximate confidence intervals

have on the properties of such two-stage procedures? If statistical folklore is to be believed,

settingtmin to 30 should ensure that the normal approximation holds. Hence, the probabil-

ity that MCA produces an approximation with relative error less thanǫ, also known as the

coverageof a stopping rule, should not be smaller than1− δ.

We explored the validity of this claim by estimating the coverage of MCA for dif-

ferent values oftmin in two different scenarios. Ifp is the probability that MCA pro-

duces an estimate with relative error greater thanǫ for some random variable, thenp =

E[I {|µ− µ̂| ≥ ǫµ}], whereI {A} denotes the indicator random variable for eventA. We

will refer to p as thefailure probabilityof a stopping rule. Since we are primarily interested

in determining whetherp < δ or p > δ, we used a stopping rule to find a(0.1, 0.1)-

approximation of the mean of the random variableI {|µ− µ̂| ≥ ǫµ} − δ.

We estimated the failure probability of MCA onLaplace(µ = 0.1, b = 1) andNormal(µ =

0.1, σ2 = 1) random variables fortmin = 30, 100, 500. The Laplace distribution has high

kurtosis so we can expect MCA to fail with probability greater thanδ on it. However, when

sampling from a Normal distribution MCA should fail with probability close toδ since in

that case the only approximate step is that the variance and the mean are both estimated

based on data.

The results are shown as Table 2.3. It is clear that whentmin is too low, MCA can fail
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with probability much larger thanδ. In particular, the claim that CLT-based approximations

are accurate when the number of samples is greater than 30 seems far from true. On both

random variables, whentmin was set to 30 the probability of MCA failing was between

2.5 and 3.5 higher than the desired value ofδ = 0.1. While MCA was much closer to

achieving the desired failure probability of0.1 when tmin was set to 500, this is not a

guarantee that this will be the case for other random variables. Some attempts to make two-

stage procedures such as Stein’s more robust have been made,for example by employing

the bootstrap [9], however the resulting guarantees are still asymptotic.

While the earlier stopping times provided by asymptotic approaches are appealing, they

should not be applied blindly because if they are not properly tuned they can significantly

exceed the desired failure probability ofδ. Note that there are two sources of the error:

First, instead of using the true variance we use an empiricalestimate. Second, the CLT

is asymptotic. Since the convergence in the CLT is of orderΘ(1/
√

n) as it follows from

Cramer’s theorem (Theorem13.1 in [5]), correcting for the error committed when usingΦ

would introduce an intolerably large cost (the sample size would beΩ(1/δ2)). In the rest of

this thesis we will only consider stopping rules that can offer strict probabilistic guarantees,

yet avoid this pitfall.
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Chapter 3

Empirical Bernstein Stopping

In this chapter, we develop a near-optimal stopping rule forfinding an(ǫ, δ)-approximation

of the mean of a bounded random variable.

3.1 General Approach

We begin by describing the general approach taken in the design of our algorithm. To

reiterate, the goal is to construct a stopping rule with the following two properties:

1. For anyµ 6= 0, the stopping rule should stop with probability one.

2. The estimatêµ returned by the stopping rule should satisfy

P [|µ̂− µ| ≤ ǫ|µ|] ≥ 1− δ

To gain some insight into how a stopping rule can be made to satisfy the second property,

let F be the event that the stopping rule fails, i.e. returns an estimate µ̂ that is not anǫ-

approximation ofµ, and letT be the random time at which the stopping rule terminates. By

the law of total probability, it follows that

P [F ] =

∞
∑

t=1

P [F ∩ {T = t}] . (3.1)

The key idea behind our stopping rule is to define a nonnegative sequence{dt} satis-

fying
∑∞

t=1 dt ≤ δ, and construct the stopping rule such thatP [F ∩ {T = t}] ≤ dt. To

facilitate this we define a new sequence{ct} wherect is half the width of a1 − dt confi-

dence interval forµ givent samples. The stopping criterion is then constructed so thatif it

is satisfied aftert samples and if the confidence interval forµ computed using the sample

andct does not fail then the returned estimateµ̂ is anǫ-approximation ofµ. This ensures
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that P [F ∩ {T = t}] ≤ dt, and when combined with Equation (3.1) guarantees that the

stopping rule will fail with probability at mostδ.

The same general approach was followed by Domingo et al. [6] in the design of their

NAS algorithm, but since we construct the sequencect using empirical Bernstein bounds

(see below) instead of Hoeffding bounds, our stopping rulesare able to take advantage of

variance like theAA algorithm. However, our approach works with absolute values of the

sample meansXt, and, unlike theAA algorithm, our stopping rules do not require the

samples to be almost surely nonnegative.

3.2 The EBStop Algorithm

In this section, we present the basic version of our stoppingrule, EBStop.

3.2.1 Stopping criterion

First, letdt = c/tp wherec = δ·(p−1)/p andp > 1. This merely ensures that
∑∞

t=1 dt ≤ δ,

but we will discuss this particular choice of{dt} in Section 3.2.2. Also letct be half the

width of a 1 − dt confidence interval forµ as defined by the empirical Bernstein bound

givent samples (see Section 8.1.2)

ct =

√

2Vt log (3/dt)

t
+

3R log (3/dt)

t
, (3.2)

and define the eventE as

E =
⋂

t≥1

{
∣

∣Xt − µ
∣

∣ ≤ ct}. (3.3)

HereX t is the same mean of the firstt samples andVt is the sample variance (cf. Equa-

tion (2.6)). By construction, eventE holds with probability at least1− δ. We now construct

a stopping criterion that is guaranteed to return an(ǫ, δ)-approximation ofµ given that event

E holds.

From Equation (3.3) we know that
∣

∣X t − µ
∣

∣ ≤ ct for all t ∈ N
+. Since a confidence

interval for the absolute value of the mean of a random variable is no wider than the equiva-

lent confidence interval for the mean itself, it follows that
∣

∣|X t| − |µ|
∣

∣ ≤ ct, which implies

|X t| − ct ≤ |µ|. It is then easy to see that if

ct ≤ ǫ(|X t| − ct), (3.4)

then
∣

∣|X t| − |µ|
∣

∣ ≤ ct ≤ ǫ(|X t| − ct) ≤ ǫ|µ|.
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Hence, if we stop when Inequality (3.4) holds,|X t| is within ǫ relative error of|µ|. We

rearrange Inequality (3.4) as

ct ≤
ǫ

1 + ǫ

∣

∣X t

∣

∣ (3.5)

for convenience to obtain the stopping condition of our first(ǫ, δ)-stopping rule, EBStop-

Simple. Pseudocode for EBStopSimple is shown as Algorithm 5.

Algorithm 5 Algorithm EBStopSimple
ct ←∞
t← 0
ObtainX1

while ct > ǫ/(1 + ǫ)
∣

∣Xt

∣

∣ do
t← t + 1
ObtainXt

Computect according to (3.2)
end while
return Xt

While it can be shown that EBStopSimple comes close to achieving the lower bound of

Dagum et al. from Theorem 1, we make two simple improvements to EBStopSimple before

providing a theoretical analysis of stopping times.

First, we show that the(1 + ǫ) term in Inequality (3.5) can be discarded. Letl(t) =

|X t| − ct andu(t) = |X t| + ct. We have seen thatP [∩t≥1{l(t) ≤ |µ| ≤ u(t)}] > 1 − δ.

Now, consider an algorithm that stops at the first timeT when

(1 + ǫ)l(T ) ≥ (1− ǫ)u(T ) (3.6)

and returns the estimate

µ̂ = 1/2 · sgn(XT ) [(1 + ǫ)l(T ) + (1− ǫ)u(T )] . (3.7)

It is easy to show that for our choice ofl(t) and u(t), Inequality (3.6) is equivalent to

cT ≤ ǫ|XT |. To show that the estimate defined in Equation (3.7) is an(ǫ, δ)-approximation

consider the eventE when for anyt, Xt − ct ≤ µ ≤ Xt + ct. On this event,

|µ̂| = 1/2 · [(1 + ǫ)l(T ) + (1− ǫ)u(T )]

≥ (1− ǫ)u(T )

≥ (1− ǫ)|µ|.

Here the first inequality follows from the stopping condition (3.6) and the second follows
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by the definition ofE . Similarly,

|µ̂| = 1/2 · [(1 + ǫ)l(T ) + (1− ǫ)u(T )]

≤ (1 + ǫ)l(T )

≤ (1 + ǫ)|µ|.

Further, sincecT < |XT |, the signs ofX t andµ must agree onE . Thus, onE , µ̂ is an

ǫ-approximation toµ. Since by constructionP [E ] ≥ 1 − δ, we get that the stopping rule

returns anǫ-estimate with probability at least1− δ.

The second improvement is based on the observation that whenconditioning on event

E , one can use the smallest of the confidence intervals constructed at any time1 ≤ s ≤ t

as the confidence interval at timet instead ofct. Whenct is constructed from the empirical

Bernstein bound, this construction can result in tighter confidence intervals, which in turn

lead to earlier stopping times. Based on this, we can refine our definitions ofl(t) andu(t)

by settingl(t) to maxs≤t

(

|Xs| − cs

)

andu(t) to mins≤t

(

|Xs|+ cs

)

.

We incorporate the above improvements into EBStopSimple toobtain a new algorithm,

EBStop. The pseudocode for EBStop is shown as Algorithm 6.

Algorithm 6 Algorithm EBStop
t← 1
l(t)← 0
u(t)←∞
ObtainX1

while (1 + ǫ)l(t) < (1− ǫ)u(t) do
t← t + 1
ObtainXt

Computect according to (3.2)
l(t)←max(l(t− 1), |X t| − ct)
u(t)←min(u(t− 1), |X t|+ ct)

end while
return sgn(Xt) · 1/2 · [(1 + ǫ)l(t) + (1− ǫ)u(t)]

3.2.2 Choosingdt

While we have already stated that{dt} should be nonnegative and should sum toδ, another

restriction on the sequence is necessary to guarantee that EBStop will stop with probability

one. While the reason will become clear in the next section,{dt} must satisfy

lim
t→∞

log(3/dt)

t
= 0.
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Hence,dt should not decay too quickly, or EBStop will never terminate. Our particular

choice of{dt} satisfies all of the above criteria and is both efficient in practice and mathe-

matically convenient. The exact form of this sequence is a parameter of our algorithm and

offers a way of incorporating prior knowledge.

3.3 Analysis of EBStop

In this section we prove that EBStop is an(ǫ, δ)-stopping rule and provide an analysis of its

stopping times. We show that EBStop comes close to achievingthe theoretical lower bound

given in Theorem 1. We begin by stating a key technical resultdue to Audibert et al. [1].

Lemma 1. LetU be a real-valued random variable such that almost surelyU ≤ b for some

b ∈ R. Let b′ = b − E[U ], andb+ = max(b, 0). LetU1, . . . , Un be i.i.d. copies ofU and

U t = 1/t
∑t

s=1 Us. Then for anyx > 0 the followings hold:

• with probability at least1− e−x, simultaneously for1 ≤ i ≤ t,

i(U i − E[U ]) ≤
√

2tE[U2]x + b+x/3; (3.8)

• with probability at least1− e−x, simultaneously for1 ≤ i ≤ t,

i(U i − E[U ]) ≤
√

2tV[U ]x + b′x/3. (3.9)

Proof. See [1].

Lemma 1 can be used to derive a high probability upper bound onthe sample variance,

which is needed in order to show that the expected number of samples taken by EBStop

depends on the true variance.

Lemma 2. Let X1, . . . ,Xt be iid random variables such that for all1 ≤ i ≤ t, almost

surely0 ≤ Xi ≤ 1. LetVt = 1
t

∑t
i=1(Xi −Xt)

2. Then, for anyx > 0, with probability at

least1− 3e−x,

Vt ≤ σ2 +
√

2σ2x/t + x/3t. (3.10)

Proof. The application of Inequality (3.8) with the choiceUj = (Xj − E[X1])
2, i = t,

yields that with probability at least1− e−x,

U t ≤ σ2 +
√

2Vx/t + x/3t, (3.11)
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whereV , E[(X1 −E[X1])
4]. Now,U t = Vt + (Xt − µ)2 ≥ Vt, hence from (3.11) it also

follows that

Vt ≤ σ2 +
√

2Vx/t + x/3t.

UsingV ≤ σ2, which holds sinceXi ∈ [0, 1], we arrive at the desired result.

Before proceeding to the main result, we prove a technical lemma that provides an upper

bound on the solution of a type of equation that arises in the analysis of stopping times.

Lemma 3. Leta, k be positive real numbers. Ift′ is a solution to

log at

t
= k, (3.12)

then

t′ ≤ 2

k
log

2a

k
. (3.13)

Further, if t′ is as above andt ≥ t′ thenlog(at)/t ≤ k.

Proof. The solution of Equation (3.12) can be seen as the intersection point between a line

and a logarithmic curve when we rewrite the equation as

log at = kt. (3.14)

First, note that att = 1/k, the slope of the line equals the slope of the tangent to the

logarithmic curve. Becauselog is concave, fort0 > 1/k the intersection of the line tangent

to log at at t0 with the linekt is an upper bound ont′. Substitutinglog t0 + 1/t0 · (t− t0)

with the choice oft0 = 2/k for log at in Equation (3.14) and solving fort yields

t =
2

k

[

log
2a

k
− 1

]

. (3.15)

We obtain the Lemma by dropping the−2/k term for convenience.

Finally, we present a theorem that summarizes the main properties of EBStop. In order

to simplify the analysis, we restrict it to the case of randomvariables with range[0, 1].

Theorem 2. Let X be a random variable distributed with range[0, 1]. Letµ = E[X] and

σ2 = V[X] and assumeµ 6= 0. Let T be the stopping time of Algorithm EBStop onX,

wherect is defined by Equation (3.2) withdt = δ(p − 1)/(ptp), wherep > 1. Then the

following properties hold:

1. There exists a constantC = Cp such that for any0 < δ < 1/2,

P

[

T > C ·max

(

σ2

ǫ2µ2
,

1

ǫ|µ|

)(

log
1

ǫ|µ| + log
2

δ

)]

≤ 2δ.
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2. If p > 2, there exists a constantC ′ = C ′
p such that

E[T ] < C ′ ·max

(

σ2

ǫ2µ2
,

1

ǫ|µ|

)(

log
1

ǫ|µ| + log
2

δ

)

.

3. The estimatêµ as returned by the EBStop algorithm is an(ǫ, δ)-approximation ofµ.

Proof of Part 1. When Algorithm EBStop stops at timeT , the stopping condition implies

that

(1 + ǫ)max
s≤T

(

|Xs| − cs

)

≥ (1− ǫ)min
s≤T

(

|Xs|+ cs

)

, and

|XT | ≥ cT .
(3.16)

Since analyzing the stopping criterion directly is cumbersome, we will state a sequence of

stopping conditions, each more conservative and easier to analyze than the previous until

we arrive at a condition that can be solved for the stopping time. First, consider dropping

themax andmin from the first half of Inequality (3.16) and rearranging the terms, resulting

in

ǫ|XT | ≥ cT . (3.17)

Since Inequality (3.16) holds only when Inequality (3.17) holds, it suffices to upper bound

the stopping time of algorithm EBStop with Inequality (3.17) as its stopping criterion.Thus

if we redefineT to be the first time when (3.17) holds then it suffices to upper boundT .

Now, consider the eventE when none of the confidence intervals fail:

E =
⋂

t≥1

{|X t − µ| ≤ ct}. (3.18)

In what follows, unless told otherwise, we will always assume that this event holds. Since,

on E , |Xt| ≥ |µ| − ct holds for anyt, if T ′ is the first time whenǫ(|µ| − cT ′) ≥ cT ′

holds thenT ≤ T ′. RedefiningT to beT ′, our aim now is to boundT ′. The new stopping

criterion then becomes

ǫ|µ|
1 + ǫ

≥ cT =

√

2VT log(1/δT )

T
+

3 log(1/δT )

T
, (3.19)

where we used the definition ofct (cf. Equation (3.2)) and we define1/δt = 3tp/(cδ). Now,

the idea is that by the time when both terms on the right-hand side are small compared to

the left-hand side (say, they are both less than half of the left-hand side), the algorithm

would have stopped. Further, for largeT , VT can be upper bounded by a constant times

the larger ofσ2 andǫ|µ| (with high probability). These two constraints then give usthe

required bound onT .
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By applying Lemma 2 with the choicex = log(1/δt), it follows that for anyt ≥ 1, with

probability at leastδt,

Vt ≤ σ2 + σ

√

2 log(1/δt)

t
+

log(1/δt)

3t
. (3.20)

An application of Lemma 3 to3log(1/δt)/t = σ2 gives that ift ≥ 6
σ2 [p log 6p

σ2 + log 3
cδ ] =

tσ2 then3log(1/δt)/t ≤ σ2. Another application of Lemma 3 to3log(1/δt)/t = ǫ|µ| gives

that if t ≥ 6
ǫ|µ| [p log 6p

ǫ|µ| +log 3
cδ ] = tǫ|µ| then3log(1/δt)/t ≤ ǫ|µ|. We now defineE ′ to be

the event that (3.20) holds for allt ≥ 1. Definingρ = max(σ2, ǫ|µ|), we get that for any

t ≥ min(tσ2 , tǫ|µ|), onE ′, Vt ≤ 3ρ.

Thus, onE ∩ E ′ it holds that
√

2Vtlog(1/δt)

t
+

3log(1/δt)

t
≤

√

6ρlog(1/δt)

t
+

√

3ρlog(1/δt)

t

=
(√

6 +
√

3
)

√

ρlog(1/δt)

t
.

(3.21)

Now, consider the first timet∗ ≥ min(tσ2 , tǫ|µ|) satisfying

ǫ|µ|
1 + ǫ

≥
(√

6 +
√

3
)

√

ρ log(1/δt)

t
. (3.22)

Note thatt∗ is non-random. Further, onE ∩ E ′, t∗ ≥ max(T,min(tσ2 , tǫ|µ|)) = T ′. This is

trivial if T ′ = min(tσ2 , tǫ|µ|). On the other hand, ifT ′ = T > min(tσ2 , tǫ|µ|) then notice

that Inequality (3.21) holds for timeT on E ∩ E ′ and hence the stopping criterion (3.19)

will be satisfied whenever (3.22) is satisfied. This means that the algorithm stops the latest

at timet∗. SinceT ′ ≥ T , t∗ ≥ T onE ∩ E ′.
Now, another application of Lemma 3 to Inequality (3.22) gives the bound that Inequal-

ity (3.22) is satisfied when

t ≥ 6p(1 + ǫ)2(
√

6 +
√

3)2ρ

ǫ2µ2

[

1

p
log

3

cδ
+ log

6p(1 + ǫ)2(
√

6 +
√

3)2ρ

ǫ2µ2

]

.

Since the quantity on the right-hand side is at least as largeastǫ|µ|, it is an upper bound on

t∗. The desired form of the bound is obtained by absorbing the additive constants into the

multiplicative constant. Noticing thatP [E ∩ E ′] ≥ 1− 2δ finishes the proof of Part 1.

Proof of Part 2. First, let

t′ = C ·max

(

σ2

ǫ2µ2
,

1

ǫ|µ|

)(

log
1

ǫ|µ| + log
2

δ

)

. (3.23)
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whereC is as defined in Part 1. Then using the definition of expectation

E[T ] =

∞
∑

t=1

t · P [T = t] (3.24)

=

t′+1
∑

t=1

t · P (T = t) +

∞
∑

t=t′+2

t · P [T = t] (3.25)

≤ 2t′ +
∞
∑

t=t′+2

t · P [T = t] , (3.26)

where we used
∑t′+1

t=1 t · P (T = t) ≤ (t′ + 1)
∑t′+1

t=1 P (T = t) ≤ t′ + 1 ≤ 2t′, where we

assumed, without the loss of generality, thatt′ ≥ 1.

To bound the second term in (3.26), we recall that fort ≥ t′ whenever the confidence

intervals at timet hold, the algorithm is guaranteed to stop aftert samples. Hence, if the

algorithm has not stopped aftert > t′ samples, all confidence intervals between timet′ and

t − 1 must have failed. Since we can bound this probability by the probability of at least

one of the confidence intervals at timet−1 failing, it follows thatP [T = t] ≤ 2dt−1. Since

dt−1 = cδ(t − 1)−p, it follows that

E[T ] ≤ 2t′ +

∞
∑

t=t′+2

t · P [T = t] (3.27)

≤ 2t′ +
∞
∑

t=t′+2

2c′δ(t− 1)−p+1 (3.28)

≤ 2t′ + C ′ (3.29)

≤ C ′′t′ (3.30)

whenp > 2. Note that the same result can be obtained forp > 1, but we have chosen this

argument for simplicity.

Proof of Part 3. LetF be the event that the stopping rule fails to produce an estimate with

relative errorǫ,

F = {|µ̂− µ| ≥ ǫ|µ|}

and letE be the event that the confidence intervalsct do not fail as before (cf. (3.18)).

First, we decompose the failure probability asP [F ] = P [F|E ] P [E ] + P
[

F|E
]

P
[

E
]

. By

construction,P
[

E
]

≤ δ. Then using the trivial boundsP [E ] ≤ 1 andP
[

F|E
]

≤ 1 we

obtainP [F ] ≤ P [F|E ] + δ. We now argue thatP [F|E ] = 0.
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It remains to be shown that̂µ is an (ǫ, δ)-approximation ofµ. So assume that the

algorithm has terminated afterT samples. (Notice that he algorithm stops with probability

one since by Part 2,E[T ] < +∞.) Combining the definition of eventE with the first part

of Inequality (3.16) and the definition of̂µ leads to

|µ̂| = 1/2 ·
[

(1 + ǫ)max
s≤T

(|Xs| − cs) + (1− ǫ)min
s≤T

(|Xs|+ cs)

]

≥ (1− ǫ)min
s≤T

(

|Xs|+ cs

)

≥ (1− ǫ)|µ| (3.31)

and

|µ̂| = 1/2 ·
[

(1 + ǫ)max
s≤T

(|Xs| − cs) + (1− ǫ)min
s≤T

(|Xs|+ cs)

]

≤ (1 + ǫ)min
s≤T

(

|Xs| − cs

)

≤ (1 + ǫ)|µ|. (3.32)

Inequalities (3.31) and (3.32) hold due to the fact that a confidence interval onXs is also

a confidence interval on|Xs| with equal or greater confidence. Finally, the definition of

E and the second part of Inequality (3.16) together implysgn(XT ) = sgn(µ). Hence,

|µ̂− µ| ≤ ǫ|µ| and therefore,P [F|E ] = 0 and henceP [F ] = P [|µ̂− µ| ≥ ǫ|µ|] ≤ δ.

3.4 Effect of Range

While our analysis of EBStop is limited to the case ofXi with range 1, extending this result

to random variables with rangeR is straightforward.

3.4.1 The reduction approach

We begin by showing how an(ǫ, δ)-stopping rule for random variables with range1 and a

matching upper bound on its expected stopping time can be extended to random variables

with rangeR. LetS be an(ǫ, δ)-stopping rule for random variables with range 1, letX be

distributed with rangeR, and letX ′ = X/R. Now, suppose stopping ruleS ′ takesX as

input, runs stopping ruleS onX ′ to obtainµ̂, and returnsRµ̂. Then it is straightforward to

show thatRµ̂ is an(ǫ, δ)-approximation ofX. Hence,S ′ is an(ǫ, δ)-stopping rule.

To see how an upper bound on the expected stopping time ofS ′ can be obtained from

an upper bound on the expected stopping time ofS, let T (ǫ, δ,X) be the stopping time of

S onX and letn be a function that satisfies

E[T (ǫ, δ,X)] ≤ n(ǫ, δ, µ, σ2).
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Then it follows that ifT ′(ǫ, δ,X) is the stopping time ofS ′ on X, whereE[X] = µ and

V[X] = σ2, then

E[T ′(ǫ, δ,X)] ≤ n(ǫ, δ, µ/R, σ2/R2).

We will refer to this method of extending a stopping rule to random variables with rangeR

as thereductionapproach.

3.4.2 Upper bounds

We now give upper bounds on the expected number of samples required by the EBStop and

NAS algorithms required to find an(ǫ, δ)-approximation of a random variable with rangeR

using the reduction approach. It should be noted that both algorithms can be run directly on

random variables with rangeR, i.e. without resorting to a reduction. It should be clear that

any run of any of these unmodified algorithms stops at the sametime and returns the same

value than running the algorithms obtained with the reduction approach described above.

Hence, it follows from Theorem 2 that EBStop can be used to findan(ǫ, δ)-approximation

of a random variable with rangeR using an expected number of samples no greater than

C ·max

(

σ2

ǫ2µ2
,

R

ǫ|µ|

)(

log
R

ǫ|µ| + log
3

δ

)

for some universal constantC. Similarly, the NAS algorithm can be used to find and(ǫ, δ)-

approximation of a random variable with rangeR using an expected number of samples no

greater than

C ′ · R2

µ2ǫ2
·
(

log
R

ǫ|µ| + log
2

δ

)

for some universal constantC ′.

3.4.3 Lower bound

Since the lower bound of Dagum et al. does not take the range into account we extend

their result to the case of random variables distributed in[0, R]. The definition of universal

stopping rules to random variables with range[0, R] is trivial and hence the formal definition

is omitted.

Theorem 3. LetS be a universal(ǫ, δ)-stopping rule for distributions supported on[0, R].

Pick any(ǫ, δ) ∈ (0, 1)2 and any distributionD supported on[0, R] whose mean is positive.

LetN(ǫ,δ) be the time whenS stops on this problem with parameters(ǫ, δ). Then

E[N(ǫ,δ)] ≥ c ·max

(

σ2

ǫ2µ2
,

R

ǫµ

)

log
2

δ
, (3.33)
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whereµ is the mean ofD andσ2 is its variance, andc > 0 is a constant that is independent

of S, D, ǫ, andδ.

Note that constantc can be chosen to be the same as in Equation (1).

Proof. For a random variableX with finite variance letµX be its mean andσ2
X be its

variance.

Let S be a universal(ǫ, δ)-stopping rule for distributions supported on[0, R]. Consider

a stopping ruleS ′ constructed fromS as follows: S ′ works for distributions supported

on [0, 1]. WhenS ′ works with Z supported on[0, 1], it runsS on X = ZR to obtain

an estimatêµ(ǫ, δ,X). Clearly, µ̂(ǫ, δ,X)/R is an (ǫ, δ)-approximation ofµZ . Hence,

S ′ is a universal(ǫ, δ)-stopping rule for distributions supported on[0, 1]. Let N ′(ǫ, δ, Z)

be the number of samples consumed byS ′ on X. ThenN ′(ǫ, δ, Z) = N(ǫ, δ, ZR) by

construction, whereN(ǫ, δ,X) is the time whenS stops when it is run with parametersǫ,

δ on iid copies ofX.

Now, let us fix(ǫ, δ) ∈ (0, 1)2 andX ∼ D, whereX is a distribution supported on

[0, R]. DefineZ = X/R. HenceN(ǫ, δ,X) = N ′(ǫ, δ, Z). By Theorem 1,

E[N ′(ǫ, δ, Z)] ≥ c max

(

σ2
Z

ǫ2µ2
Z

,
1

ǫµZ

)

log
2

δ
.

UsingµZ = µX/R andσ2
Z = σ2

X/R2 we get the desired lower bound.

Theorem 3 applies only to random variables distributed in[0, R], however, it follows

trivially that the same lower bound applies to stopping rules that work on random variables

with rangeR. Hence, EBStop is at most a logarithmic term away from achieving the optimal

expected stopping time.
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Chapter 4

Batch Sampling

In this chapter, we present a version of the EBStop algorithmthat performs batch sampling

and show that with a geometric sampling schedule thelog 1
ǫ|µ| term in the expected number

of samples taken by EBStop is reduced tolog log 1
ǫ|µ| . Furthermore, we introduce a new

technique that allows us to test the stopping condition after each sample while maintaining

the benefits of batch sampling.

4.1 Batch Sampling

The motivation behind batch sampling comes from the fact that checking the stopping cri-

terion after each sample is wasteful when EBStop is far from stopping. To see why this is

true, consider what happens when EBStop checks the stoppingcriterion aftert samples, but

cannot stop. The algorithm must construct a1 − dt confidence interval forµ, and in order

to guarantee that all confidence intervals hold with probability at leastδ, we require that
∑∞

t=1 dt ≤ δ. Due to this constraint, checking the stopping condition attime t reduces the

mass given tods for s > t, which in turn makes the confidence intervalscs for s > t wider,

and from Equation (3.17) it is clear that making the confidence intervals wider will push the

stopping time back. Hence, EBStop can be made more efficient by reducing the number of

times it checks the stopping criterion while it is far from stopping.

Pseudocode for a variant of EBStop that performs batch sampling is shown as Algo-

rithm 7. The key change from EBStop is the addition of a sampling schedule in the form of

a sequence of positive integers{tk}. The sampling schedule represents the times at which

the stopping condition is checked. After drawingtk samples, Algorithm 7 constructs a

1− dk confidence interval forµ and checks the stopping criterion.

Whenever,k ≪ tk, it should be possible for Algorithm 7 to stop much earlier than

EBStop. One possible sampling schedule, known asarithmeticsampling, is given bytk =
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Algorithm 7 EBStop with batch sampling
t← 1
l(t)← 0
u(t)←∞
k ← 0
ObtainX1

while (1 + ǫ)l(t) < (1− ǫ)u(t) do
while t ≤ tk+1 do

t← t + 1
ObtainXt

end while
k ← k + 1

ck =

√

2Vt log (3/dk)
t + 3R log (3/dk)

t

l(t)←max(l(t− 1), |X t| − ck)
u(t)←min(u(t− 1), |X t|+ ck)

end while
return sgn(Xt) · 1/2· [(1 + ǫ)l(t) + (1− ǫ)u(t)]

m · k for somem > 1. To see how such a strategy will impact the stopping time, consider

checking the stopping condition after having takent samples using arithmetic sampling.

Since aftert samples at mostt/m confidence intervals have been constructed, the algorithm

will construct a1− d confidence interval where

d ≤ cδ

(t/m)p
=

cmpδ

tp
=

c′δ

tp
.

Hence, an arithmetic sampling strategy only results in a change to the normalizing constant

in dt, and from Equation (3.19) it is clear that the form of the upper bound on the expected

number of samples will not change.

Now, consider ageometricsampling schedule, wheretk = ⌈βk⌉ for someβ > 1. Since

under this schedule the stopping condition is checked at most logβ t times by the timet

samples have been taken, it follows that

d ≤ cδ

(logβ t)p
.

It is straightforward to show that with this value ofd, an analysis of stopping times leads to

equations of the form(log log t)/t = c instead of(log t)/t = c, as in the case of arithmetic

sampling. While we delay the proof until Section 4.3, we willshow that ifT is the stopping

time of Algorithm 7 employing a geometric sampling schedule, then there exists a universal

constantC, such that

E[T ] ≤ C max

(

σ2

ǫ2µ2
,

R

ǫ|µ|

)(

log log
R

ǫ|µ| + log
1

δ

)

. (4.1)
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4.2 Mid-interval Stopping

While batch sampling can significantly reduce the number of samples required by EBStop,

it restricts the algorithm to the sequence{tk} as the set of possible stopping times. Whentk

grows quickly withk, batch sampling leads to many unnecessary samples being taken. For

example, when employing a geometric sampling schedule withβ = 1.1, it is possible that

the stopping criterion could be satisfied after⌈βk⌉ + 1 samples, but the algorithm will not

stop until it has taken⌈βk+1⌉ samples. This can lead to as much asβ times more samples

than necessary being taken, and while this is only a constant, multiplicative increase, a

stopping rule that is able to stop at any point is desirable.

To illustrate the efficiency of the approach we are about to propose, consider modifying

a batch sampling algorithm to stop at any point through another application of the union

bound. Instead of taking samplestk + 1, tk + 2, . . . , tk+1 and then checking the stopping

condition with failure probabilitydk, one can check the stopping condition after each sam-

ple betweentk + 1 andtk+1 with failure probabilitydk/(tk+1 − tk). While this approach

leads to earlier stopping times for very smallµ andǫ, the benefits of batch sampling become

much smaller. Pseudocode for this approach is shown as Algorithm 8.

Algorithm 8 Batch EBStop with union bound anytime stopping
t← 1
l(t)← 0
u(t)←∞
k ← 0
ObtainX1

while (1 + ǫ)l(t) < (1− ǫ)u(t) do
t← t + 1
ObtainXt

if t > tk+1 then
k ← k + 1
d′t ← dk/(tk+1 − tk)

end if

ct =

√

2Vt log (3/d′t)
t +

3R log (3/d′t)
t

l(t)←max(l(t− 1), |X t| − ct)
u(t)←min(u(t− 1), |X t|+ ct)

end while
return sgn(Xt) · 1/2· [(1 + ǫ)l(t) + (1− ǫ)u(t)]

Nevertheless, it is possible to achieve anytime stopping without the use of the union

bound. The key result, due to Audibert et al., is the following variant of the empirical

Bernstein bound that holds simultaneously over an interval[1]: If t1 ≤ t2 for t1, t2 ∈ N
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andα ≥ t2/t1(≥ 1), then with probability at least1 − 3e−x/α, for all t ∈ {t1, . . . , t2} we

have

|X t − µ| ≤
√

2Vtx/t + 3x/t. (4.2)

To apply this result to batch sampling, we first solve1− 3e−x/α = 1− dk for x, resulting

in x = α log 3/dk. If we then use this value ofx and Equation (4.2) to construct confidence

intervals forµ after each sample fromtk + 1 throughtk+1, the confidence intervals will

simultaneously holdµ with probability at least1− dk. The confidence intervals can in turn

be used to check the stopping condition after each sample. Algorithm 9 incorporates this

idea into our batch sampling algorithm.

Algorithm 9 Batch EBStop with martingale-based anytime stopping
t← 1
l(t)← 0
u(t)←∞
k ← 0
ObtainX1

while (1 + ǫ)l(t) < (1− ǫ)u(t) do
t← t + 1
ObtainXt

if t > tk+1 then
k ← k + 1
α← tk+1/tk
x← α log 3/dk

end if
ct ←

√

2Vtx/t + 3Rx/t
l(t)←max(l(t− 1), |X t| − ct)
u(t)←min(u(t− 1), |X t|+ ct)

end while
return sgn(Xt) · 1/2· [(1 + ǫ)l(t) + (1− ǫ)u(t)]

To see how EBStop compares to Algorithm 8 and to Algorithm 9 wecompare the failure

probability used when evaluating the stopping criterion after ⌈βk⌉ = t samples by each of

the algorithms, denoting this probability byft. The results are presented in Table 4.2.

A geometric sampling schedule was assumed for the batch algorithms. Disregarding the

constants, Algorithm 8 usesft = 1/(t log t) which, depending on the value ofp, can be

a very minor improvement onft = 1/tp as used by EBStop. Algorithm 9, roughly uses

ft = 1/(log t)β , which is a clear improvement over both EBStop and Algorithm8.
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EBStop Algorithm 8 Algorithm 9
1
tp

1
⌈logβ t⌉p · 1

t−⌈t/β⌉

(

1
⌈logβ t⌉

)p

Table 4.1: Failure probability used to evaluate the stopping criterion aftert samples by each
algorithm.

4.3 Analysis of Batch Sampling

In this section we provide an analysis of stopping times for Algorithm 9 when following

a geometric sampling schedule, which we will refer to as EBGStop. We begin by proving

the equivalent of Lemma 3 for the type of equations that ariseunder a geometric sampling

schedule.

Lemma 4. Leta, k be positive real numbers. Ift′ is a solution to

log(a log t)

t
= k (4.3)

in terms oft, then

t′ ≤ log (a log t0)
[

k − 1
t0 log t0

] , (4.4)

wheret0 = max(1/k, e).

Proof. The proof is analogous to the proof of Lemma 3. The solution ofequation (4.3) can

be seen as the intersection point between a line and alog log curve when we rewrite it as

log(a log t) = kt. (4.5)

First, note that the slope of the line equals the slope of the tangent to the logarithmic

curve att whent log t = 1/k. The solution to this equation is bounded from above byt0 =

max(1/k, e). As in the proof of Lemma 4, the intersection of the line tangent to log(a log t)

at t ≥ t0 with the linekt is an upper bound ont′. Since the line tangent tolog(a log t) at t0

is given bylog(a log t0) + 1
t0 log t0

· (t− t0), solving log(a log t0) + 1
t0 log t0

· (t− t0) = kt

yields

t′ ≤
log (a log t0)− 1

log t0
[

k − 1
t0 log t0

] ≤ log (a log t0)
[

k − 1
t0 log t0

] . (4.6)

Theorem 4. Let X be a random variable distributed with range 1. Letµ = E[X] and

σ2 = V[X] and assumeµ 6= 0. Let T be the stopping time of Algorithm 9 onX while
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following a geometric sampling schedule (i.e.dk = cδ/kp.) Then here exists a constantC

such that

P

[

T > C ·max

(

σ2

ǫ2µ2
,

1

ǫ|µ|

)[

log log
1

ǫ|µ| + log
3

δ

]]

≤ 2δ.

Proof. The proof is analogous to the proof of Theorem 2, but with the application of

Lemma 4 in place of Lemma 3. Since Algorithm 9 differs from EBStop only in the form

of ct, following the proof of Theorem 2 until Equation (3.19), EBGStop will stop with

probability at least1− δ when
ǫ|µ|
1 + ǫ

≥ cT . (4.7)

Substitutingct with the value used in Algorithm 9, Inequality (4.7) becomes

ǫ|µ|
1 + ǫ

≥
√

2VT log(1/δK)

T
+

3log(1/δK)

T
, (4.8)

where1/δk = 3kp/(cδ) andK = ⌊logβ T ⌋ ≤ logβ T .

As before, we seek a high-probability upper bound onVt. By applying Lemma 2 with

the choicex = α log 3
cδ (logβ t)p to Vt, it follows that for allt ≥ 1, with probability at least

1− δ,

Vt ≤ σ2 + σ

√

2α log 3
cδ (logβ t)p

t
+

4α log 3
cδ (logβ t)p

3t
. (4.9)

Now letρ = max(σ2, ǫ|µ|), then if t is a solution to

3αp log
(

(

3
cδ

)
1

p log t
log β

)

t
= ρ, (4.10)

then by Lemma 4 (using3αp/ρ > e),

t ≤



1− 1

log
(

3αp
ρ

)





−1

3αp

ρ

[

log log
3αp

ρ
+

1

p
log

3

cδ
− log log β

]

(4.11)

≤ C1
3αp

ρ

[

log log
3αp

ρ
+

1

p
log

3

cδ

]

= tρ. (4.12)

We now defineE ′ to be the event that (4.9) holds for allt ≥ 1. It then follows that if the

algorithm has taken at leasttρ samples and eventE ′ holds, thenVt ≤ 3ρ = 3max(σ2, ǫ|µ|).
Hence, it follows that onE andE ′, if t ≥ tρ then

√

2Vtα log 3
cδ (logβ t)p

t
+

3α log 3
cδ (logβ t)p

t
≤

√

6ρα log 3
cδ (logβ t)p

t
+

√

3ρα log 3
cδ (logβ t)p

t

≤
(√

6 +
√

3
)

√

ρα log 3
cδ (logβ t)p

t
.
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Now consider the smallestt∗ ≥ tρ that satisfies

ǫ|µ|
1 + ǫ

≥
(√

6 +
√

3
)

√

ρα log 3
cδ (logβ t)p

t
.

As in the proof of Theorem 2, whenE and E ′ hold, t∗ ≥ T . One final application of

Lemma 4 gives

t∗ ≤ ρ(1 + ǫ)2(
√

6 +
√

3)2αp

ǫ2µ2

[

log log
ρ(1 + ǫ)2(

√
6 +
√

3)αp

ǫ2µ2
+

1

p
log

3

cδ

]

.

Again, we can obtain the desired form of the bound by absorbing the additive constant into

the multiplicative constant. Noticing thatE andE ′ hold simultaneously with probability at

least1− 2δ finishes the proof.

While we do not state them here, a bound on the expected stopping time and a proof of

the(ǫ, δ)-approximation property can be obtained with arguments nearly identical to those

of Theorem 2. It then follows from Theorem 4 that ifT is the stopping time of EBGStop

when it is used to find an(ǫ, δ)-approximation of a random variable with rangeR using the

reduction approach of Section 3.4, then there exists a universal constantC such that

E[T ] ≤ C ·max

(

σ2

ǫ2µ2
,

R

ǫ|µ|

)(

log log
R

ǫ|µ| + log
3

δ

)

.

As with the rest of our upper bounds, the same result can be proved about EBGStop directly,

but we use the reduction approach for simplicity.
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Chapter 5

Experimental Results

In this chapter we explore the properties of the stopping rules we have presented through a

number of simulated experiments.

5.1 Experimental Setup

In addition to EBStop and EBGStop, we evaluateAA, NAS, and geometric NAS. In order

to make the comparisons fair we set equivalent parameters indifferent algorithms to the

same value. In the case of EBGStop and the geometric version of NAS, we setβ, the

factor by which both algorithms grow intervals, to 1.5 for both algorithms. Domingo et

al. reported this value to work best for the NAS algorithm in their experiments [7]. Since

with the exception ofAA, all of the algorithms in our comparison defined a sequence of

confidence intervals{ct}, we fixed the underlyingdt sequence to

dt =
δ

t(t + 1)

for all algorithms. This value is the default choice used by the NAS algorithm. Since we

have found that EBGStop generally performs better for othersettings of these parameters,

we also include results for EBGStop with our default choicesdk = c/kp, p = 1.1, and

β = 1.1. We denote EBGStop with these parameter choice by EBGStop*.

5.2 Effect of Variance

The primary reason for developing EBStop was the need for an algorithm that is able to take

advantage of variance likeAA without the restriction to nonnegative random variables. In

this section we compare how well the various stopping rules are able to exploit variance.

Let U(a, b,m) denote the average ofm Uniform(a, b) random variables. Then the

expected value and variance ofU(a, b,m) are(a + b)/2 and(b− a)2/(12m) respectively.
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Since the aim of this experiment is to study the effect of the variance on stopping times,

we fix a to 0 andb to 1, and varym to obtain a number of random variables with a fixed

mean but different variances. We ran each stopping rule 100 times onU(0, 1,m) random

variables form = 1, 5, 10, 50, 100, 1000, ǫ = 0.01 and δ = 0.1. Figure 5.1 shows the

average number of samples taken by each algorithm for each value ofm. Logarithmic scale

was used on the y-axis for clarity.
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Figure 5.1: Average number of samples required to find(0.01, 0.1)-approximations of
U(0, 1,m) random variables form = 1, 5, 10, 50, 100, 1000. The results are averaged
over 100 runs.

Figure 5.1 suggests that variance has no effect on the expected stopping time of NAS

and geometric NAS algorithms. This is not surprising as the sample variance does not

appear in the stopping condition for either algorithm.

Unlike the NAS algorithms, all variants of EBStop along withtheAA algorithm are

able to take advantage of variance information, but the exact effect of the variance differs

betweenAA and EBStop. The behaviour of theAA algorithm seems to fall into two modes.

Form = 1, 5, 10, the algorithm requires fewer samples as the variance decreases with larger
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m. However, form = 50, 100, 100, theAA algorithm seems to require the same number

of samples for all three random variables, even though the variance ofU(0, 1, 1000) is

20 times smaller than the varianceU(0, 1, 50). On the other hand, all variants of EBStop

require fewer and fewer samples as the variance decreases, at least for the distributions that

we tested EBStop on.

However, the theory predicts that both algorithms have two modes: Whenσ2 decreases

and it is abovecǫµ for some constantc, then the number of samples decreases withσ2.

However, whenσ2 decreases belowcǫµ, no further decrease of the required number of

samples will be experienced. Herec is a constant that depends on the algorithm. ForAA it

seems that this constant is fairly large, while for EBStop and its variants it is much smaller.

(The fact that in the boundsσ2 is compared directly toǫµ, i.e., that the bound depends on

max(σ2, ǫµ) instead ofmax(σ2, cǫµ) is a side-effect of the way the analysis is done.)

In the case of theAA algorithm, the constant’s value is determined by the desired

accuracy of the presampling step. In the case of EBStop and its variants the constantc is

determined by how the two terms in the empirical Bernstein bound interact with each other.

In order to understand this, recall that these algorithms can be expected to stop when

1 '

√

(

2σ2

ǫ2µ2

)

log(1/δt)

t
+

(

3R

ǫµ

)

log(1/δt)

t
(5.1)

(cf. Equation (3.19)), assuming that this stopping timet∗ is large enough so thatVt∗ ≈ σ2.

Whenσ → 0 the second term becomes dominating and the dependence oft∗ on σ will be

negligible. In particular,log(1/δt)/t / ǫµ/(3R) must be satisfied before Inequality (5.1)

will be satisfied and this puts a lower bound ont∗. This lower bound is independent ofσ.

Further, for small values ofσ the actual cutoff point will be arbitrarily close to this lower

bound. Hence, lowering the value ofσ does not change lead to an improvement in the

performance. This mode of behaviour is seen in Figure 5.1 form = 50, 100, 1000. Even

though the differences in variance for these values ofm are huge, the stopping times are

similar. However, whenσ has a large enough value, the first term dominates. This mode

of behaviour can be seen in Figure 5.1 form = 1, 5, 10. While the differences in variances

are much smaller than betweenm = 50, 100, 1000, whenm = 10, almost an order of

magnitude fewer samples are required to stop than whenm = 1.
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5.3 General Efficiency

5.3.1 Low Variance

We again test the stopping rules onU(a, b,m) random variables. However, instead of

keeping the mean fixed and studying the effect of the variance, we fix the variance and vary

the mean. We fixm at 10 and varya andb to obtain the valuesµ = 0.9, 0.7, 0.5, 0.3, 0.1

while b − a is 0.2. We used the valuesǫ = 0.1 andδ = 0.1 in this set of experiments.

The variance is small enough that EBStop, its variants, andAA should take a number of

samples in the order of1/(ǫµ). We also expect both variants of the NAS algorithm to take

a number of samples on the order of1/(ǫ2µ2). Figure 5.2 shows the average number of

samples taken by each algorithm for each value ofµ. We again use logarithmic scale on the

y-axis for clarity.
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Figure 5.2: Average number of samples required to find(0.1, 0.1)-approximations of
U(a, b, 10) random variables with varying means. The results are averaged over 100 runs.

Figure 5.2 shows that both variants of the NAS algorithm quickly fall behind the other

algorithms asµ decreases. It seems that, as the theory suggests, theAA algorithm and
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all variants of EBStop require1/µ times fewer samples than NAS. While the comparison

has been done on nonnegative random variables in order to includeAA, it should be em-

phasized that on signed random variables EBStop can be drastically more efficient than the

NAS algorithm.

5.3.2 High Variance

While the previous experiment showed that both EBStop and theAA algorithm can exploit

low-variance situations to require on the order of1/ǫ|µ| samples to stop, how well do they

perform when the variance is large? To examine this scenario, we include a comparison on

Bernoulli random variables. Since Bernoulli random variables have maximal variance of

all bounded random variables, the advantage of variance estimation should be diminished.

Nevertheless, ifµ andσ2 are the mean and variance of a Bernoulli random variable, then

σ2 = µ(1− µ). Hence, whenµ is small, EBStop andAA should require on the order of

max

(

µ(1− µ)

ǫ2µ2
,

1

ǫµ

)

= max

(

1− µ

ǫ2µ
,

1

ǫµ

)

≈ 1

ǫ2µ
(5.2)

samples to stop.

Figure 5.3 shows the average number of samples required by each algorithm to find

a (0.1, 0.1)-approximation of a number of Bernoulli random variables. As predicted by

Equation (5.2), whenµ is small,AA and all variants of EBStop seem to require1/µ times

fewer samples than NAS. Somewhat surprisingly, the geometric version of NAS required

fewer samples than even the tuned version of EBGStop forµ = 0.9 andµ = 0.5, but

not for µ = 0.99. This is likely happening because for intermediate values of µ, such as

0.9 and 0.5, the square root and the linear terms in the empirical Bernstein bound are of

approximately equal magnitude when EBStop is close to stopping. This has the effect of

roughly doubling the magnitude of the constants associatedwith the bound and slightly

increasing the required number of samples.

It is also interesting to note that all variants of EBStop outperformed theAA algorithm

in both experiments where we varied the mean, even though thebounds on the expected

number of samples taken by EBStop possess an extra logarithmic term. This term grows

without bound asǫ or µ approach0, hence, on nonnegative random variables, theAA can

be expected to outperform EBStop when this is the case. However, we have not seen this in

our experiments.
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Figure 5.3: Average number of samples required to find(0.1, 0.1)-approximations of
Bernoulli random variables with varying means. The resultsare averaged over 100 runs.

5.4 Coverage

In Chapter 2, we estimated the coverage of a stopping rule that uses the Central Limit

Theorem in order to determine whether it is smaller or lager than1 − δ. While all of the

stopping rules we evaluated in this chapter guarantee that their coverage is at least1−δ, we

calculated the sample coverage achieved by the stopping rules evaluated in this chapter on

each of the three experiments described above. Perhaps somewhat surprisingly, there was

not a single occurrence of a stopping rule returning an estimate with relative error greater

thanǫ. Since each stopping rule was run 100 times on 17 different random variables, this

suggests that these stopping rules are extremely conservative.

Depending on the motivation behind using a stopping rule, the overly conservative na-

ture of such stopping rules can be seen as both an advantage and a disadvantage. If it is

important to guarantee that the approximations are withinǫ relative error with probability

at least1− δ, the stopping rules in this chapter are a good choice. If, on the other hand, one
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is willing to tolerate coverage smaller than1−δ, stopping rules based on asymptotic results

will be much more efficient, though it is clear that efficiencyalone cannot be the goal.

37



Chapter 6

Absolute Error

In this chapter we consider the simpler but related problem of estimating the mean of a

random variable up to a given absolute error. As before, letX1,X2,X3, . . . be iid random

variables with meanµ. If a stopping rule returns an estimateµ̂ that satisfies

P [|µ̂− µ| ≤ ǫ] ≥ 1− δ, (6.1)

then we refer tôµ as anabsolute(ǫ, δ)-approximation. We use the techniques used in the de-

velopment of EBStop to derive a novel algorithm for finding absolute(ǫ, δ)-approximations

and provide both a theoretical and an empirical analysis of its properties.

6.1 Non-adaptive approach

The problem of finding an absolute(ǫ, δ)-approximation is inherently easier than the prob-

lem of finding an(ǫ, δ)-approximation. Since the number of samples necessary to find

an (ǫ, δ)-approximation depends on the meanµ, any stopping rule that finds an(ǫ, δ)-

approximation must beadaptivein the sense that its stopping condition must depend on

the samples. On the other hand, stopping rules for finding absolute (ǫ, δ)-approximations

do not have to make use of the samples in the stopping condition.

To give an example of a non-adaptive approach, we recall thatif Xi are bounded with

rangeR, then from Hoeffding’s inequality

P
[∣

∣Xn − µ
∣

∣ > ǫ
]

≤ 2e−2nǫ2/R2

. (6.2)

By solving for the smallestn for which the right-hand side of Inequality (6.2) is greater

thanδ we get that if

n >
R2 log 2

δ

2ǫ2
= nǫ, (6.3)
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thenP
[∣

∣Xn − µ
∣

∣ > ǫ
]

≤ δ. Hence, it is enough to take the average ofnǫ samples in order

to find an absolute(ǫ, δ)-approximation.

While this simple, non-adaptive approach works, it is not difficult to see that it can

be improved upon by an adaptive one that makes use of varianceinformation. In particu-

lar, it should be possible to reduce the dependence of the number of samples onR2 to a

dependence onR andσ2. This is indeed our goal here.

6.2 Empirical Bernstein Stopping for Absolute Error

In this section we use the methods developed in Chapters 3 and4 to obtain an efficient

stopping rule for finding absolute(ǫ, δ)-approximations of bounded random variables.

6.2.1 The Algorithm

Following the development of EBStop, we rely on a sequence{ct} such that the event

E = {
∣

∣Xt − µ
∣

∣ ≤ ct,∀t ∈ N
+}

occurs with probability at least1 − δ. In particular, we make the choice of usingct based

on batch sampling with a geometric sampling schedule as defined in Section 4.2. Having

definedct, it is trivial to construct a stopping rule for finding absolute (ǫ, δ)-approximations.

One can simply stop as soon asct ≤ ǫ and returnX t as the estimate. We will refer to this

algorithm as EBAStop and present pseudocode for it as Algorithm 10.

Algorithm 10 Algorithm EBAStop.
c1 ←∞
t← 1
k ← 0
ObtainX1

while ct > ǫ do
t← t + 1
ObtainXt

if t > tk+1 then
k ← k + 1
α← tk/tk+1

x← α log 3/dk

end if
ct ←

√

2Vtx/t + 3Rx/t
end while
return Xt

We need to show that EBAStop terminates with probability1 and returns an abso-

lute (ǫ, δ)-approximation upon termination. The verify the first property, we recall that
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limt→∞ ct = 0. Since the algorithm terminates whenct ≤ ǫ, we see that the stopping

condition will be satisfied for large-enought. Now suppose that the stopping condition is

satisfied and eventE holds. Then
∣

∣Xt − µ
∣

∣ ≤ ct and ct ≤ ǫ, henceXt is an absolute

(ǫ, δ)-approximation ofµ.

6.2.2 Analysis

As we have done with the other algorithms we have proposed, wederive a high-probability

upper bound on the stopping time of EBAStop.

Theorem 5. Let X be a random variable distributed with range 1. Letµ = E[X] and

σ2 = V[X] and assumeµ > 0. Let T be the stopping time of EBAStop onX while

following a geometric sampling schedule. Then here exists aconstantC such that

P

[

T > C ·max

(

σ2

ǫ2
,
1

ǫ

)[

log log
1

ǫ
+ log

3

δ

]]

≤ 2δ.

Proof. The proof is analogous to the proof of Theorem 4. EBAStop stops whencT ≤ ǫ, or

if we substitute the full expression forct, when

√

2αVT log(1/δK)

T
+

3αlog(1/δK)

T
≤ ǫ, (6.4)

where1/δk = 3kp/(cδ) andK = ⌊logβ T ⌋ ≤ logβ T . Now, as we have done in the proof

of Theorem 4, we seek a a high-probability upper bound onVt. By applying Lemma 2 with

the choicex = α log 3
cδ (logβ t)p to Vt we obtain that for allt ≥ 1, with probability at least

1− δ,

Vt ≤ σ2 +
√

σ2

√

√

√

√

2αp log
(

(

3
cδ

)
1

p log t
log β

)

t
+









√

√

√

√

4αp log
(

(

3
cδ

)
1

p log t
log β

)

3t









2

. (6.5)

Let ρ = max(σ2, ǫ), then if t is a solution to

3αp log
(

(

3
cδ

)
1

p log t
log β

)

t
= ρ, (6.6)

by Lemma 4

t ≤ 3αp

ρ

[

log log
3αp

ρ
+

1

p
log

3

cδ

]

= tρ. (6.7)

We now defineE ′ to be the event that (6.8) holds for allt ≥ 1. It then follows that if

EBAStop has taken at leasttρ samples and eventE ′ holds, thenVt ≤ 3ρ = 3max(σ2, ǫ).
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It then follows that whenE andE ′ hold, andt ≥ tρ, then
√

√

√

√

2αVtp log
(

(

3
cδ

)
1

p log t
log β

)

t
+

3αp log
(

(

3
cδ

)
1

p log t
log β

)

t
(6.8)

≤

√

√

√

√

6ραp log
(

(

3
cδ

)
1

p log t
log β

)

t
+

√

√

√

√

3ραp log
(

(

3
cδ

)
1

p log t
log β

)

t
(6.9)

≤
(√

6 +
√

3
)

√

√

√

√

ραp log
(

(

3
cδ

)
1

p log t
log β

)

t
. (6.10)

Now consider the smallestt∗ ≥ tρ that satisfies

ǫ ≥
(√

6 +
√

3
)

√

ρα log 3
cδ (logβ t)p

t
.

As in the proof of Theorem 2, whenE andE ′ hold, t∗ ≥ T . We can apply Lemma 4 one

more time to obtain

t∗ ≤ ρ(
√

6 +
√

3)2αp

ǫ2

[

log log
ρ(
√

6 +
√

3)2αp

ǫ2
+

1

p
log

3

cδ

]

. (6.11)

The desired form of the bound can be obtained by absorbing theadditive constant into

the multiplicative constant whenǫ and δ are small. Finally, noticing thatE andE ′ hold

simultaneously with probability at least1− 2δ finishes the proof.

We can then use Theorem 5 and part b of Theorem 2 to obtain that there exists a uni-

versal constantC such that

E[T ] ≤ C ·max(
σ2

ǫ2
,
1

ǫ
)

[

log log
1

ǫ
+ log

3

cδ

]

.

Hence, if we disregard the logarithmic terms, the adaptive approach used in EBAStop re-

quires on the order ofmax
(

σ2

ǫ2
, 1

ǫ

)

samples, while the non-adaptive approach requires on

the order of1ǫ2 samples. This implies that when the variance is small, the adaptive approach

should be able to stop substantially earlier.

Nevertheless, thelog log 1
ǫ term can be made arbitrarily large by using a sufficiently

small value ofǫ. We can get a general idea of how smallǫ has to be for this term to become

non-negligible by considering the case of a Bernoulli random variable with meanµ. This

random variable has varianceµ(1−µ) and it is the largest variance achievable by a random

variable with meanµ and range 1. If we consider the logarithmic term to be non-negligible

when
σ2

ǫ2
log log

1

ǫ
>

1

ǫ2
,
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or equivalently when

log log
1

ǫ
>

1

σ2
, (6.12)

we can solve for the smallestǫ for which this is true. In the Bernoulli case, Inequality (6.12)

is satisfied when

ǫ <

√

√

√

√

1

exp
(

exp
(

1
µ(1−µ)

)) . (6.13)

By plugging in values ofµ into Inequality (6.13) we get that the logarithmic term becomes

non-negligible whenǫ < 10−12 for µ = 0.5 and whenǫ < 10−113 for µ = 0.2. Hence,ǫ

would have to be really small for the logarithmic term to be sufficiently large.

As in the case of relative error, we can use the reduction approach of Section 3.4 to

obtain an upper bound on the expected stopping time of EBAStop when used on random

variables with rangeR. It is easy to show that ifT is the stopping time of EBAStop in this

case, then

E[T ] ≤ C ·max

(

σ2

ǫ2
,
R

ǫ

)[

log log
R

ǫ
+ log

3

δ

]

for some universal constantC.

6.2.3 Mixture of Stopping Rules

Based on our analysis it is clear that the Hoeffding-based stopping rule and our adaptive ap-

proach each have their own merits. When the variance is smallcompared toǫ, the adaptive

approach should only require on the order of1
ǫ samples. On the other hand, whenǫ is really

small, the Hoeffding-based approach should be able to stop earlier than EBAstop because

the log log term in the bound on the expected stopping time of EBAStop will be large.

How can we decide which algorithm to use in practice? Insteadof trying to decide

which stopping rule is likely to stop first when faced with a particular scenario we can

combine both stopping rules into a single stopping rule. LetTHoeff (δ), andTEB(δ) be the

number of samples required to find an absolute(ǫ, δ)-approximation of a random variable

X by the Hoeffding-based and adaptive methods respectively.The mixture stopping rule

stops aftermin(THoeff (δ/2), TEB(δ/2)) samples. The stopping time of this rule should

be a constant worse thanmin(THoeff (δ), TEB(δ)).

6.3 Experimental Results

Theorem 5 suggests that our adaptive approach should require significantly fewer samples

than the non-adaptive approach when the variance is small and that the two approaches
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should perform comparably when the variance is large. We compared the average number

of samples required by each method to find an absolute(ǫ, δ)-approximations of random

variables with a fixed mean but different variances. We ran each stopping rule100 times

on U(0, 1,m) random variables form = 1, 5, 10, 50, 100, 1000, ǫ = 0.01 andδ = 0.01.

Figure 6.1 shows the average number of samples taken by each algorithm for each value of

m. Hoeffdingdenotes the non-adaptive approach,EBAStopdenotes our adaptive approach,

while Mixture denotes the combination of the two approaches. Logarithmicscale was used

on the y-axis for clarity.
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Figure 6.1: Comparison of absolute(ǫ, δ)-stopping rules on averages ofm Uniform(0,1)
random variables form = 1, 5, 10, 50, 100, 1000.

As expected, the adaptive approach requires fewer samples to stop as the variance

decreases. The variance ofU(0, 1, 1) is the largest of the 6 random variables, and the

Hoeffding-based approach actually manages to stop earlierthan the adaptive approach.

However, the adaptive approach stops much earlier onU(0, 1, 5) and U(0, 1, 10). The

reduction in the stopping times is much smaller form = 50, 100, 1000, but this is not sur-

prising because for these random variables our algorithm should require on the order of1/ǫ

43



samples, reducing the benefit of variance estimation. The mixture of the two stopping rules

performs almost as well as the better of the two rules in all cases.

In the second experiment, we compared the stopping times of the stopping rules when

finding an absolute(ǫ, δ)-approximation of aU(0, 1, 3) random variable for different values

of ǫ. The results are resented in Figure 6.2. For large values ofǫ, the Hoeffding-based

approach stops much earlier than our adaptive rule because the overhead of being adaptive

is too high when a small number of samples is sufficient. Whenǫ is small, our adaptive

rule stops earlier by exploiting the small variance of theU(0, 1, 3) random variable. As

expected, in both cases, the mixture of the two stopping rules requires only a few more

samples than the best stopping rule.
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Figure 6.2: Comparison of absolute(ǫ, δ)-stopping rules on aU(0, 1, 3) random variable
for different values ofǫ.

6.4 Conclusions

We have presented an adaptive algorithm for finding absolute(ǫ, δ)-approximations of

bounded random variables. While the algorithm is able to stop much earlier than a non-
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adaptive approach when the variance is small, its expected stopping time asǫ goes to0

becomes larger than that of the non-adaptive approach. We showed that a mixture of the

two approaches may be a good alternative to the Hoeffding-based approach in practice as it

will never stop much later than the Hoeffding-based stopping rule but can, in some settings,

stop much earlier.
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Chapter 7

Conclusion

7.1 Summary of Contributions

The main contribution of this thesis is the introduction of the EBStop algorithm - a near-

optimal stopping rule for finding(ǫ, δ)-approximations of bounded random variables. The

key advantage over previous approaches is the use of empirical Bernstein bounds, which

allow our algorithm to stop much earlier than its competitors when the variance is small.

We also show how a version of the empirical Bernstein bound that holds over an interval

can be used to make our algorithm much more efficient by grouping deviation bounds. The

resulting algorithm achieves a better bound on expected stopping time and performs well in

practice.

Finally, we applied our techniques to obtain a novel algorithm for finding absolute

(ǫ, δ)-approximations. While our new algorithm required much fewer samples than the

standard approach based on Hoeffding’s inequality when thevariance is small, it performed

poorly in other settings. We then showed that a combination of these two approaches into a

mixture stopping rule yields an algorithm that performs almost as well as the better of the

two approaches in all situations.

7.2 Future Work

While EBGStop is currently the most efficient stopping rule for finding(ǫ, δ)-approximations

of bounded random variables there is considerable room for improvement.

The first interesting question is whether the lower bound dueto Dagum et al. is achiev-

able in the case of bounded random variables. EBGStop comes to within a log log term

involving ǫ and |µ| of achieving this lower bound. This term is the result of applying a

union bound over time, and one possibility for eliminating it is by assigning the failure
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probability given to the confidence interval aftert samples adaptively. Since knowingµ

andσ2 in advance would allow us to determine the optimal stopping time, the hope is that

using estimates ofµ andσ2 to adaptively construct the sequence of confidence intervals

would allow us to come close to achieving the optimal stopping time.

Another important direction for future research is improving the coverage of nonpara-

metric stopping rules. As we have already noted in Section 2.3, all of the existing(ǫ, δ)-

stopping rules are extremely conservative and come nowherenear achieving coverage of

1 − δ. Some of the inefficiency stems from the use of the union bound. When EBStop

is close to stopping, the confidence interval used in evaluating the stopping condition is

much more conservative than1− δ. Constructing the sequence of failure probabilities{dt}
adaptively or avoiding the use of the union bound over time all together are two promising

approaches. Further improvements of the coverage could be obtained by developing better

bounds to be used in place of the empirical Bernstein bound.
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Chapter 8

Appendix

8.1 Probability Inequalities

Inequalities that bound the probability that a sample mean will deviate from its expected

value by more than some valueǫ are an important tool for developing efficient stopping

algorithms. This appendix reviews the two bounds used in this thesis.

8.1.1 Hoeffding’s Inequality

Let X1, . . . ,Xt real-valuedi.i.d. random variables with rangeR and, meanµ, and let

Xt = 1/t
∑t

i=1 Xi. Hoeffding’s inequality [10] states that for anyǫ > 0

P
[

Xt − µ > ǫ
]

≤ e−2tǫ2/R2

. (8.1)

One can use Hoeffding’s inequality to obtain that for anyδ ∈ (0, 1), with probability at

least1− δ

|X t − µ| ≤ R

√

log(2/δ)

2t
. (8.2)

8.1.2 Empirical Bernstein Bounds

Theempirical Bernstein bound[2] states that with probability at least1− δ

|Xt − µ| ≤
√

2Vt log (3/δ)

t
+

3R log (3/δ)

t
, (8.3)

whereVt is the empirical variance ofX1, . . . ,Xt: Vt = 1
t

∑t
i=1(Xi − Xt)

2. Note that

the square root term in Inequality (8.3) is very similar to square root term in Hoeffding’s

bound, except in that the empirical standard deviation appears in Inequality (8.3) instead

of the rangeR. The additional linear term appearing in the empirical Bernstein bound is

necessary because the empirical standard deviation can be 0.
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