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Abstract

The importance of sampling methods in machine learningo@mg due to an ever-increasing
number of datasets containing millions of records of bialaly medical, or other types of
data. Such datasets are often beyond the reach of many stamdahine learning tech-
niques because of high computational or space complexitigeoilgorithms. When mak-
ing even a single pass through the data is prohibitive, Sagpnphay offer a good solution.
However, whenever sampling is employed, it is necessargterchine when to stop sam-
pling in a principled manner. Taking too few samples maylteswan algorithm that is not
theoretically sound, while taking too many may waste vdlia@omputational resources.
We use the problem of estimating the mean of a bounded rand@oiabie up to a given
relative error to show how the recently introduced empimernstein bounds can be used
to develop efficient stopping rules. We propose several neppig rules, prove bounds on
their expected stopping times, and demonstrate experaihethat the new rules can stop

much earlier than the best competitors while offering thmesarobabilistic guarantees.
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Chapter 1

Introduction

Consider the problem of deciding which of two poker playsrisétter and by how much. It
would not be unreasonable to define the better player as théhahwould on average win
more money per hand if the two players were to play an infinitmlper of hands. Since we
cannot make the players play an infinite number of hands, giowb approach is to make
them play some finite number and declare the one who has woa momney as the better
player.

The problem becomes one of deciding how many hands need tayedp Clearly we
want this number to be as small as possible. However, the teaviels are played, the higher
the probability that the weaker player wins more money tgtopure luck. These two
competing objectives can be balanced by requiring that timeber of hands to be played
is as small as possible to guarantee that the wrong playeclargd as being stronger with
probability not exceeding some small threshold.

To define the problem more precisely, I8, X5, X3, ... be independent, identically
distributed {id) random variables with mean We will refer to an algorithm as a stopping
rule if at timet it observesX; and based on past observations decides whether to stop or

continue sampling. If a stopping rufereturns; that satisfies
Pli—pl < elpl] >1 -3, (1.1)

thenS is a (e, §)-stopping rule and is an (e, 6)-approximation ofu. If we let X; be the
random payoff for the first player for th&" hand, we recall that, by our earlier definition,
the first player is better if: is greater than 0, the second player is better whes less
than 0, and the magnitude gfis the margin by which one of the players is stronger. By
choosinge = 1/2, given any0 < ¢ < 1, if f1 is an(e, ¢)-approximation tqu then; and

w will assume the same sign. Hence,(an)-stopping rule can be used to solve the poker



problem?

In general, estimating the expected value of a random Maritdbough sampling, or
Monte Carlo estimation, is a fundamental tool in many ardaxience. In a clinical trial,
one may be interested in estimating the probability thatva tneatment succeeds, which
can be seen as the expected value of an indicator randonblearia mathematician may
be interested in approximating the permanent 6f-a1 matrix through sampling because
exact computation of this quantity is NP-hard.

In machine learning, the importance of sampling methodsasvimg due to an ever
increasing number of datasets containing millions of résaif biological, medical, or other
types of data. Such datasets are often beyond the reach gfsteartiard machine learning
techniques because of poor computational or space compleEfidhe algorithms. In these
cases, when even a single pass through a dataset can batpmh#ampling has emerged
as a promising tool for scaling up machine learning algorgf3, 8, 11].

As in the poker problem, whenever sampling is employed, aafagetermining when
enough samples have been taken is necessary, leading tmtreedescribedtopping prob-
lem Taking too few samples may lead to a high-variance unieliabtimate. Taking too
many samples, on the other hand, will produce an accurataast but may be costly in
terms of computational or laboratory resources.

Motivated by the above examples, this thesis examines thtagim of finding an effi-
cient (¢, §)-stopping rule for bounded random variables. We considectse of bounded
random variables because it is possible to use finite sarapleaunds to obtain stopping
rules with strict probabilistic guarantees for this seftii\lthough it would be possible to
extend the results to the unbounded case when the randoablesrsatisfy certain moment
conditions (e.qg., if they are sub-Gaussian) for the sakengblicity we will not deal with
this case here. We use the recently-introduced empiricaisBain bounds to develop a new

algorithm, EBGStop, that requires on the order of

2
max (%, i) <log log i + log §> 1.2)
p®” €|y €lpl 0

samples to find arfe, )-approximation of a random variable with range(Theorem 4).

Since, as it follows from a lower bound by Dagum et al. [4], ahyorithm must take at

o> R 2
=) - log = 1.3
mw<ﬁﬁ%m0 r (-9

least on the order of

1In the poker problem assuming that the payoffsiateules out players who adapt their strategy between
games. Poker programs will often meet this condition.



samples (cf. Theorems 1 & 3), EBGStop is close to achieviegfstimal bound. We also
show that EBGStop often stops much earlier than the bestkistepping rule for bounded
random variables in practice. Most of our results(eyy)-approximations have appeared
in [12], but the treatment provided by this thesis is more plate.

We then apply our techniques to the problem of estimatingntiean of a bounded
random variable up te absoluteerror with probability at least — §. We present a simple
algorithm that requires on the order of

2
max <(’—2 5) [log log 2t 4 log 3 (1.4)
et € € 1)

samples. While our algorithm often requires much fewer damthan the standard ap-
proach of taking B2 )

22 log 5 (1.5)
samples, our approach often stops later when the variarieegs. We then introduce a
stopping rule that uses a mixture of two stopping rules amavghat it often stops much
earlier than the standard approach while never exceedirgjdpping time by more than a

constant.



Chapter 2

Related Work

In this chapter, we present the relevant work am)-stopping rules. We start by examining
sound(e, §)-stopping rules and then consider some approximate agpesdsased on the

central limit theorem.

2.1 Algorithm AA

Dagum et al. [4] present an algorithm for finding @nd)-approximation of the mean of
a random variable distributed [0, 1]. Their approximation algorithm, referred to ads4
for short, is optimal in the sense that the expected numbsaiples it takes is within a
universal multiplicative constant of any other algorithon finding an(e, 6)-approximation.
The next theorem proved by Dagum et al. [4] ab@ub)-approximations is the key to
understanding howl A works. But before the theorem let us introduce formallyddtrce

the concept of universét, ¢)-stopping rules:

Definition 1. Consider a stopping rul&S. Let a distribution D be supported oo, 1],
p > 0 be its expected valug,. 5y be the approximation tp returned byS when run with
parameterg(e, §) oniid samples drawn from the distributioR, and letN. 5 be the time

when the rule stops. If for any such distributiéhand any(e, §) € (0,1)? it holds that
1. E[N(¢)] < oo, and
2.P[p(l—e) < fies) < p(l+e)] >1-4,

thenS is called auniversal(e, §)-stopping rule.

Theorem 1. LetS be a universal(e, §)-stopping rule. Pick anye,d) € (0,1)? and any

distribution D supported or{0, 1] whose mean is positive. L8t 5) be the time whes



stops on this problem with parametdes §). Then

1 2

E[N, >c- 2 ——log = 2.1
[ (6,5)] ZC max(o ,E,U) €2M2 og 5’ ( )

wherey is the mean oD ando? is its variance, and > 0 is a constant that is independent
of S, D, ¢, andé.

Theorem 1 gives the minimum number of samples an algorithedsiéo take on the
average in order to always produce(an)-approximation of.. The A.A algorithm can be
seen as an attempt to reverse-engineer an optimal stoppgéthrough Theorem 1.

First, Dagum et al. found a constafitthat guarantees thatif = ¢’ - max (02, ep) -

?}uz log 2andi = 13", X;, then
Plla—pl<eu] =1-0.

If . ando? were known, one could computeand simply average samples to obtain
an (e, 0)-approximation ofu. However,u is the quantity of interest in the first place, so
Dagum et al. instead compute an upper bound @ising approximations gf andos? that
are within a constant factor of the true values with high piulity.

To obtain approximations ¢f ando? that are used to compufé, Dagum et al. use the
Stopping Rule Algorithm (SR), pseudocode for which appearélgorithm 1. LikeAA,
givene > 0 ands € (0, 1) the SR algorithm returns g, §)-approximation of:. However,
the expected number of samples taken by SR is on the ordﬁéﬁ g %, suggesting that
there may be a more efficient algorithm that, in some casesldaieke1/e times fewer

samples.

Algorithm 1 Stopping Rule Algorithm
t«—20
S0
Y « 4(e —2)log(2/6)/€?
Tl — 14+ (1 + E)T
while S < Y4 do
t—t+1
ObtainX;
S+—S+X;
end while
return Y/t

Pseudocode for thelA algorithm is presented as Algorithm 2, where, for clarity,

X1, Xo,... and X1, X}, ... denote two groups ofd random variables distributed with



meany ando?. There are three steps to the algorithm. In the first stepSRalgorithm

is used to obtain &min (1/2,/¢),/3)-approximation ofu. In the second step, a high-
probability estimate o2 is found by using the estimate pfto determine the necessary
number of samples. Finally, the estimatesuofind o are combined into an estimate of
max (o2, eu1), which in turn is used to determine the number of samplesssacg to obtain

an (e, 0)-approximation ofu. Note that the third step reuses the samples used in the first

step before obtaining new ones.

Algorithm 2 Algorithm A.A
T1 — 2(1+ /e)(1+2/€)(1 + log 3/log 2)T

/* Use the Stopping Rule Algorithm oi, X5, ... to find approximation of: */
g’ — (min (1/2,/€),d/2)-approximation ofu

/* Find approximation ofnax (o2, ep) using X, X5, . . .
N~y ¢/
S0
fori=1,...,Ndo
S S+ (Xg_y — X3)%/2
end for
p < max (S/N,ef)

/* Find final approximation of: using Xy, Xo, ... */
N <Yy -p/pi?

S0

fori=1,...,Ndo

end for

f— S/N

return [

Finally, Dagum et al. prove that for any random varialilaistributed in[0, 1], ¢ > 0,
ando € (0,1), if i is the estimate produced by.4 and N is the stopping time a#l.A, then

AA satisfies the conditions of Theorem 1 and there exists a rgalveonstant such that

1 2

2
E[N] < ¢- max(o”, eu) - 2 log 5 (2.2)

It seems that extending thé.4 algorithm to the more general setting of bounded ran-
dom variables should be trivial, but this is not the case. Mlaén technique used by the
AA algorithm relies heavily on the fact that the summo$amples from a nonnegative ran-

dom variable is non-decreasing as a functiomof his is not true for a sum of bounded



random variables, hencé.A cannot be extended to this case. Nevertheless, the re$ults o

Dagum et al. provide important insights into our problem.

2.2 Nonmonotonic Adaptive Sampling

Domingo et al. [6] propose the Nonmonotonic Adaptive Santp(NAS) algorithm for
finding an(e, §)-approximation of the mean of a bounded random variableud®emde for

the NAS algorithm is shown as Algorithm 3.

Algorithm 3 Algorithm NAS

a <— OO

u <0
t<—0
while |u| < a(1+1/¢) do
t—t+1
ObtainX;
U <— Yt
a — /(1/2n)log(n(n + 1)/9)
end while
return X,

The idea behind the NAS algorithm is simple. After observingamples, a — d;
confidence interval fop, whered; = §/(t(t + 1)), is constructed around’; using Ho-
effding’s inequality. Setting to be half the width of this confidence interval, the algarith
terminates if X;| < (1 + 1/¢) and returnsX ;. To see whyX, is an(e, ) approximation
when NAS terminates, suppose that the NAS algorithm stopftedt samples and that all

confidence intervals contajn It follows that
(Xt —pl < @ < e(|Xe] —a) <elul. (2.3)

The first and third inequalities follow from the fact that #ike confidence intervals hold,
while the second inequality can be obtained by rearrandiagtopping condition. Finally,
it follows by the union bound that Equation (2.3) holds witbpability at least — § since
= 0
t(t+1)

<5 (2.4)

~
Il

1
Hence, upon termination of the NAS algorithid, is an(e, §)-approximation ofu.
Domingo et al. argue that given aay> 0, 6 > 0, and if Xy, X», ... areiid bounded

random variables with mean+ 0, then there exists a universal constastich that

1 1 2
E[N|<c¢-— - log——i—log—). (2.5)
N < aa ( ul 7%

7



Unlike the equivalent bound for thd.4 algorithm, Equation (2.5) contains an additional
log(1/¢|p|) term. This term comes from the use of a union bound. Dominga. edlso
show that it can be reduced log log(1/€|u|) through the use of “geometric sampling”.
Concentrating on non-negative valued random variablds,atso interesting to note that
the bound for the NAS algorithm does not contain thex(c2, ¢x1) term that is present in

Equation (2.2), suggesting that NAS will perform poorly wheax(o?, eu) < 1.

2.3 Asymptotic Approaches

The AA and NAS algorithms rely, directly or indirectly, on finitersple tail bounds, such
as Hoeffding’s inequality. An alternative approach is te deviation bounds based on the
Central Limit Theorem [15]. While such an approach can orifgraasymptotic guaran-
tees, it can result in earlier stopping times. In this segtive discuss several asymptotic
approaches to findinge, §)-approximations and provide some insight into how they can
fail.

Let X, X», ... areiid random variables with finite meanand finite variance-? > 0,

and letd = 1 — ®, where® denotes the standard normal cumulative density functiet. L

X, be the average oX1, X», ..., Xy, V; be the empirical variance:
X -lyx
L s=1 v
L . (2.6)
V= ;;m-xt) -

ThenV; converges ta? in distribution and hence according to the Central Limit ditegn
(Theorem1.13 in [5]) and Slutsky’s Theorem (Theoreis in [5]),
VX — p) ] =
P|l————= >u| — ®(u
o )

If we define 6_1(5/2)\/7

¢ = Tt 2.7)
thenlimy .. P [|X; — u| < ;] =1 — 6, hence, in the limit(X; — ¢;, X; +¢;) isal — 4
confidence interval for. Such approximate confidence intervals are generally mghtet
than confidence intervals obtained from Hoeffding’s indifpi@r the empirical Bernstein

bound.

1Geometric sampling will be explained in Chapter 4.



Domingo et al. analyze a version of the NAS algorithm thasuSET-based confidence
intervals [6]. They argue that the expected number of sesmgquired by this variant of
NAS still scales withl /22, but the constants are significantly reduced, resultingitiex
stopping times. However, Domingo et al. do not consider ffexeof the variance in their
analysis, which suggests that it may be possible to prowghteti bound.

A similar approach was taken by Holmes et al., who developedsymptotic(e, 9)-
stopping rule for the purpose of approximating intractastiatistical summations [11].
Their Monte Carlo approximation algorithm, which we willfee to as MCA, is shown
as Algorithm 4. The MCA algorithm is representative of asyotip approaches to stop-
ping in that it makes use of CLT-based confidence intervatsitatioes not make use of a

union bound [14].

Algorithm 4 Algorithm MCA
t—20
theeded < tmin
while t < t,cedeq O
while t < t,,cedeq O
t—t+1
Obtain X;
end while

2 14¢€)?2 Vi
tneeded < 25/2(6—2) “ =5

- Xt
end while
return X;

Holmes et al. derive MCA from the observation that ifs half the width of al — ¢
confidence interval for as defined by Equation 2.7, th@ns an(e, 6)-approximation ofs
whenevere < €(i1 — ¢). This is in fact the stopping condition used by the CLT-ba¥A&
algorithm, but unlike the NAS algorithm, MCA does not chela& stopping condition after
each sample. Instead, the MCA algorithm begins by takingespradetermined number
of samplest,.;, before checking the stopping condition for the first time. Iriies et al.

observe that if the stopping condition is not satisfied, carerewrite it as

(1+¢€? V,
t>2, 2 L 2.8
= 25/2 62 757 ( )

wherez; is al — 6 quantile of a standard normal distribution, to obtain a Iol@und on the
number of required samples. In MCA, Equation 2.8 is used terdene when the stopping
condition should be checked next if it is not already satisfie

The MCA algorithm is closely related to Stein’s two-stagetimod for finding fixed
width confidence intervals (see Chapter 13 of [13]), a pmoblee will consider in Chap-

9



tmin | 30 100 500
Laplace(0.1,1) | 0.355 0.222 0.131
Gaussian(0.1,1) | 0.251 0.159 0.103

Table 2.1: Probability of MCA failing for different values é,,;,, € = 0.1, andd = 0.1.

ter 6. Given a sequence il random variables(;, X5, ... with meanyu and variancer?,
both unknown, the goal is to find a confidence interval of wigktthat containsu with
probability at least — §. Stein’s two-stage procedure begins by taking some fixedoeum

m samples in the first stage. Using these samples, a stoppiedtis computed as

Vin
T = Imax <m7 t%m_175/2) 6_2 + 1)) 5

tim,s) is thel — ¢ quantile of Student's-distribution withm degrees of freedom. In the
second stage, Stein’s procedure takes a furiher m samples. WherX; are normally
distributed, this procedure has been shown to take rougbibetas many samples as a
stopping rule that knows the true variance. Neverthelbss;ule gives the desired coverage
in this case.

One important question is what effect does the use of apmiate confidence intervals
have on the properties of such two-stage procedures? iffitgtat folklore is to be believed,
settingt,»i» to 30 should ensure that the normal approximation holdsceleghe probabil-
ity that MCA produces an approximation with relative erregd thare, also known as the
coverageof a stopping rule, should not be smaller tHan 9.

We explored the validity of this claim by estimating the cage of MCA for dif-
ferent values of,,;, in two different scenarios. Ip is the probability that MCA pro-
duces an estimate with relative error greater thdar some random variable, then=
E[I{|px — ft| > ep}], wherel { A} denotes the indicator random variable for eventWe
will refer to p as thefailure probability of a stopping rule. Since we are primarily interested
in determining whethep < 6 or p > 4, we used a stopping rule to find(8.1,0.1)-
approximation of the mean of the random variab{éu — /1| > eu} — 6.

We estimated the failure probability of MCA duplace(pn = 0.1,b = 1) andNormal(p =
0.1,02 = 1) random variables fof,,;, = 30,100, 500. The Laplace distribution has high
kurtosis so we can expect MCA to fail with probability greateans on it. However, when
sampling from a Normal distribution MCA should fail with grability close to) since in
that case the only approximate step is that the variancehandchean are both estimated
based on data.

The results are shown as Table 2.3. It is clear that whgnis too low, MCA can falil

10



with probability much larger thaf. In particular, the claim that CLT-based approximations
are accurate when the number of samples is greater than 8% $aefrom true. On both
random variables, whet),,;, was set to 30 the probability of MCA failing was between
2.5 and 3.5 higher than the desired valueyof 0.1. While MCA was much closer to
achieving the desired failure probability 6f1 whent,,;,, was set to 500, this is not a
guarantee that this will be the case for other random vasat$ome attempts to make two-
stage procedures such as Stein’s more robust have been fmadeample by employing
the bootstrap [9], however the resulting guarantees drasymptotic.

While the earlier stopping times provided by asymptoticrapphes are appealing, they
should not be applied blindly because if they are not prgperied they can significantly
exceed the desired failure probability &f Note that there are two sources of the error:
First, instead of using the true variance we use an empiestinate. Second, the CLT
is asymptotic. Since the convergence in the CLT is of ofélér/\/n) as it follows from
Cramer's theorem (Theoreir3.1 in [5]), correcting for the error committed when usitg
would introduce an intolerably large cost (the sample siaald/be$2(1/52)). In the rest of
this thesis we will only consider stopping rules that caeiofttrict probabilistic guarantees,

yet avoid this pitfall.

11



Chapter 3

Empirical Bernstein Stopping

In this chapter, we develop a near-optimal stopping ruldifaing an(e, §)-approximation

of the mean of a bounded random variable.

3.1 General Approach

We begin by describing the general approach taken in theymedi our algorithm. To

reiterate, the goal is to construct a stopping rule with tlleding two properties:
1. For anyu # 0, the stopping rule should stop with probability one.

2. The estimatg: returned by the stopping rule should satisfy

Pl —pl < eluf] > 16

To gain some insight into how a stopping rule can be made isfgdlhe second property,
let 7 be the event that the stopping rule fails, i.e. returns aimese /i that is not are-
approximation of:, and letT" be the random time at which the stopping rule terminates. By

the law of total probability, it follows that

P[f]:i[P’[]-’ﬂ{T:t}]. (3.1)
t=1

The key idea behind our stopping rule is to define a nonnegatquencéd, } satis-
fying .2, d; < 4, and construct the stopping rule such tBdfF N {T' = ¢}] < d;. To
facilitate this we define a new sequenieg} wherec, is half the width of al — d; confi-
dence interval foy:, givent samples. The stopping criterion is then constructed sdfthat
is satisfied aftet samples and if the confidence interval focomputed using the sample

andc, does not fail then the returned estimatés ane-approximation ofu. This ensures

12



that P [F N {T =t}] < d;, and when combined with Equation (3.1) guarantees that the
stopping rule will fail with probability at mosi.

The same general approach was followed by Domingo et aln[@e design of their
NAS algorithm, but since we construct the sequeficasing empirical Bernstein bounds
(see below) instead of Hoeffding bounds, our stopping ratesable to take advantage of
variance like the4.4 algorithm. However, our approach works with absolute valofethe
sample means(;, and, unlike the4.4 algorithm, our stopping rules do not require the

samples to be almost surely nonnegative.

3.2 The EBStop Algorithm

In this section, we present the basic version of our stoppifey EBStop.

3.2.1 Stopping criterion

First, letd, = ¢/t wherec = §-(p—1)/p andp > 1. This merely ensures that;~, d; < 4,
but we will discuss this particular choice §f,} in Section 3.2.2. Also let; be half the
width of a1 — d; confidence interval fop, as defined by the empirical Bernstein bound

givent samples (see Section 8.1.2)

¢ — [2V; loi(3/dt) n 3Rlogt(3/dt)’ (3.2)

and define the eveist as

€= {Xi—pl<al (3.3)

t>1

Here X, is the same mean of the firssamples and’; is the sample variance (cf. Equa-
tion (2.6)). By construction, evestholds with probability at least— . We now construct
a stopping criterion that is guaranteed to returiean)-approximation of: given that event
£ holds.

From Equation (3.3) we know thai; — ;| < ¢, for all t € N*. Since a confidence
interval for the absolute value of the mean of a random vigisno wider than the equiva-
lent confidence interval for the mean itself, it follows tha¥';| — ||| < ¢, which implies

| X¢| — ¢ < |pl. Itis then easy to see that if
e < (| X4 — 1), (3.4)

then
[ X o] = ] < e < e(|Xy] — ) < €|l

13



Hence, if we stop when Inequality (3.4) holds(| is within ¢ relative error of|u|. We
rearrange Inequality (3.4) as
€ —
¢ < 1—_|_€ ‘Xt‘ (3.5)

for convenience to obtain the stopping condition of our fiest)-stopping rule, EBStop-

Simple. Pseudocode for EBStopSimple is shown as Algorithm 5

Algorithm 5 Algorithm EBStopSimple
Ct <— OO
t—20
ObtainX;
while ¢; > ¢/(1+¢€) | X;| do
t—t+1
Obtain X;
Computec; according to (3.2)
end while
return X,

While it can be shown that EBStopSimple comes close to aifyatie lower bound of
Dagum et al. from Theorem 1, we make two simple improvementBiStopSimple before
providing a theoretical analysis of stopping times.

First, we show that thél + ¢) term in Inequality (3.5) can be discarded. Lét) =
|X¢| — ¢ andu(t) = | X| + ¢;. We have seen th@ [Ne>1{1(t) < |u| <u(@®)}] > 1-6.

Now, consider an algorithm that stops at the first tifhehen
(L+UT) = (1 — e)u(T) (3.6)
and returns the estimate
fi=1/2sen(Xr) [(1+ OUT) + (1 — e)u(T)]. (3.7)

It is easy to show that for our choice &ft) andu(t), Inequality (3.6) is equivalent to
cr < €| X7|. To show that the estimate defined in Equation (3.7) i&ad)-approximation

consider the evert when for anyt, X; — ¢; < 1 < X; + ¢;. On this event,

Al = 1/2-[1+QUT) + (1 — u(T)]
> (1-ou(T)
> (1-lul.

Here the first inequality follows from the stopping conditi¢8.6) and the second follows

14



by the definition off. Similarly,
ol = 1/2-[1+eUT) + (1 — e)u(T)]
(1+e)l(T)

(1+€)pl-

IN

IN

Further, sinceer < | Xr|, the signs ofX; and . must agree oig. Thus, ong, /i is an
e-approximation tqu. Since by constructiof? [£] > 1 — ¢, we get that the stopping rule
returns are-estimate with probability at leagt— 6.

The second improvement is based on the observation that edreditioning on event
&, one can use the smallest of the confidence intervals catstrat any timd < s <t
as the confidence interval at timénstead ofc;. Whenc; is constructed from the empirical
Bernstein bound, this construction can result in tightarfickence intervals, which in turn
lead to earlier stopping times. Based on this, we can refin@@finitions ofi(¢) andu(t)
by settingl(t) to max,<; (| Xs| — ¢s) andu(t) to ming<; (| X| + ¢s).

We incorporate the above improvements into EBStopSimpidtain a new algorithm,

EBStop. The pseudocode for EBStop is shown as Algorithm 6.

Algorithm 6 Algorithm EBStop

t—1

I(t) <0

u(t) « oo

ObtainX;

while (1 + €)l(t) < (1 — €)u(t) do
t—t+1
Obtain X;
Computec; according to (3.2)
(t) — max{(t — 1), [X,| — 1)
w(t) «— min(u(t — 1), | X¢| + )

end while

return sgn(X;) - 1/2 - [(1 + €)l(t) + (1 — €)u(t)]

3.2.2 Choosingl;

While we have already stated that; } should be nonnegative and should sum,tanother
restriction on the sequence is necessary to guaranteeBlstof will stop with probability
one. While the reason will become clear in the next sectidn; must satisfy

lim log(3/dy)

t—o00 t

=0.
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Hence,d; should not decay too quickly, or EBStop will never termina@ur particular
choice of{d, } satisfies all of the above criteria and is both efficient ircbce and mathe-
matically convenient. The exact form of this sequence israrpater of our algorithm and

offers a way of incorporating prior knowledge.

3.3 Analysis of EBStop

In this section we prove that EBStop is @nd)-stopping rule and provide an analysis of its
stopping times. We show that EBStop comes close to achightheoretical lower bound

given in Theorem 1. We begin by stating a key technical retugtto Audibert et al. [1].

Lemma 1. LetU be areal-valued random variable such that almost sutély b for some
b e R. Lett = b— E[U], andby = max(b,0). LetUy,...,U, bei.i.d. copies o/ and
U, = 1/t>°._, Us. Then for any: > 0 the followings hold:

e with probability at leasfl — ¢~*, simultaneously fot < i <,

i(U; — E[U]) < V2E[U?]x + byx/3; (3.8)

e with probability at leasfl — ¢~*, simultaneously fot < i <,

i(U; — E[U]) < /2tV[U]z + V'z/3. (3.9)

Proof. See [1]. O

Lemma 1 can be used to derive a high probability upper bourtde@sample variance,
which is needed in order to show that the expected numbernoples taken by EBStop

depends on the true variance.

Lemma 2. Let X1,..., X; beiid random variables such that for all < ¢ < ¢, almost
surely0 < X; < 1. LetV; = 3 377 (X; — X¢)2. Then, for any: > 0, with probability at

leastl — 3e~ %,

Vi < 0% + /2022t + /3t (3.10)

Proof. The application of Inequality (3.8) with the choi¢g§ = (X; — E[X;])?, i = ¢,
yields that with probability at leadt— ™%,

U; < 0%+ \/2Vx/t + /3t (3.11)
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whereV £ E[(X; — E[X1])*]. Now,U; =V, + (X, — u)? > V;, hence from (3.11) it also

follows that
Vi < 0?4+ \/2Vz/t + /3t

UsingV < o2, which holds sinceX; < [0, 1], we arrive at the desired result. O

Before proceeding to the main result, we prove a technioafria that provides an upper

bound on the solution of a type of equation that arises in tiadyais of stopping times.

Lemma 3. Leta, k be positive real numbers. #fis a solution to

logt @ (3.12)
then
2 2a
/
< Zlog =. .
t < i log A (3.13)

Further, if ¢’ is as above and > ¢’ thenlog(at)/t < k.

Proof. The solution of Equation (3.12) can be seen as the inteosepbint between a line

and a logarithmic curve when we rewrite the equation as
log at = kt. (3.14)

First, note that at = 1/k, the slope of the line equals the slope of the tangent to the
logarithmic curve. Becaudeg is concave, fot® > 1/k the intersection of the line tangent
to log at att® with the linekt is an upper bound otf. Substitutinglog t* + 1/t° - (¢ — t°)

with the choice ot® = 2/k for log at in Equation (3.14) and solving faryields

2 2a
We obtain the Lemma by dropping the2/k term for convenience. O

Finally, we present a theorem that summarizes the main grep®f EBStop. In order

to simplify the analysis, we restrict it to the case of rand@rables with rangé), 1].

Theorem 2. Let X be a random variable distributed with rand@ 1]. Letp = E[X] and
0? = V[X] and assume: # 0. LetT be the stopping time of Algorithm EBStop &h
wherec; is defined by Equation (3.2) with = 6(p — 1)/(pt?), wherep > 1. Then the

following properties hold:

1. There exists a constaat = ), such that for any) < § < 1/2,

2 1 1 2
P [T > C'- max (%, —) <log— —|—log—>] < 24.
e p* el €|l d
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2. Ifp > 2, there exists a constait’ = C}, such that

21 1 2
E[T] < ¢’ - max <U—,—> <10g——|—log—> .
) 22 el ) '8 gl T 185

3. The estimatg as returned by the EBStop algorithm is @énd)-approximation ofu.

Proof of Part 1. When Algorithm EBStop stops at timE, the stopping condition implies
that

(1+e)max (| X, —¢s) > (1 —€)min (| X +¢), and
=T s<T (3.16)
’XT‘ Z Ccr.

Since analyzing the stopping criterion directly is cumbare, we will state a sequence of
stopping conditions, each more conservative and easiaerdlyze than the previous until
we arrive at a condition that can be solved for the stoppimg tiFirst, consider dropping
themax andmin from the first half of Inequality (3.16) and rearranging teents, resulting
in

€| Xr| > er. (3.17)
Since Inequality (3.16) holds only when Inequality (3.1@)ds, it suffices to upper bound
the stopping time of algorithm EBStop with Inequality (3} &8 its stopping criterion. Thus
if we redefineT to be the first time when (3.17) holds then it suffices to uppemil 7.

Now, consider the everdt when none of the confidence intervals fail:
E= (X —ul <t (3.18)
t>1
In what follows, unless told otherwise, we will always assutimat this event holds. Since,

oné&, |X¢| > |u| — e holds for anyt, if T" is the first time where(|u| — czv) > er

holds thenI” < T”. Redefinindl’ to beT”, our aim now is to bound”. The new stopping

criterion then becomes

€lul [2Vrlog(1/6r) | 3log(1/éT)
> = + .
T+re=T T T ; (3.19)

where we used the definition of (cf. Equation (3.2)) and we defingd;, = 3t?/(cd). Now,

the idea is that by the time when both terms on the right-héohel @e small compared to

the left-hand side (say, they are both less than half of theh&nd side), the algorithm
would have stopped. Further, for lar@é Vi can be upper bounded by a constant times
the larger ofo? ande|u| (with high probability). These two constraints then givete

required bound off".
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By applying Lemma 2 with the choice = log(1/4;), it follows that for anyt > 1, with
probability at least;,

Vi<oi+o

2log(1/64) n log(1/6¢) (3.20)
t ' '

3t
An application of Lemma 3 t8log(1/6;)/t = o2 gives that ift > %[p log % +1log & =
t,» then3log(1/4;)/t < o%. Another application of Lemma 3 ®log(1/6;)/t = ¢|u| gives

that if¢t > plog 2 Iul +log & = tej then3log(1/6¢)/t < €|u|. We now defineg” to be

il
the event that (3.20) holds for all> 1. Definingp = max(c?,¢|u|), we get that for any
t> min(t02,tew), on&’, Vi < 3p.

Thus, on€ N £’ it holds that

2Vilog(1/6;)  3log(1/dr) 6plog(1/d:) 3plog(1/4)
t + t = \/ : t +\/ : t

(3.22)
_ (\/EJM/g) plog(1/6:)
: .
Now, consider the first im¢" > min(t,2, t|,,) satisfying
log(1/4
L (0 ) PEEEL

Note thatt* is non-random. Further, afin &', t* > max(7T', min(t,2,t,)) = T". Thisis
trivial if 7" = min(t,2,t.,). On the other hand, " = 7' > min(t,2, t,) then notice
that Inequality (3.21) holds for tim& on £ N £ and hence the stopping criterion (3.19)
will be satisfied whenever (3.22) is satisfied. This meansthiwalgorithm stops the latest
attimet*. SinceT’ > T,t* >TonéNE'.

Now, another application of Lemma 3 to Inequality (3.22)egi¥the bound that Inequal-
ity (3.22) is satisfied when

6p(1 + €)2(vV6 +v3)%p logi—i—log p(1+€)%(vV6 + V3)%p
s

22 p e 22

Since the quantity on the right-hand side is at least as &sgg,, it is an upper bound on
t*. The desired form of the bound is obtained by absorbing tligiae constants into the

multiplicative constant. Noticing th& [ N £'] > 1 — 26 finishes the proof of Part 1. O

Proof of Part 2. First, let

o2 1 1 2
t/ — C - max <62,u2, m) <10g m + log S> . (323)
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whereC is as defined in Part 1. Then using the definition of expectiatio

E[T] = it-IP’[T:t] (3.24)
=1
:’—i—l 00
= > t-PT=t)+ Y t-P[T=t (3.25)
t=1 t=t'+2
< 2+ > tPT=1, (3.26)
t=t'+2

where we used ! t- P(T =t) < (' + 1) I P(T = t) <t/ +1 < 2t/, where we
assumed, without the loss of generality, tHat 1.

To bound the second term in (3.26), we recall thattfor ¢ whenever the confidence
intervals at time hold, the algorithm is guaranteed to stop aftslamples. Hence, if the
algorithm has not stopped after- ¢’ samples, all confidence intervals between tifrend
t — 1 must have failed. Since we can bound this probability by ttodgbility of at least
one of the confidence intervals at tire 1 failing, it follows thatP [T" = ¢] < 2d;_;. Since
di—1 = cd(t — 1)7P, it follows that

ET] < 2+ > t-P[T={ (3.27)
t=t'+2

< 24 > 2ds(t— 1) (3.28)
t=t'+2

< 204 C (3.29)

< o (3.30)

whenp > 2. Note that the same result can be obtainedvfor 1, but we have chosen this
argument for simplicity.
]

Proof of Part 3. Let F be the event that the stopping rule fails to produce an esgimih

relative errore,

F=Alp—pl = elpl}
and let€ be the event that the confidence intervalslo not fail as before (cf. (3.18)).
First, we decompose the failure probabilityB&F] = P [F|E] P[] + P [F|E] P [€]. By
construction,P’ [£] < 4. Then using the trivial boundB [£] < 1 andP [F|€] < 1 we
obtainP [F] < P [F|£] 4 6. We now argue thadP [F|E] = 0.

20



It remains to be shown that is an (e, §)-approximation ofu. So assume that the
algorithm has terminated aftér samples. (Notice that he algorithm stops with probability
one since by Part Z[T] < +00.) Combining the definition of everdt with the first part
of Inequality (3.16) and the definition ¢fleads to

= 172+ | (I - )+ (1 - mip(Kul +-.)
> (1 emin ([Xs| + )
> (1—e)lul (3.31)
and
il = 172+ |1+ (] — ) + (1= (Kl + )
< (@ omin (K| - )
< 1+l (332

Inequalities (3.31) and (3.32) hold due to the fact that didence interval onX, is also
a confidence interval opX ;| with equal or greater confidence. Finally, the definition of
£ and the second part of Inequality (3.16) together imgy(X7) = sgn(u). Hence,
| — p] < €|p| and thereforeP [F|E] = 0 and henc® [F] =P [|p — pu| > €lu|] <6. O

3.4 Effect of Range

While our analysis of EBStop is limited to the caseXgfwith range 1, extending this result

to random variables with rang® is straightforward.

3.4.1 The reduction approach

We begin by showing how af, §)-stopping rule for random variables with rangand a
matching upper bound on its expected stopping time can lenéstl to random variables
with rangeR. LetS be an(e, §)-stopping rule for random variables with range 1,Xebe
distributed with rangeR, and letX’ = X/R. Now, suppose stopping rul® takesX as
input, runs stopping rulé on X’ to obtainz, and returnskji. Then it is straightforward to
show thatR/: is an(e, §)-approximation ofX. HenceS’ is an(e, §)-stopping rule.

To see how an upper bound on the expected stopping tin%é odin be obtained from
an upper bound on the expected stopping timé&,det 7'(¢, 6, X ) be the stopping time of

S on X and letn be a function that satisfies
E[T(,8,X)] < nle,d,u,07).
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Then it follows that if7”"(e, §, X ) is the stopping time of’ on X, whereE[X] = p and
V[X] = o2, then
E[T"(e,6, X)] < n(e, 6, u/R,0° | R?).

We will refer to this method of extending a stopping rule todam variables with rangg

as thereductionapproach.

3.4.2 Upper bounds

We now give upper bounds on the expected number of sampleseddpy the EBStop and
NAS algorithms required to find &, 0)-approximation of a random variable with range
using the reduction approach. It should be noted that bgthrithms can be run directly on
random variables with rangk, i.e. without resorting to a reduction. It should be cleatth
any run of any of these unmodified algorithms stops at the ¢ameeand returns the same
value than running the algorithms obtained with the reductipproach described above.
Hence, it follows from Theorem 2 that EBStop can be used tcirid, ¢)-approximation

of a random variable with rangR using an expected number of samples no greater than

C - max <U—2 i) <logi + log §>
e’ €|l €|l 6

for some universal constaat. Similarly, the NAS algorithm can be used to find gad)-
approximation of a random variable with rangausing an expected number of samples no

greater than

R? R 2
c' - (log =— +1log =
rr <0gew+0g6>

for some universal constant'.

3.4.3 Lower bound

Since the lower bound of Dagum et al. does not take the rartgeaittount we extend
their result to the case of random variables distribute@,i®?]. The definition of universal
stopping rules to random variables with ran@eR| is trivial and hence the formal definition

is omitted.

Theorem 3. LetS be a universale, 6)-stopping rule for distributions supported ¢ R).
Pick any(e, §) € (0,1)? and any distributionD supported ori0, R] whose mean is positive.
Let N(. 5) be the time whet stops on this problem with parametéks §). Then

o> R 2
E[N()] > ¢ max <W’ a) log 5 (3.33)
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wherey is the mean oD ando? is its variance, and > 0 is a constant that is independent
of S, D, ¢, and/.

Note that constant can be chosen to be the same as in Equation (1).

Proof. For a random variableX with finite variance letux be its mean and% be its
variance.

Let S be a universale, §)-stopping rule for distributions supported {in R]. Consider
a stopping ruleS’ constructed fromS as follows: S’ works for distributions supported
on [0,1]. WhenS’ works with Z supported o0, 1], it runsS on X = ZR to obtain
an estimatei(e, d, X). Clearly, fi(e, 5, X)/R is an (¢, 0)-approximation ofu. Hence,
S’ is a universal(e, §)-stopping rule for distributions supported @n1]. Let N'(e, 4, Z)
be the number of samples consumed®yon X. ThenN'(¢,d,Z) = N(e¢, 6, ZR) by
construction, whereV (¢, 6, X) is the time wherS stops when it is run with parametes;s
0 oniid copies ofX.

Now, let us fix(e,d) € (0,1)? and X ~ D, whereX is a distribution supported on
[0, R]. DefineZ = X/R. HenceN (¢,0, X) = N'(e, 4, Z). By Theorem 1,

E[N'(¢,d,Z)] > ¢ max U—% L lo 2
s Uy - €2N2Z7 €l g 6
Usinguz = px /R ando? = 0% / R* we get the desired lower bound. O

Theorem 3 applies only to random variables distribute@i?], however, it follows
trivially that the same lower bound applies to stoppingsuleat work on random variables
with rangeR. Hence, EBStop is at most a logarithmic term away from aahgethe optimal

expected stopping time.
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Chapter 4

Batch Sampling

In this chapter, we present a version of the EBStop algoritiah performs batch sampling
and show that with a geometric sampling schedulddggﬁ term in the expected number
of samples taken by EBStop is reduceddglog ﬁ Furthermore, we introduce a new
technique that allows us to test the stopping conditiorr &eh sample while maintaining

the benefits of batch sampling.

4.1 Batch Sampling

The motivation behind batch sampling comes from the fadtd¢hacking the stopping cri-
terion after each sample is wasteful when EBStop is far frtopng. To see why this is
true, consider what happens when EBStop checks the stoppiagon aftert samples, but
cannot stop. The algorithm must construdt a d; confidence interval fon, and in order
to guarantee that all confidence intervals hold with prdiigkat leastd, we require that

o0, dy < 4. Due to this constraint, checking the stopping conditiotinaé ¢ reduces the
mass given tal; for s > t, which in turn makes the confidence intervaldor s > ¢ wider,
and from Equation (3.17) it is clear that making the configeintervals wider will push the
stopping time back. Hence, EBStop can be made more efficjergducing the number of
times it checks the stopping criterion while it is far frorogping.

Pseudocode for a variant of EBStop that performs batch sagnji@ shown as Algo-
rithm 7. The key change from EBStop is the addition of a samgpdichedule in the form of
a sequence of positive integefis, }. The sampling schedule represents the times at which
the stopping condition is checked. After drawingsamples, Algorithm 7 constructs a
1 — dj. confidence interval for, and checks the stopping criterion.

Whenever,k < t, it should be possible for Algorithm 7 to stop much earliearth

EBStop. One possible sampling schedule, knowardbmeticsampling, is given by, =
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Algorithm 7 EBStop with batch sampling
t—1
I(t) —0
u(t) « oo
k0
ObtainX;
while (1 + €)l(t) < (1 — €)u(t) do
while ¢ <t do
t—t+1
ObtainX;
end while
k—k+1

= /DR B/) | 3Rlog (3/d)

U(t) — max((t — 1), [X¢| — cx)
u(t) — min(u(t — 1), | X¢| + cx)
end while
return sgn(Xy) - 1/2- [(1 + €)l(t) + (1 — €)u(t)]

m - k for somem > 1. To see how such a strategy will impact the stopping timesictam
checking the stopping condition after having takesamples using arithmetic sampling.
Since aftert samples at mostm confidence intervals have been constructed, the algorithm
will construct al — d confidence interval where

g< co _cmpé_ﬁ
= (t/my P

Hence, an arithmetic sampling strategy only results in agbao the normalizing constant
in dz, and from Equation (3.19) it is clear that the form of the ugp@und on the expected
number of samples will not change.

Now, consider geometricsampling schedule, whetg = [3*] for some3 > 1. Since
under this schedule the stopping condition is checked at inggt times by the timet
samples have been taken, it follows that

I (o
It is straightforward to show that with this value @fan analysis of stopping times leads to
equations of the fornflog log )/t = c instead of(log t) /t = ¢, as in the case of arithmetic
sampling. While we delay the proof until Section 4.3, we wfibw that if" is the stopping
time of Algorithm 7 employing a geometric sampling schedthen there exists a universal
constant’, such that

> R R 1
E[T] < C'max (%, —) <log log — + log —> . (4.1)
e2u?” €lpl €lp 0
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4.2 Mid-interval Stopping

While batch sampling can significantly reduce the numberofes required by EBStop,
it restricts the algorithm to the sequenigg } as the set of possible stopping times. Whgn
grows quickly withk, batch sampling leads to many unnecessary samples begwy taér
example, when employing a geometric sampling schedule #vith1.1, it is possible that
the stopping criterion could be satisfied affeé¥] + 1 samples, but the algorithm will not
stop until it has taken$*+1] samples. This can lead to as muchgaimes more samples
than necessary being taken, and while this is only a constaunitiplicative increase, a
stopping rule that is able to stop at any point is desirable.

To illustrate the efficiency of the approach we are about tppse, consider modifying
a batch sampling algorithm to stop at any point through aroipplication of the union

bound. Instead of taking samplgs+ 1,t; + 2, ..., tx1 and then checking the stopping

condition with failure probabilityd;, one can check the stopping condition after each sam-

ple betweert;, + 1 andt,; with failure probabilitydy /(tx+1 — tx). While this approach
leads to earlier stopping times for very smaknde, the benefits of batch sampling become

much smaller. Pseudocode for this approach is shown asitkigo8.

Algorithm 8 Batch EBStop with union bound anytime stopping
t—1
I(t) <0
u(t) « oo
k+—0
Obtain X
while (1 4 €)l(t) < (1 — €)u(t) do
t—t+1
Obtain X,
if £ >ty then
k—k+1
dy  di/(trr1 — tr)
end if

¢ = [ 2V 105;(3/d2) + 3Rlogt(3/dé)

1(t) « max((t — 1), | X¢| — c)
w(t) «— min(u(t — 1), | X| + c;)
end while
return sgn(X;) - 1/2- [(1 + €)l(t) + (1 — €)u(t)]

Nevertheless, it is possible to achieve anytime stoppirtbout the use of the union
bound. The key result, due to Audibert et al., is the follayvivariant of the empirical

Bernstein bound that holds simultaneously over an intdiMallf ¢t; < t, for t1,¢5 € N
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anda > ty/t1(> 1), then with probability at least — 3¢~/ for all t € {t;,...,t2} we
have

| X — p| < V/2Vix/t + 3z /t. (4.2)

To apply this result to batch sampling, we first solve 3e=%/®* = 1 — d, for z, resulting

in x = «log 3/dy. If we then use this value af and Equation (4.2) to construct confidence
intervals fory after each sample fror), + 1 throught. 1, the confidence intervals will
simultaneously holg: with probability at least — d;. The confidence intervals can in turn
be used to check the stopping condition after each samplgorithm 9 incorporates this

idea into our batch sampling algorithm.

Algorithm 9 Batch EBStop with martingale-based anytime stopping
t—1
I(t) <0
u(t) « oo
k0
ObtainX;
while (1 + €)l(t) < (1 — €)u(t) do
t—1t+1
Obtain X,
if £ >ty then
k—k+1
a — b1 /tr
x — alog3/dy
end if
¢t — \/2Viz/t + 3Rx/t
1(t) « max((t — 1), [X¢| — )
w(t) «— min(u(t — 1), | X| + c;)
end while
return sgn(X;) - 1/2- [(1 4+ €)l(t) + (1 — e)u(t)]

To see how EBStop compares to Algorithm 8 and to Algorithm @urmapare the failure
probability used when evaluating the stopping criterideraf3*] = ¢t samples by each of
the algorithms, denoting this probability bf. The results are presented in Table 4.2.
A geometric sampling schedule was assumed for the batchithlgs. Disregarding the
constants, Algorithm 8 use§ = 1/(tlogt) which, depending on the value pf can be
a very minor improvement oy, = 1/t? as used by EBStop. Algorithm 9, roughly uses

f: = 1/(log t)?, which is a clear improvement over both EBStop and Algorithm
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EBStop Algorithm 8 Algorithm 9

1 11 ( 1 >p
124 [logs t]P  t—[t/B] [logs t]

Table 4.1: Failure probability used to evaluate the stappiiterion aftert samples by each
algorithm.

4.3 Analysis of Batch Sampling

In this section we provide an analysis of stopping times ftgofithm 9 when following
a geometric sampling schedule, which we will refer to as ERBSWe begin by proving
the equivalent of Lemma 3 for the type of equations that angter a geometric sampling

schedule.

Lemma 4. Leta, k be positive real numbers. #fis a solution to

log(alogt)

S =k (4.3)

in terms oft, then
i < log (alogty)

< [k - m} , (4.4)

wherety = max(1/k,e).

Proof. The proof is analogous to the proof of Lemma 3. The solutioeqofation (4.3) can

be seen as the intersection point between a line dnglag curve when we rewrite it as

log(alogt) = kt. (4.5)

First, note that the slope of the line equals the slope ofdhgednt to the logarithmic
curve att whent logt = 1/k. The solution to this equation is bounded from abovey
max(1/k, e). Asinthe proof of Lemma 4, the intersection of the line tamgelog(a log t)

att > t with the linekt is an upper bound oti. Since the line tangent tog(a logt) att,

is given bylog(alog to) + gz - (t — to), Solvinglog(alog to) + =g - (t — to) = kt
yields
1
- log (alog to)l— Togto < log (alo? to) . (4.6)
[k ~ ‘tolog to] [k ~ tolog to]
U

Theorem 4. Let X be a random variable distributed with range 1. Let= E[X] and
02 = V[X] and assumg: # 0. LetT be the stopping time of Algorithm 9 o%i while
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following a geometric sampling schedule (. = ¢§/kP.) Then here exists a constaft

such that

21 1
P {T > C' - max <%, —> {loglog— + log §” < 24.
ep” eyl €|l 6

Proof. The proof is analogous to the proof of Theorem 2, but with thplieation of
Lemma 4 in place of Lemma 3. Since Algorithm 9 differs from E&Sonly in the form
of ¢, following the proof of Theorem 2 until Equation (3.19), EB@p will stop with

probability at least — § when
€lpl
1+e€

Substitutinge; with the value used in Algorithm 9, Inequality (4.7) becomes
clpl o [2Vrlog(1/0k) n 3log(1/dk)
1+e€™ T T ’
wherel/éy, = 3kP/(cé) andK = |logg T'| < logs T
As before, we seek a high-probability upper boundi@nBy applying Lemma 2 with

> cr. (4.7)

(4.8)

the choicer = alog %(logﬁ t)P to V4, it follows that for all¢ > 1, with probability at least
1-4,

2alog 3 (logs 1) 4dalog 3 (log 4 t)P
Vt§02+0¢ ga;(gg)Jr ga;(gg)_

4.9
t 3t (4.9)
Now let p = max(o?, e|u|), then if¢ is a solution to
1
3aplog ( ()7 lggt
(t ) =, (4.10)

then by Lemma 4 (usingap/p > e),

IN

-1
1 1
(1 — . ) sap {log log sap + - log% —loglog B (4.11)
oap &
log ( : ) p pp
1
0,39 [log log 2 4 Lo 3] —t,. (4.12)
p p p b

We now defineg’ to be the event that (4.9) holds for al> 1. It then follows that if the

IA

algorithm has taken at leastsamples and eve#t holds, therV; < 3p = 3max(o?, €|p|).

Hence, it follows that o€ and&’, if ¢ > t, then

\/2‘/204 log %(logﬁ t)p N 3alog %(logﬁ t)P < \/Gpa log %(logﬁ t)p N \/3pa log %(logﬁ t)p
t t - t t

< (\/E—l—\/g) \/palog%t(logﬁt)p.
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Now consider the smallest > ¢, that satisfies

€| S (\/6+\/§> \/palogf—&(logﬁt)l’.

1+e ™ t
As in the proof of Theorem 2, whefi and £’ hold, t* > T. One final application of

Lemma 4 gives

t*

p(1+€)2(V6 + v3)2ap [10g log p(1+€)%(V6 + V3)ap N 1.3

log —
€22 €22 P &

Again, we can obtain the desired form of the bound by absgrthia additive constant into
the multiplicative constant. Noticing th&tand&’ hold simultaneously with probability at

leastl — 24 finishes the proof. O

While we do not state them here, a bound on the expected stptipie and a proof of
the (¢, 0)-approximation property can be obtained with argumentsiyéentical to those
of Theorem 2. It then follows from Theorem 4 thatlifis the stopping time of EBGStop
when it is used to find af¥, §)-approximation of a random variable with rangeusing the

reduction approach of Section 3.4, then there exists a 1gaveonstanC such that

2
E[T] < C - max (%, i) <log log 3 + log§> )
eu” |yl €|l 5

As with the rest of our upper bounds, the same result can vegr@bout EBGStop directly,

but we use the reduction approach for simplicity.
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Chapter 5

Experimental Results

In this chapter we explore the properties of the stoppingsrute have presented through a

number of simulated experiments.

5.1 Experimental Setup

In addition to EBStop and EBGStop, we evaluatd, NAS, and geometric NAS. In order
to make the comparisons fair we set equivalent parameteaigfarent algorithms to the
same value. In the case of EBGStop and the geometric ver$idiAS, we sets, the
factor by which both algorithms grow intervals, to 1.5 forthb@lgorithms. Domingo et
al. reported this value to work best for the NAS algorithmheit experiments [7]. Since
with the exception ofd.A, all of the algorithms in our comparison defined a sequence of
confidence interval§c, }, we fixed the underlying; sequence to
)
di = tt+1)

for all algorithms. This value is the default choice used liy NAS algorithm. Since we

have found that EBGStop generally performs better for oslettings of these parameters,
we also include results for EBGStop with our default choiégs= ¢/k?, p = 1.1, and
6 = 1.1. We denote EBGStop with these parameter choice by EBGStop*.

5.2 Effect of Variance

The primary reason for developing EBStop was the need folgamitnm that is able to take

advantage of variance likd.4 without the restriction to nonnegative random variables. |

this section we compare how well the various stopping rulesable to exploit variance.
Let U(a,b, m) denote the average of. Uniform(a,b) random variables. Then the

expected value and varianceléfa, b, m) are(a + b)/2 and (b — a)?/(12m) respectively.

31



Since the aim of this experiment is to study the effect of theance on stopping times,
we fix a to 0 andb to 1, and varym to obtain a number of random variables with a fixed
mean but different variances. We ran each stopping rule ib@stonU (0, 1, m) random
variables form = 1,5,10, 50, 100,1000, ¢ = 0.01 andd = 0.1. Figure 5.1 shows the
average number of samples taken by each algorithm for edioh ©&m. Logarithmic scale

was used on the y-axis for clarity.
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Figure 5.1: Average number of samples required to find1,0.1)-approximations of
U(0,1,m) random variables forn = 1,5,10,50,100,1000. The results are averaged
over 100 runs.

Figure 5.1 suggests that variance has no effect on the expstipping time of NAS
and geometric NAS algorithms. This is not surprising as e variance does not
appear in the stopping condition for either algorithm.

Unlike the NAS algorithms, all variants of EBStop along witte .A.4 algorithm are
able to take advantage of variance information, but theteaféect of the variance differs
betweend.4 and EBStop. The behaviour of ttee4 algorithm seems to fall into two modes.

Form = 1,5, 10, the algorithm requires fewer samples as the variance asesavith larger

32



m. However, form = 50, 100, 100, the .A.4 algorithm seems to require the same number
of samples for all three random variables, even though thianee of U (0, 1, 1000) is

20 times smaller than the varian€&0, 1, 50). On the other hand, all variants of EBStop
require fewer and fewer samples as the variance decreasessteor the distributions that
we tested EBStop on.

However, the theory predicts that both algorithms have twdes: Whenr? decreases
and it is abovecey for some constant, then the number of samples decreases with
However, wherns? decreases belowe, no further decrease of the required number of
samples will be experienced. Herés a constant that depends on the algorithm. Egr it
seems that this constant is fairly large, while for EBStog é variants it is much smaller.
(The fact that in the bounds? is compared directly tey, i.e., that the bound depends on
max(c?, ep) instead ofmax(o?, cep) is a side-effect of the way the analysis is done.)

In the case of thed.A algorithm, the constant’s value is determined by the ddsire
accuracy of the presampling step. In the case of EBStop andhitants the constaatis
determined by how the two terms in the empirical Bernsteimolanteract with each other.

In order to understand this, recall that these algorithnmsbeaexpected to stop when

12 \/< 2;2) log(i/ét) + <ﬁ> M (5.1)

€% 1 30

(cf. Equation (3.19)), assuming that this stopping tithes large enough so thaf- ~ o2.
Wheno — 0 the second term becomes dominating and the dependent®wt will be
negligible. In particularjog(1/6;)/t < en/(3R) must be satisfied before Inequality (5.1)
will be satisfied and this puts a lower bound #@n This lower bound is independent of
Further, for small values af the actual cutoff point will be arbitrarily close to this lew
bound. Hence, lowering the value efdoes not change lead to an improvement in the
performance. This mode of behaviour is seen in Figure 5.1fes 50,100, 1000. Even
though the differences in variance for these valueswadre huge, the stopping times are
similar. However, whemr has a large enough value, the first term dominates. This mode
of behaviour can be seen in Figure 5.1 for= 1, 5, 10. While the differences in variances
are much smaller than betweem = 50, 100, 1000, whenm = 10, almost an order of

magnitude fewer samples are required to stop than when1.
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5.3 General Efficiency
5.3.1 Low Variance

We again test the stopping rules 6f(a,b, m) random variables. However, instead of
keeping the mean fixed and studying the effect of the variamedix the variance and vary
the mean. We fixn at 10 and vary: andb to obtain the valueg = 0.9,0.7,0.5,0.3,0.1
while b — a is 0.2. We used the values= 0.1 andé = 0.1 in this set of experiments.
The variance is small enough that EBStop, its variants,. aidshould take a number of
samples in the order df/(ex). We also expect both variants of the NAS algorithm to take
a number of samples on the orderiof(e?;?). Figure 5.2 shows the average number of
samples taken by each algorithm for each valug.diMe again use logarithmic scale on the

y-axis for clarity.

I EBGStop*
B EBGStop
[ EBStop
1 AA

B3 NAS
Hl Geo NAS

Average number of samples taken

10

Figure 5.2: Average number of samples required to fidd, 0.1)-approximations of
U(a, b, 10) random variables with varying means. The results are aedrager 100 runs.

Figure 5.2 shows that both variants of the NAS algorithm kjyi¢all behind the other

algorithms asu decreases. It seems that, as the theory suggestsd.thalgorithm and
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all variants of EBStop requiré/u times fewer samples than NAS. While the comparison
has been done on nonnegative random variables in orderltmag A, it should be em-
phasized that on signed random variables EBStop can bécdthstore efficient than the
NAS algorithm.

5.3.2 High Variance

While the previous experiment showed that both EBStop amdlti algorithm can exploit
low-variance situations to require on the order ¢| .| samples to stop, how well do they
perform when the variance is large? To examine this scenagdnclude a comparison on
Bernoulli random variables. Since Bernoulli random vdegathave maximal variance of
all bounded random variables, the advantage of variangaagin should be diminished.
Nevertheless, if: ando? are the mean and variance of a Bernoulli random variable, the
02 = u(1 — p). Hence, when is small, EBStop andi.A should require on the order of

max(M 1>:max<1_’u 1>%L (5.2)

2 ep euen) e

samples to stop.

Figure 5.3 shows the average number of samples required dbyagorithm to find
a (0.1,0.1)-approximation of a number of Bernoulli random variabless pgxedicted by
Equation (5.2), whep is small,.4.4 and all variants of EBStop seem to requir&: times
fewer samples than NAS. Somewhat surprisingly, the geaenegrsion of NAS required
fewer samples than even the tuned version of EBGStop:fer 0.9 andp = 0.5, but
not for u = 0.99. This is likely happening because for intermediate valueg,such as
0.9 and 0.5, the square root and the linear terms in the eztapBernstein bound are of
approximately equal magnitude when EBStop is close to #tgpprhis has the effect of
roughly doubling the magnitude of the constants associaidit the bound and slightly
increasing the required number of samples.

It is also interesting to note that all variants of EBStoppeuformed the4. A algorithm
in both experiments where we varied the mean, even thoughdbtads on the expected
number of samples taken by EBStop possess an extra logaritarm. This term grows
without bound as or i approach), hence, on nonnegative random variables, A can
be expected to outperform EBStop when this is the case. Haywwee have not seen this in

our experiments.
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Figure 5.3: Average number of samples required to fidd,0.1)-approximations of
Bernoulli random variables with varying means. The resaflésaveraged over 100 runs.

5.4 Coverage

In Chapter 2, we estimated the coverage of a stopping rukeuges the Central Limit
Theorem in order to determine whether it is smaller or labani — 4. While all of the
stopping rules we evaluated in this chapter guaranteettbatdoverage is at least- 6, we
calculated the sample coverage achieved by the stoppiag evluated in this chapter on
each of the three experiments described above. Perhapsvhaingurprisingly, there was
not a single occurrence of a stopping rule returning an esémwith relative error greater
thane. Since each stopping rule was run 100 times on 17 differemdai variables, this
suggests that these stopping rules are extremely conisetvat

Depending on the motivation behind using a stopping rule otrerly conservative na-
ture of such stopping rules can be seen as both an advantdge disadvantage. If it is
important to guarantee that the approximations are wihiglative error with probability

at leastl — ¢, the stopping rules in this chapter are a good choice. Itherother hand, one
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is willing to tolerate coverage smaller thar-§, stopping rules based on asymptotic results

will be much more efficient, though it is clear that efficieradgne cannot be the goal.
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Chapter 6

Absolute Error

In this chapter we consider the simpler but related problémstimating the mean of a
random variable up to a given absolute error. As beforeXletXs, X35, ... beiid random

variables with meam. If a stopping rule returns an estimatehat satisfies
Plla—pl <e>1-4, (6.1)

then we refer tg: as amabsolute(e, §)-approximation. We use the techniques used in the de-
velopment of EBStop to derive a novel algorithm for findingalote(e, ¢)-approximations

and provide both a theoretical and an empirical analysitsqdroperties.

6.1 Non-adaptive approach

The problem of finding an absolute, ¢)-approximation is inherently easier than the prob-
lem of finding an(e, §)-approximation. Since the number of samples necessary do fin
an (e, 0)-approximation depends on the meanany stopping rule that finds afs, ¢)-
approximation must badaptivein the sense that its stopping condition must depend on
the samples. On the other hand, stopping rules for findinglates(e, ¢)-approximations
do not have to make use of the samples in the stopping conditio

To give an example of a non-adaptive approach, we recaliftbgt are bounded with

rangeR, then from Hoeffding’s inequality
P[|X, —p| > ] <2720/ (6.2)

By solving for the smallest for which the right-hand side of Inequality (6.2) is greater
thand we get that if

n >

R?log 2
2¢2 g = TN, (63)
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thenP [| X, — u| > ¢] < 6. Hence, it is enough to take the average:obamples in order
to find an absolutée, §)-approximation.

While this simple, non-adaptive approach works, it is ndfidilt to see that it can
be improved upon by an adaptive one that makes use of variafwenation. In particu-
lar, it should be possible to reduce the dependence of théeuof samples okR? to a

dependence oR andc?. This is indeed our goal here.

6.2 Empirical Bernstein Stopping for Absolute Error

In this section we use the methods developed in Chapters 3 dandbtain an efficient

stopping rule for finding absolute, §)-approximations of bounded random variables.

6.2.1 The Algorithm

Following the development of EBStop, we rely on a sequdmgg such that the event
&= {‘Yt — /L‘ < ¢, Vt e N+}

occurs with probability at leadt — 6. In particular, we make the choice of usingbased
on batch sampling with a geometric sampling schedule aseatkfinSection 4.2. Having
definedc,, it is trivial to construct a stopping rule for finding abst@e, §)-approximations.
One can simply stop as soon@s< ¢ and returnX, as the estimate. We will refer to this

algorithm as EBAStop and present pseudocode for it as Akgaril0.

Algorithm 10 Algorithm EBAStop.
Cl «— OO
t—1
k0
Obtain X,
while ¢; > edo
t—t+1
Obtain X;
if t > tx41 then
k—k+1
@ — b/t
x «— alog 3/dj,
end if
¢t — +/2Viz/t + 3Rz /t
end while
return X,

We need to show that EBAStop terminates with probabilitgnd returns an abso-

lute (e, §)-approximation upon termination. The verify the first prapewe recall that
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lim;—, ¢, = 0. Since the algorithm terminates when < ¢, we see that the stopping
condition will be satisfied for large-enough Now suppose that the stopping condition is
satisfied and everf holds. Then|X; — u| < ¢ ande; < ¢, henceX, is an absolute

(e, 9)-approximation ofu.

6.2.2 Analysis

As we have done with the other algorithms we have proposedenree a high-probability

upper bound on the stopping time of EBAStop.

Theorem 5. Let X be a random variable distributed with range 1. Let= E[X] and
0? = V[X] and assume: > 0. LetT be the stopping time of EBAStop oA while
following a geometric sampling schedule. Then here existatantC' such that

P [T > (' - max (J—j, l) [loglog1 + log §” < 26.

€€ € )

Proof. The proof is analogous to the proof of Theorem 4. EBAStopsstelpency < e, or

if we substitute the full expression foy, when

(6.4)

\/2aVT10§(1/5K) n 3010%;1/51() <e

wherel/oy, = 3kP/(co) andK = [logg T'] < logz T. Now, as we have done in the proof
of Theorem 4, we seek a a high-probability upper boun#,oBy applying Lemma 2 with
the choicer = alog %(logﬁ t)P to V; we obtain that for alt > 1, with probability at least
1-4,

3=

2
1
2aplog<(ci) lsgt) 4aplog<(ci)51§gt)
Vt<a2+mJ i) V) ey

Let p = max(o?, €), then ift is a solution to

= p, (6.6)
by Lemma 4
1
tg?”ﬂ[lglo sap 1y, i}:tp. (6.7)
P cd

We now defineg’ to be the event that (6.8) holds for all> 1. It then follows that if
EBAStop has taken at least samples and evedt holds, thenl; < 3p = 3 max(c?, €).
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It then follows that wher€ and&’ hold, andt > tp, then

IN

Now consider the smallest > ¢, that satisfies

€> (\/6 + \/§> w’a log 35 (logs bp

t

As in the proof of Theorem 2, whefiand&’ hold, t* > T'. We can apply Lemma 4 one

more time to obtain

2
t* < p(V6 t;/g) ap [loglogp

2
(V6+V3)ap 1), 3] (6.11)
€2 p Ccd
The desired form of the bound can be obtained by absorbin@ddéive constant into
the multiplicative constant whenandd are small. Finally, noticing thaf and &’ hold

simultaneously with probability at least— 26 finishes the proof. O

We can then use Theorem 5 and part b of Theorem 2 to obtainhihiag exists a uni-

versal constanf’ such that

2

o 1 1 3
ET|<C- —,—) |loglog — +1log —| .
7 <cC max(ez,e)[og oge—i- 0g —

Hence, if we disregard the logarithmic terms, the adaptiyer@ach used in EBAStop re-
quires on the order ahax (%;, %) samples, while the non-adaptive approach requires on
the order ofﬁi2 samples. This implies that when the variance is small, taptadc approach
should be able to stop substantially earlier.

Nevertheless, thég log% term can be made arbitrarily large by using a sufficiently
small value ok. We can get a general idea of how smlas to be for this term to become
non-negligible by considering the case of a Bernoulli rand@riable with meamn. This
random variable has variang€l — 1) and it is the largest variance achievable by a random
variable with mean: and range 1. If we consider the logarithmic term to be norligiete
when

o? 1
— loglog — > —,
€ € €
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or equivalently when

1 1

we can solve for the smallestor which this is true. In the Bernoulli case, Inequalityl(®)

is satisfied when

1

N

By plugging in values of: into Inequality (6.13) we get that the logarithmic term bees

(6.13)

non-negligible wher < 1072 for i = 0.5 and where < 1073 for ;1 = 0.2. Hence,e
would have to be really small for the logarithmic term to béisiently large.

As in the case of relative error, we can use the reductionaggpr of Section 3.4 to
obtain an upper bound on the expected stopping time of EBA®ten used on random
variables with rangeR. It is easy to show that if" is the stopping time of EBAStop in this

case, then
2

E[T] < C - max <U—2, E) {log log R + logg
€2’ € €

for some universal constant.

6.2.3 Mixture of Stopping Rules

Based on our analysis it is clear that the Hoeffding-basaplétg rule and our adaptive ap-
proach each have their own merits. When the variance is smapared te, the adaptive
approach should only require on the ordef;m‘amples. On the other hand, wheis really
small, the Hoeffding-based approach should be able to stdigiethan EBAstop because
thelog log term in the bound on the expected stopping time of EBAStopheilarge.

How can we decide which algorithm to use in practice? Inswfailying to decide
which stopping rule is likely to stop first when faced with atfalar scenario we can
combine both stopping rules into a single stopping rule. gl ¢ ¢(6), andTr(d) be the
number of samples required to find an absoluteé)-approximation of a random variable
X by the Hoeffding-based and adaptive methods respectiviéglg mixture stopping rule
stops aftemin(Txecrf(0/2), Tep(d/2)) samples. The stopping time of this rule should

be a constant worse thamin (7o f(6), TEp(0)).

6.3 Experimental Results

Theorem 5 suggests that our adaptive approach should eegjgmificantly fewer samples

than the non-adaptive approach when the variance is smaltheat the two approaches
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should perform comparably when the variance is large. Wepemed the average number
of samples required by each method to find an absdlyt®-approximations of random
variables with a fixed mean but different variances. We rarh eiopping rulel00 times
on U (0,1, m) random variables fom = 1,5, 10,50, 100, 1000, ¢ = 0.01 andd = 0.01.
Figure 6.1 shows the average number of samples taken by kegeitran for each value of
m. Hoeffdingdenotes the non-adaptive approa€BAStopdenotes our adaptive approach,
while Mixture denotes the combination of the two approaches. Logaritsgate was used

on the y-axis for clarity.
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Figure 6.1: Comparison of absolute, ¢)-stopping rules on averages of Uniform(0,1)
random variables fom = 1, 5, 10, 50, 100, 1000.

As expected, the adaptive approach requires fewer sample®p as the variance
decreases. The variance 010, 1,1) is the largest of the 6 random variables, and the
Hoeffding-based approach actually manages to stop edhlir the adaptive approach.
However, the adaptive approach stops much earliet/¢i 1,5) and U (0, 1,10). The
reduction in the stopping times is much smallerfor= 50, 100, 1000, but this is not sur-

prising because for these random variables our algorittoualdirequire on the order df/e
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samples, reducing the benefit of variance estimation. Thé&unei of the two stopping rules
performs almost as well as the better of the two rules in @ésa

In the second experiment, we compared the stopping timdwedtbpping rules when
finding an absolutée, 0)-approximation of &7 (0, 1, 3) random variable for different values
of e. The results are resented in Figure 6.2. For large values ibfe Hoeffding-based
approach stops much earlier than our adaptive rule bechaesw/érhead of being adaptive
is too high when a small number of samples is sufficient. Whensmall, our adaptive
rule stops earlier by exploiting the small variance of th@, 1,3) random variable. As
expected, in both cases, the mixture of the two stoppingsridguires only a few more

samples than the best stopping rule.

Il Hoeffding

10° | =3 Mixture ]
I EBAStop

Average number of samples taken

0.2 0.1 0.05 0.025 0.0125 0.006250.003125
€

Figure 6.2: Comparison of absolute ¢)-stopping rules on & (0, 1, 3) random variable
for different values ot.

6.4 Conclusions

We have presented an adaptive algorithm for finding absalt®)-approximations of

bounded random variables. While the algorithm is able tp stoich earlier than a non-
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adaptive approach when the variance is small, its expedttgghiag time as goes to0
becomes larger than that of the non-adaptive approach. Weeshthat a mixture of the
two approaches may be a good alternative to the Hoeffdisgéapproach in practice as it
will never stop much later than the Hoeffding-based stogpirke but can, in some settings,

stop much earlier.
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Chapter 7

Conclusion

7.1 Summary of Contributions

The main contribution of this thesis is the introduction loé £BStop algorithm - a near-
optimal stopping rule for findinge, §)-approximations of bounded random variables. The
key advantage over previous approaches is the use of ealf@@#rnstein bounds, which
allow our algorithm to stop much earlier than its compesitathen the variance is small.
We also show how a version of the empirical Bernstein bouatl lblds over an interval
can be used to make our algorithm much more efficient by gngugeviation bounds. The
resulting algorithm achieves a better bound on expectgapstg time and performs well in
practice.

Finally, we applied our techniques to obtain a novel algaonitfor finding absolute
(e,0)-approximations. While our new algorithm required much dewamples than the
standard approach based on Hoeffding’s inequality whemahance is small, it performed
poorly in other settings. We then showed that a combinatfdhese two approaches into a
mixture stopping rule yields an algorithm that performs @dinas well as the better of the

two approaches in all situations.

7.2 Future Work

While EBGStop is currently the most efficient stopping raeffnding (e, §)-approximations
of bounded random variables there is considerable roonmfpravement.

The first interesting question is whether the lower boundtdu2agum et al. is achiev-
able in the case of bounded random variables. EBGStop camegHin aloglog term
involving € and |u:| of achieving this lower bound. This term is the result of gpm a

union bound over time, and one possibility for eliminatingsi by assigning the failure
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probability given to the confidence interval aftesamples adaptively. Since knowing
ando? in advance would allow us to determine the optimal stoppimg tthe hope is that
using estimates of. and o2 to adaptively construct the sequence of confidence intrval
would allow us to come close to achieving the optimal stogpime.

Another important direction for future research is imprayihe coverage of nonpara-
metric stopping rules. As we have already noted in Secti8n&l of the existing(e, )-
stopping rules are extremely conservative and come nowleae achieving coverage of
1 — 9. Some of the inefficiency stems from the use of the union bounthen EBStop
is close to stopping, the confidence interval used in evialgidhe stopping condition is
much more conservative than- 6. Constructing the sequence of failure probabilijés}
adaptively or avoiding the use of the union bound over tinhéogether are two promising
approaches. Further improvements of the coverage coulthtaéned by developing better

bounds to be used in place of the empirical Bernstein bound.
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Chapter 8

Appendix

8.1 Probability Inequalities

Inequalities that bound the probability that a sample meéindeviate from its expected
value by more than some valdeare an important tool for developing efficient stopping

algorithms. This appendix reviews the two bounds used mthsis.

8.1.1 Hoeffding’s Inequality

Let X1,...,X; real-valuedi.i.d. random variables with rang& and, mearu, and let

X, =1/t Zle X;. Hoeffding’s inequality [10] states that for aay> 0
P[X;—p>e| <e 20/ (8.1)

One can use Hoeffding’s inequality to obtain that for @ng (0, 1), with probability at

leastl — ¢
X, -l <y EE0) (8.2)
8.1.2 Empirical Bernstein Bounds
Theempirical Bernstein bounfR] states that with probability at least— §
X, — 4l < 2V, log (3/9) N 3Rlog (3/0) (8.3)

t t ’
whereV; is the empirical variance ok,..., X;: V; = %Zf:ﬂXz‘ — X;)2. Note that
the square root term in Inequality (8.3) is very similar taaae root term in Hoeffding'’s
bound, except in that the empirical standard deviation argm Inequality (8.3) instead
of the rangeR. The additional linear term appearing in the empirical B&xim bound is

necessary because the empirical standard deviation can be 0O
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