A Practical Universal Circuit Construction and
Secure Evaluation of Private Functions

Vladimir Kolesnikov! and Thomas Schneider?*

1 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974,USA
kolesnikov@research.bell-labs.com
2 Dept. of Comp. Sci., University of Erlangen-Nuremberg, Germany
thomas.schneider@informatik.stud.uni-erlangen.de

Abstract. We consider general secure function evaluation (SFE) of pri-
vate functions (PF-SFE). Recall, privacy of functions is often most effi-
ciently achieved by general SFE [IT7/I8/9] of a Universal Circuit (UC).
Our main contribution is a new simple and efficient UC construction.
Our circuit UCy, universal for circuits of k gates, has size ~ 1.5k log? k
and depth ~ klogk. It is up to 50% smaller than the best UC (of Valiant
[15], of size ~ 19k log k) for circuits of size up to ~ 5000 gates.

Our improvement results in corresponding performance improvement of
SFE of (small) private functions. Since, due to cost, only small circuits
(i.e. < 5000 gates) are practical for PF-SFE, our construction appears
to be the best fit for many practical PF-SFE.

We implement PF-SFE based on our UC and Fairplay SFE system [10].

Key words: SFE of private functions, universal circuit, privacy

1 Introduction

We consider two-party secure function evaluation (SFE) of private functions
(PF-SFE). Recall, “regular” SFE techniques allow two parties to evaluate any
function on their respective inputs x and y, while keeping the inputs secret. SFE
is a subject of immense amount of research, e.g. [I7/I8/9]. Efficient SFE algo-
rithms enable a variety of electronic transactions, previously impossible due to
mutual mistrust of participants. Examples include auctions [TTI3IBT], contract
signing [], distributed database mining [7I]], etc. As computation and com-
munication resources have increased, SFE became practical for common use.
Fairplay [10] is a full implementation of generic two-party SFE with malicious
players. It demonstrates feasibility and efficiency of SFE of practical functions,
represented as circuits of up to ~ 10% gates. Today, generic SFE is a relatively
mature technology, and even small improvements are non-trivial and welcome.
In this work, we impose an additional restriction on SFE. Namely, we require
that the evaluated function is known only by one party and needs to be kept
secret (i.e. everything besides the size, the number of inputs and the number of

* The work was done while the author was visiting Bell Laboratories.

2 Vladimir Kolesnikov and Thomas Schneider

outputs is hidden from the other party). Examples of real-life private functions
include credit evaluation function, background- and medical history checking
function, airport no-fly check function, etc. Full or even partial revelation of
these functions opens vulnerabilities in the corresponding process, exploitable
by dishonest participants (e.g. credit applicants), and should be prevented.

It is well known that the problem of PF-SFE can be reduced to the “regular”
SFE [14/T3]. This is done by parties evaluating a Universal Circuit (UC) instead
of a circuit defining the evaluated function. UC can be thought of as a “program
execution circuit”, capable of simulating any circuit C' of certain size, given the
description of C' as input. Therefore, disclosing the UC does not reveal anything
about C, except its size. At the same time, the SFE computes output correctly
and C remains private, since the player holding C simply treats description of C'
as additional (private) input to SFE. This reduction is the most common (and
often the most efficient) way of securely evaluating private functions [I4J13].

Our improvement of the UC construction directly results in improvements of
PF-SFE for many practical private functions of interest. Indeed, circuit-based
SFE (e.g. Yao’s garbled circuit [T7II89]) is still the most efficient SFE method
for many important functions, such as the comparison function. The elegant
and very efficient auction system of Naor, Pinkas and Sumner [I1] implements
auction function as a circuit, as well. Further, due to the size of UC constructions,
PF-SFE is practical only for small circuits (UC for 5000-gate circuits has size
105, pushing the general SFE size limit). Therefore, improvements of circuit
representation is particularly relevant for small circuits, and this is the focus
and the result of our work.

1.1 Owur contributions

Our main contribution is a new elegant and efficient universal circuit UCy con-
struction of size ~ 1.5k log? k and depth ~ klog k. For the circuits most relevant
for PF-SFE (of size up to ~ 5000), our approach results in up to 50% size re-
duction compared to asymptotically optimal construction of Valiant [I5]. See
Table[T]in Sect. [for detailed comparison. As described above, this immediately
implies improvement in the practical PF-SFE. We expand this discussion and
present additional applications below in Sect.

Our constructions are simple and practical. We used them to implement PF-
SFE as an extension of the Fairplay SFE system [10].

The basic building blocks we developed (such as the efficient S} selection
blocks of Sect. may be of use in other circuit constructions as well.

1.2 Related work

The most efficient known UC, construction is the celebrated construction of
Valiant [I5]. With size ~ 19klogk, it is asymptotically optimal, with a small
constant factor. It relies on universal graphs. UCy, is derived from a universal
graph UGyg; UCy is universal for circuits of size k, if UG is universal for graphs
of k£ nodes and in- and out-degrees 2. Embedding of the graph representation

A Practical Universal Circuit Construction and PF-SFE 3

of a circuit C into UGy defines the programming of UCj to simulate C. As
noted above, our construction produces smaller UCy, for circuits most relevant
for PF-SFE. Further, we believe that implementation of our construction is more
self-contained and straightforward.

Waksman [10] describes how to construct and program a permutation net-
work, a circuit implementing an arbitrary permutation on n elements. Waks-
man’s construction is asymptotically optimal (size ~ 2nlogn and depth ~
2logn). We use this work in an essential way — fundamental building blocks
of our UC construction rely on [16].

1.3 Applications for universal circuits

As discussed above, UC is naturally used to extend the functionality or privacy in
numerous practical SFE applications, in particular those based on Yao’s garbled
circuit [I7UT89]. Recall, Yao’s approach views the evaluated function as a binary
circuit known to both parties. The idea is to encrypt the signals on all wires of
the circuit. Then the evaluator (one of the participants of the computation) uses
clever setup and properties of encryption to compute (gate by gate) encryption
of the output wires from the encryptions of input wires. The result of SFE is
obtained by decrypting the values of the output wires of the circuit. We note
that the cost of Yao’s construction depends only on the size of the circuit, and
not on its depth or fan-out. To perform PF-SFE, instead of evaluating the circuit
directly, a UC that is programmed with the original circuit is evaluated. As UC
can be programmed with any circuit, the evaluated function is entirely hidden
from the evaluator.

We discuss natural applications that directly benefit from our improvements.

Frikken et. al [6] show a privacy-preserving credit checking scheme that is
based on the evaluation of a garbled circuit. Their scheme is limited to the
special class of credit-checking policies that can be expressed as the weighted
sum of criteria. By evaluating a universal circuit their scheme can be extended
to arbitrary, more complicated, private credit-checking policies.

Cachin et al. [2] describe autonomous mobile agents which migrate between
several distrusting hosts. Garbled-circuit-based, their scheme ensures the privacy
of the inputs of the visited hosts but not the structure of the mobile agent’s code.
The privacy of the executed code can be guaranteed by evaluating universal
circuits instead.

Ostrovsky and Skeith [12] show how to filter remote streaming data (e.g air-
ports’ passenger lists, on-line news feeds or internet chat-rooms) using secret
keywords and their combinations, such as no-fly lists. Their protocol allows Col-
lector (e.g. airport) to obliviously filter out entries that match the (encrypted)
query, which are then sent back for decryption. Their scheme can be naturally
extended to allow a much finer private matching criteria, additionally preserving
data privacy, as follows. The Collector encrypts each filtered stream element with
a random pad. The querying party thus obtains the list of encrypted matches. In
the second round, the querying party uses PF-SFE (e.g. using our UCy) to search
the matching data with an arbitrary, more detailed private search function.

4 Vladimir Kolesnikov and Thomas Schneider
2 Definitions and Preliminaries

In this section, we present basic notation and building blocks of our construction.

In the following, a gate is the implementation of a boolean function {0,1}% —
{0,1} that has two inputs and one output. We counsider acyclic circuits that
consist of connected gates with arbitrary fanout, i.e. the (single) output of each
gate can be used as input to an arbitrary number of gates. Further, each output
of the circuit C is the output of a gate and not a redirected input of C.

A block B} is a circuit that has u inputs in, .., in,, and v outputs outy, .., out,
(we always associate variable u with inputs and v with outputs). BY computes
a function fp : {0,1}* — {0,1}" that maps the input values to the output
values. For simplicity, we identify B with fp and write: B(ing,...,in,) =
(outy,...,out,). The size of a block B, size(B), is the number of gates B consists
of; its depth, depth(B), is the maximum number of gates between any input and
any output of B. A block can be a sub-block of a larger block. We construct a
circuit as a collection of functional blocks, as this simplifies presentation.

A programmable block is a block that consists of connected programmable
gates with unspecified function tables. Programming a programmable block is
done by providing a specific function table for each of its gates.

A Universal Clircuit UC,, , is a programmable block with v inputs and v
outputs that can be programmed to simulate any circuit C' with up to w inputs,
v outputs and k gates. UCo denotes UC that is programmed to simulate circuit
C, that is V(ing,...,in,) : UCc(iny,...,in,) = C(ing, ..., iny).

A one-output switching block Y is a programmable block that computes
(in1,ing) — ing or ing, as shown in Fig. It is implemented by one gate
programmed with the corresponding function table. size(Y') = depth(Y) = 1.

A two-output switching block X is a programmable block shown on Fig.
that computes (iny,ins) — (ing,ing) or (ing,iny). It is implemented by using (in
parallel) two Y blocks: one for each of the outputs. size(X) = 2; depth(X) = 1.

vy YY o vy vy Yy o oovy
Y 1= or X 1= or

v v v 'R’ vy vy
(a) Y switching block (b) X switching block

Fig. 1. Switching blocks

A selection block S} is a programmable block that selects for each of its v out-
puts one of the u input values (with duplicates). S is programmed according to
the selection mapping (0;)?_,0; € {1..u} that selects the o;-th input as the i-th
output. That is, a programmed SY computes S(ing,...,iny) = (iNg,, ..., Mg,).

A S7 selection block can be implemented by (v — 1) Y blocks that are pro-
grammed to switch the desired input value in,, to the output. Shallow S} is ob-
tained by arranging Y blocks in a tree. Thus, size(S}") = u—1, depth(S¥) = log u.

A naive implementation of Sy selection block uses a S}* selection block for
each of the v outputs, resulting in size(S¥) = v(u — 1) and depth(S¥) = logu.

A Practical Universal Circuit Construction and PF-SFE 5

Selection blocks are crucial for our UC construction. We describe much more
efficient S} constructions in Sect. .2

3 Our universal circuit construction

In this section, we present our modular UC construction. All of the necessary
building blocks were introduced in Sect. [2} here we show how to assemble them.
Then, in Sect. [l we design improved versions of some building blocks, which
results in performance improvement of our UC.

In our UC construction, we simulate each gate G; of the original circuit C.
That is, for each G;, UC,, , 1 has a corresponding programmable G;-simulation
gate Gfim. In our construction, we always ensure that inputs, outputs and se-
mantics of G#™ correspond to G;. Additionally, we hide the wiring of C by
ensuring that every possible wiring can be implemented in UC,, , . This is the
natural method of construction of UC, and is, in fact, employed by Valiant [15].

We design our UC construction recursively (we build a circuit from two cir-
cuits of smaller size). We first note that the input/output interface of UC, , k
is different from that of the natural recursion step. This is why we introduce a
universal block Uy. U can be viewed as a UC with specific input and output
semantics. Namely, Uy has 2k inputs and k outputs, since this is a maximum
UC,, v,x can have. Further, we restrict that Uy’s inputs ing;_1,ing; are only de-
livered to the simulation gate G, and Uy’s i-th output comes from G, (Of
course, input of some gates (G; may come from any other gates’ outputs, and
not from ing;_1 or ing;, which may not be used at all. Uy allows this; it only
restricts that G,’s input cannot come from other in;). Uy is thus a UC for the
class of circuits of size k with the above input/output restrictions.

inq, ..., iny,

universal circuit uc

out1, ..., out

\'
Fig. 2. Modular universal circuit construction

Now, given an implementation of Uy, it is easy to construct UC, , , (shown
on Fig. . We need to provide the input selection block, which directs inputs
of UC to the proper inputs of Uy. Finally, we need the output selection block,
directing outputs of Uy to the proper outputs of UC, and discarding unused
outputs. Both blocks are instances of selection blocks discussed above.

6 Vladimir Kolesnikov and Thomas Schneider

In the next section, we present our Uy construction. Plugged in the construc-
tion of Fig. 2] it gives a complete UC construction.

3.1 Recursive universal block construction

In this section, we describe the natural divide-and-conquer procedure for con-
structing Uy, capable of simulating any circuit Cy, of size k, with the input/output
restrictions mentioned above.

In the following, we refer to the gates of the circuit C} by their index. We
choose a topological order of the gates G, ..., Gy, which ensures that the i-th
gate G; has no inputs that are outputs of a successive gate G;, where j > i.
Since we only consider acyclic circuits, we can always obtain this ordering by
topological sorting with complexity O(k).

Now, suppose we have two blocks Uy, /5, universal for circuits Cy, /5 of size k/2.
We would like to combine them to obtain Uy. Clearly, because of their univer-
sality, one of Uy, could simulate the “upper” half of C}, (i.e. gates G through
Gr/2) , and the other Uy /5 could simulate the lower half (gates G241, ., Gr).
Note, by the topological ordering, there is no data going into the upper Uy,
from the lower one. Thus, Uy must only direct its inputs/outputs and allow im-
plementation of all possible data paths from the upper Uy, to the lower one.
This can be naturally done, as shown on Fig. We describe this in detail
below.

in1, ink ink+1, in2k

|
Uy v
in(1), ing
@ My in?in} inE in|1(
PR LA LA —
il it
W outy out,
; v
out1, outk/2 outk/2+1, outk out1, ey outk
(a) Recursive construction of Uy (b) Mixing block Mj,

Fig. 3. Recursive universal block construction

The first k inputs to Uy, ing, .., in are directly sent to the upper Uy /5. Note,
the order of the inputs matches the interface perfectly, so no additional manip-
ulation is required. The k/2 outputs of the upper (resp. lower) Uy, are sent
directly to the first (resp. second) half of the outputs of Ug. Again, interfaces
match, and no manipulation is required.

We now only need to show how the inputs to the lower Uy, are provided.
These inputs could come from (any G¥™ gate of) the upper Uy, /2- Therefore, we

A Practical Universal Circuit Construction and PF-SFE 7

also wire the outputs of upper Uy, into a selection block S],:/ % This allows to di-
rect, with duplicates, the output of any gate of upper Uy /o to any position of the
input interface of lower Uy /o (and thus to any gate of lower Uy, /5). Additionally,
(some of) lower Uy, 5’s inputs could come from the Uy inputs ing1, ...ingg. Since
the lower Uy, simulates gates G, /o41 through Gy of Cy, inputs ingyq,...inz
are already ordered to match lower Uy /o’s interface. Now, for each input of lower
Uy /2, we need to switch between the two input wires: one provided by upper
Ug/o via S,’j/ 2, and the other coming from Uyg’s input directly. This is easily
achieved by a Y switching block. On the diagram, for ease of presentation, we
combine the k of these Y blocks into a mizing block My, shown on Fig. with
size(My) =k - size(Y') = k and depth(My) = 1.

The base case of the recursive construction is Uy, a universal block imple-
menting a single gate. U; is implemented by a single programmable gate. This
completes the description of the recursive Uy construction.

The above immediately implies efficient methods of UC programming, given
the circuit Cy. In particular, if the first (resp. second) input of a gate G in the
lower half of C}, (k/2 < j < k) is connected to an input of C}, the mixing block
Mj, is programmed to select the corresponding input ing;—1 (resp. ing;) of Uy
by programming Y;_r_1 (resp. Ya;_x) of M correspondingly (see Fig. [3(b)]).
Otherwise, if G; is connected to an output of a gate G; in the upper half of Cj,
(1<i<k/2), My and S,’:/ % are programmed to select the corresponding output
from the upper Uy o block by programming Y;_r_1 (resp. Y5;_x) correspond-

ingly and programming S:/Q with o9j_r_1 =1 (resp. o9j_k = 1).
We now compute the complexity of our constructions U, and UC (using

selection block constructions of Sect. . Recall, the cost of Yao’s garbled circuit
depends only on its size, and not on depth. Note, size(U;) = 1,depth(Uy) = 1.

size(Uy) = 2size(Uy2) + size(S,’j/Q) + size(My)
log(k)—1 -
=k-size(Uy) + Y 2(size(Sy)s)+ size(Myyz))
=0
log(k)—1

, k k
=k+ Y 2(6 5757 loa(gr) +3+ 57)
=0

log(k)—1 log(k)—1
=k+3klog’k — 2klogk —3k Y i+3 » 2
=0 =0
= k4 3klog® k — 2klogk — 3k - 0.5(log (k) (log(k) — 1)) + 3(k — 1)
= 1.5klog? k — 0.5k log k + 4k — 3;
depth(Uy) = 2depth(Uyjs) + depth(Sy/?) + depth(May,) = . ..
=klogk+k+4logk — 12.

8 Vladimir Kolesnikov and Thomas Schneider

Using the optimization of Sect. Uy, has complexity size(Uy) = 1.5k log? k—
1.5klogk + 6k — 5 and depth(Uy) = klogk + 4logk — 11.

U combined with input- and output-selection blocks of Sect. as shown
in Fig. 2] results in a UC construction of complexity

size(UC) = 1.5k log® k + 2.5k log k + 9% + (u + 2k)logu + (k + 3v) logv
—2u —4v +1;
depth(UC) = klogk + 2k + v + Tlogk + 2log u + 3logv — 14.

4 Improved selection block constructions

In this section, we present efficient selection block S} constructions. They can
be plugged directly in our UC construction. The size and depth computation of
UC presented in Sect. uses efficient constructions of this section.

We start the presentation with two useful generalizations of the permutation
blocks of Waksman [16]. Based on these, we construct efficient selection blocks
which are directly used in our UC construction.

4.1 Generalized permutation blocks

P} permutation block. A permutation block P, is a programmable block that
can be programmed to output any permutation of the inputs. Formally, given
a permutation (m;)i_,,m € {1,...,u},Vi # j : m; # m; that selects for the i-th
output a unique input 7;, P computes P(iny, ..,in,) = (Mg, .., N,).

When u is a power of 2, Waksman [16] describes an efficient recursive P}
construction built from X switching blocks. His P¥ has size(P!) = 2ulogu —
2u + 2 and depth(PY) = 2logu — 1.

Waksman also gives an efficient recursive algorithm to program the X switch-
ing blocks of his construction. (Fig. |4] describes a slight generalization of Waks-
man’s construction; fixing v = v in Fig. 4| corresponds to Waksman’s P¥.) The
programming algorithm takes a u X u permutation matrix for the permutation
(7;) as input. It splits this 4 x v permutation matrix into two u/2 x u/2 per-
mutation matrices that are recursively implemented by the left and the right
P:j//; permutation sub-block and programs the X switching blocks correspond-
ingly. Using a sparse matrix representation for the permutation matrices this
algorithm can be efficiently implemented in O(ulogu).

We note that Waksman’s construction can be naturally generalized to the
cases where u # v, i.e. the number of inputs and outputs differ. Below we define
the resulting objects (which we call “truncated permutation” and “expanded
permutation” blocks), and present their efficient constructions.

TPY2V truncated permutation block. A TPgZU truncated permutation
block permutes a subset of v of the u inputs to the v < u outputs. The remaining
u — v input values are discarded. Formally, an output mapping (u;)7_;, pi €
{1,...,u},Vy # i : p; # p; selects the p;-th input as the i-ths output. The
truncated permutation block computes T'P(ini,...,iny,) = (iny,,...,in,,).

A Practical Universal Circuit Construction and PF-SFE 9

u/2 u/2
P Pvi2

outy out, outgouty out,_qout,

outy, ..., out,,

Fig. 4. Recursive construction of a P}' permutation block

The TPZZ” block is recursively constructed analogous to Waksman’s permu-
tation network construction as seen in Fig. @] W.lo.g we assume u and v are
even at each recursion step (otherwise we introduce an unused dummy input or
output with small overhead). If u > 2 the TP“Z" truncated permutation block

is divided into two TPZ;; 29/2 truncated permutation sub-blocks. The upper u,/2

X switching blocks distribute the inputs of TP"Z" to the two sub-blocks. The
lower (v/2 — 1) X switching blocks distribute the outputs of the two sub-blocks
to the outputs of TPL‘Z“ as shown in Fig. 4l At the base of the recursion, if
v =1, a S} selection block selects the intended input.

The TPﬁZ” block is programmed using a natural generalization of Waks-
man’s recursive programming algorithm. The intended output mapping (p;) is
expressed as a u X v truncated permutation matrix. In each recursion step the
algorithm splits the u x v matrix into two u/2x v /2 truncated permutation matri-
ces implemented by the left and right sub-block and programs the X switching
blocks accordingly. In the end of the recursion, if the truncated permutation
matrix is a v X 1 matrix with a one in the i-th row, the S} selection block is
programmed to select the i-th input value as output: o7 = 7. This algorithm can
be implemented in O((u + v)logv) using sparse matrix representations.

The complexity of this construction is size(TP*=") = (u+v) log v+u—3v+2
and depth(TP"=") = logu + logv — 1.

EP}. , expanded permutation block. An EP.. , expanded permutation
block permutes the w inputs to a subset of u of the v > u outputs. The remain-
ing v — u outputs are allowed to obtain any input value (they are intended to
be later discarded and are called dummy outputs). Formally, an input mapping
(a)ieq, i € {1,...,0}, V5 # @ 1 pu; # pj specifies that the i-th input should
be mapped to the p;-th distinct output. The expanded permutation block com-
putes EP(inq,...,in,) = (outy,...,out,) where (outs = in,) < (4. = s),s €
{1,...,v},re{l,... u}.

10 Vladimir Kolesnikov and Thomas Schneider

The construction of the EP}-, is analogous to the previously described
TP;LZ” block. At the base of the recursion, if u = 1, the single input in; is
connected to each of the v outputs.

The programming algorithm of EP" , is analogous to that of TP"Z" as well.
The input is a u x v matrix that corresponds to (p;) and it can be implemented
in O((u 4+ v)logu).

The construction has complexity size(EP}~,,) = (u+ v)logu — 2u + 2 and
depth(EPY.,,) = 2logu. B

v>u

4.2 Efficient selection blocks

We use truncated and expanded permutation blocks of the previous section to

build eflicient selection blocks S}, used directly in the UC construction.
Su_ , selection block. We obtain the S%, , selection block from one EP'-,

expanded permutation block, one PY permutation block, and (v—1) Y switching

blocks as shown in Fig.

ing, ..., inu
SUZV i
! |TP32"
v !
v
| & |
T

out1, outV out1, outv

(a) Sys., selection block (b) S¥2" selection block

Fig. 5. S} selection blocks

It is not hard to see that the above Sy, is indeed a selection block, i.e.
it can be programmed with any selection mapping (o;)y_y,0; € {1,...,u}. To
program Sy, first count the frequency of occurrence ¢; of each input value in
thioutput: c; =F#{o; 0, =7;1€{L. ..v}};j'e {1.. u} Note, 0 < ¢; < v and
> j=1¢j =v. The EP}, expanded permutation block is programmed to

1. map the needed inputs (c; # 0) to its (i;i ¢k)-th output and
2. map the unused inputs (¢; = 0) to an unused (dummy) output.

The (v — 1) Y switching blocks connected to the outputs of EP}, duplicate
the needed inputs as necessary and feed them to the P permutation block.
They are programmed as follows. If the right input of a Y block is a needed
output (produced by Step , then the Y block selects it as output. Otherwise,
the output of the neighbor Y block is selected. For each j, this construction

inputs ¢; copies of in; into the P, permutation block. P, then permutes these

A Practical Universal Circuit Construction and PF-SFE 11

values to the corresponding outputs indicated by the selection mapping (o;). The
complexity of this construction is size(S}%,,,) = (u+v)logu+2vlogv—2u—v+3
and depth(S%,,) = 2logu + 2logv + v — 2.

Permutation-based SUZV selection block. An efficient S*=? selection
block can be constructed and programmed analogously, but using a Tszv
truncated permutation block instead as shown in Fig. Its complexity is
size(S42Y) = (u+3v)logv+u—4v+3 and depth(S=V) = logu+3logv+v — 3.

Improved S3, selection block. In this section, we optimize the S}, se-
lection block construction for the case v = 2u, most frequently used in our
recursive construction of the universal block Ug. We improve by replacing the
EP, expanded permutation block in the construction of v>y 10 Fig.
with a smaller P? permutation block and a different connection of the (v — I
Y blocks as shown in Fig. [f} Our construction achieves size(S%,) = 6ulogu + 3
and depth(SY,) = 4logu + 2u — 1.

in1, inu

u
SZu

u
pU |

I]
(bl

You You-1 You-2 You-3 Yu+t

X4 Xo X3
e
Y1 Yo y3

Yqs - Yoy

2u +

2 |
I

outy, ..., outy,

Fig. 6. Improved 5%, selection block

Lemma 1. Construction of Fig.[6is a S, selection block.

Proof. To prove Lemma [} we only need to show that the upper permutation
block P} together with the layer of Y blocks output the selected values (with
the right number of duplicates each) in some order. (The rest, i.e. imposing the
desired order, is done by the lower permutation block P3".)

We use the network of Y blocks to duplicate (or omit) inputs as required
by the selection block specification. The upper permutation block PY can be
programmed to deliver the desired input in; to any Y-layer input x; not already
used by another input. For example, if input in; needs to be duplicated ¢; times,
this can be achieved by programming the permutation to map in; to z;, and

12 Vladimir Kolesnikov and Thomas Schneider

have blocks Y} through Y .,_1 to output z;. This way, as required, the value
in; would be duplicated c¢; times.

For efficiency reasons, the wiring of the Y-layer is limited. In particular,
input z; is delivered only to blocks Y; and Y5, _;+1, which are in column ¢. From
there, x; can be propagated “to the right” from Y; (i.e. to blocks Y;11, ..., in the
lower row) and/or ”to the left“ from Y3,_;11 (i.e. to blocks Ya,_it2,..., in the
upper row). Note, blocks Y; and Ya,_;41 cannot receive different inputs from
P!. They, however, can produce different outputs, since one or both of them
could be propagating the value of their neighbouring Y block.

It is not immediately clear that the inputs in;...in, can be permuted such
that the Y-layer can provide the right number of duplicates for each input. We
show, that this in fact can be done. We observe that this permutation and the
Y-layer programming can be reduced to the following box-packing problem.

2 2 o =5 4|
B E &= =3 |

Fig. 7. Valid arrangement of boxes produced by Algorithm [I| for boxes of size
(¢j)=12,3,1,4,4,5,4,1,3,1,2,2,0,0,0,0}. Dark gray head cells contain size.

Box-packing. (See Fig. [7| for illustration.) There are u rectangular boxes of
sizes ¢1,...,¢y, where ¢; € {0,...,2u} and > ; ¢; = 2u. Each non-empty i-th
box consists of a head cell (dark gray), and ¢; —1 trailing cells (light gray). There
is a rectangular 2 x u grid of slots that consists of an upper row and a lower row.
A box of size ¢; occupies ¢; consecutive slots in one row (one exception is that
the right-most box might wrap around from the lower to the upper row, as seen
on Fig. @ The boxes in the upper row are oriented with heads to the right, and
the boxes in the lower row are oriented with heads to the left. A collision occurs
when two heads occupy slots in the same column. The arrangement of all u boxes
is called walid, if it contains no collisions. (Note that a valid arrangement leaves
no empty slots.) A solution to the box-packing problem is a valid arrangement.

A procedure for a valid arrangement of the boxes of sizes c1,..., ¢, gives
the following natural programming of the P} permutation block and the Y-
layer. Associate (1-to-1) each input in; of size ¢; with a box of same size ¢; and
compute a valid arrangement. Then, input in; is switched by P, to x; if the
j-th column is occupied by the head of the box associated with in;. Inputs in;
with ¢; = 0 (unused inputs) are switched to the columns j which have no head
boxes. Both switching blocks Y; and Y5, ;41 of each column ¢ are programmed as
follows. They select input z; iff the corresponding slot in the valid arrangement
is occupied by the head (otherwise, the output of the neighbored Y switching
block is selected). It is not hard to see that this programming results in the
desired output, given the corresponding valid arrangement of boxes.

Lemma [2| below shows an efficient box-packing procedure. This completes
the proof of Lemma [T} O

A Practical Universal Circuit Construction and PF-SFE 13

Algorithm 1 (Boz-packing)

0. Each box is always put in the leftmost unoccupied slots in the specified row.
1. Sort boxzes by size in increasing order.
2. while there is at least one box of size 1, do
(a) if there are at least two bozes of minimal sizes so > s1 > 2 left
i. put the box of size s1 in the upper row
it. put remaining (but no more than s1-2) boxes of size 1 in lower row
iii. put the box of size so in the lower row (possibly wrap around)
. put remaining (but no more than s2-2) boxes of size 1 in upper row
(b) else // there is only one box of size s1 > 2 left
i. put the remaining bozes of size 1 in the lower row
1. put the box of size s1 > 2 in the lower row and wrap around
3. while there is at least one box of minimal size s3 > 2 left, do
(a) if there is another box of minimal size sq4 > s3 > 2 left
1. put the box of size s3 in the upper row
ii. put the box of size s4 in the lower row (possibly wrap around)
(b) else // there is only one box of size s3 > 2 left
i. put the box of size s3 > 2 in the lower row and wrap around
4. end

Lemma 2. Algorithm [efficiently produces a valid arrangement for any given
set of u bozes of sizes c1,...,cy;0 < ¢; < 2u Z};l cj = 2u.

Proof. Note, since Y ¢; = 2u, for each box of size 2 + 4, there must be ¢ boxes
of size 1, or i/2 boxes of size 0, or a corresponding combination.

A) Algorithm (1| always puts all boxes and terminates. We first show that
Step [2] eliminates all boxes of size 1. Indeed, suppose the contrary, a block of size
1 remains. Then, in each previous execution of Step we eliminated blocks of
sizes s > s1 > 2 and s1 + s2 — 4 blocks of size 1, and in Step 2B we eliminated a
block of size s1 and s1 —2 blocks of size 1. Since) ¢; = 2u, there could not have
been more blocks of size 1 than we eliminated, and we arrive at contradiction.
Further, Step [3] eliminates all remaining boxes of size > 2. In each iteration,
at least one box of size s3 > 2 is eliminated either in Step or Step
until all boxes of size > 2 are eliminated. (Observe, at each iteration, upper row
“grows” not more than the lower. Thus, Algorithm’s actions are always legal.)

B) Algorithm produces a valid arrangement. We need to show that no step
of Algorithm [I] causes a collision. It is easy to see that Step [2a]and Step 2b|never
cause a collision. Further, once Step [2| has finished, the number of occupied slots
in the upper row wy,, is less or equal to the number of occupied slots in the lower
TOW Weown, With 0 < Wyewn —wup < s2—2 (here sy is the size of the most recently
put block in Step [2(a)iv]). Since the boxes are processed in increasing order, in
Step[3] s3 > s2 > 2. If the box of size s3 is the last remaining one, it is put in the
lower row in Stepand, as is easy to see, doesn’t cause a collision. Otherwise,
in Step the box of size s3 is put in the upper row. The number of occupied
slots in the upper row is now w;p = wWyp + 53, and the upper row has at least two
more occupied slots than the lower row: w;,, — Waown = (Wup + 53) — Wdown > 2.

14 Vladimir Kolesnikov and Thomas Schneider

This implies that the next Step doesn’t cause a collision when putting
the box of length s4 > s3 into the lower row. After Step the number of
occupied slots in the lower row is wtliown = Wyown + S4. In the end of the current
iteration of Step the number of occupied slots in the upper row is again

less or equal to the number of occupied slots in the lower row: W/, .., — wh, =

U
(Wdown + 84) — (Wup + 83) = (Wdown — Wup) + (84 — s3) > 0 and hence the lenpgth
relationship between the upper and lower rows (0 < W}, — Wy, < s14 — 2) is
the invariant of Step [3] Therefore, no iteration of Step [3] causes a collision. As
no step causes a collision, Algorithm [I| produces a valid arrangement.
C) Algorithm [1|is efficient. Sorting of the u boxes in Step 1| costs O(ulogu).
Steps [2| and [3| have a runtime of O(u), as in every iteration at least one box is

eliminated. Hence the runtime of Algorithm [1|is in O(ulogw). O

4.3 Optimization of the universal circuit construction

As the order of the two inputs of a gate simulation block G can be swapped by
swapping its function table, we can omit the last row of X blocks in the lower
P} permutation block of the S]]:/ % selection block in the construction of Uy, (see
Fig. Fig. |§| and Fig. [4) and adapt the programming correspondingly. This
results in a reduction of Asize(Uy) = klogk — 2k + 2 and Adepth(Uy) = k — 1.

5 Comparison and conclusion

We now compare our UC solution to the best previously known Valiant’s UC [15].
Recall, we consider circuits UC,, , i, universal for circuits of k gates, u inputs and
v outputs. Valiant’s UC has sz’ze(UCx’%{f”t) = (19k+9.5u+9.5v) log k4+O(k) and

ours has size(UC, 1) = 1.5k log? k+2.5k log k4 (u+2k) log u + (k +3v) log v +
O(k). To help visualize the relationship, Table [1| shows sample relative sizes of

. . . ize(UC
our UC construction compared to Valiant’s: size, = _8i2e(UCu.v.) V’;ﬁ;’;)t . We also
size(UCY altant)

note the break-even point keq = k|size,,, =1 — the maximum size of circuits for
which our UC is smaller.

Table 1. Comparison between our and Valiant’s UC construction [15].

circuit inputs and outputs|| break-even relative size sizere;
[o] v point keq|[k = 1,000[k = 5,000[k = 10, 000
few | o(k) o(k) 2,048] 91.8%| 1102%| 118.1%
0.5k 0.1k 5,000 86.0%| 100.1% 106.2%
0.5k 0.25k 8,000 83.1% 96.4% 102.1%
1k 0.5k 117,000 69.0% 79.5% 84.0%
many| 2k 1k 26,663,000 53.6% 60.9% 64.1%

While Valiant’s construction is asymptotically better, our UC is up to 50%
smaller for small circuits, due to much lower constant factors. For PF-SFE, small
circuits are of most interest, since only they can be evaluated efficiently today

A Practical Universal Circuit Construction and PF-SFE 15

(indeed, UC for 5000-gate circuits has size ~ 10%). In addition, our construction
is more detailed and seems to be much easier to implement than Valiant’s. Thus,
we believe that our UC construction is a good fit for practical PF-SFE. In support
of our contribution, we have successfully implemented general PF-SFE based on
the Fairplay system [I0] and our UC construction.

Acknowledgements. We thank reviewers of FC’08 for helpful comments.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Tan F. Blake and Vladimir Kolesnikov. Conditional encrypted mapping and com-
paring encrypted numbers. In Financial Cryptography and Data Security, FC 2006,
volume 4107 of LNCS, pages 206—220. Springer, 2006.

Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Miiller. One-round secure
computation and secure autonomous mobile agents. In ICALP 00, pages 512-523,
London, UK, 2000. Springer-Verlag.

Giovanni Di Crescenzo. Private selective payment protocols. In Financial Cryp-
tography and Data Security, FC 2000, volume 1962 of LNCS. Springer, 2000.
Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6):637-647, 1985.

Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In RSA Security 2001 Cryptographer’s Track, volume 2020 of LNCS,
pages 457-471. Springer-Verlag, 2001.

Keith Frikken, Mikhail Atallah, and Chen Zhang. Privacy-preserving credit check-
ing. In EC ’05: Proceedings of the 6th ACM conference on Electronic commerce,
pages 147-154, New York, NY, USA, 2005. ACM Press.

Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of
association rules on horizontally partitioned data. In ACM SIGMOD Workshop
on Research Issues on Data Mining and Knowledge Discovery (DMKD’02), 2002.
Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Advances in
Cryptology — CRYPTO 2000, volume 1880 of LNCS, pages 20—-24. Springer, 2000.

. Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure two-party

computation. Cryptology ePrint Archive, Report 2004/175, 2004.

D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-party
computation system. In USENIX, 2004.

Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and
mechanism design. In 1st ACM Conf. on Electronic Commerce, 1999.

Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data.
In Advances in Cryptology — CRYPTO 2005, volume 3621 of LNCS, 2005.

Benny Pinkas. Cryptographic techniques for privacy-preserving data mining.
SIGKDD Ezplor. Newsl., 4(2):12-19, 2002.

Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing
for NC'. In Proc. 40th IEEE Symp. on Foundations of Comp. Science, pages
554-566, New York, 1999. IEEE.

Leslie G. Valiant. Universal circuits (preliminary report). In Proc. 8th ACM Symp.
on Theory of Computing, pages 196-203, New York, NY, USA, 1976. ACM Press.
Abraham Waksman. A permutation network. J. ACM, 15(1):159-163, 1968.
Andrew C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symp. on
Foundations of Comp. Science, pages 160-164, Chicago, 1982. IEEE.

Andrew C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symp.
on Foundations of Comp. Science, pages 162-167, Toronto, 1986. IEEE.

	A Practical Universal Circuit Construction and Secure Evaluation of Private Functions
	Vladimir Kolesnikov and Thomas Schneider
	Introduction
	Our contributions
	Related work
	Applications for universal circuits

	Definitions and Preliminaries
	Our universal circuit construction
	Recursive universal block construction

	Improved selection block constructions
	Generalized permutation blocks
	Efficient selection blocks
	Optimization of the universal circuit construction

	Comparison and conclusion

