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Abstract. We study the problem of Key Exchange (KE), where authen-
tication is two-factor and based on both electronically stored long keys
and human-supplied credentials (passwords or biometrics). The latter
credential has low entropy and may be adversarily mistyped. Our main
contribution is the first formal treatment of mistyping in this setting.
Ensuring security in presence of mistyping is subtle. We show mistyping-
related limitations of previous KE definitions and constructions (of Boyen
et al. [7, 6, 10] and Kolesnikov and Rackoff [16]).
We concentrate on the practical two-factor authenticated KE setting
where servers exchange keys with clients, who use short passwords (mem-
orized) and long cryptographic keys (stored on a card). Our work is thus
a natural generalization of Halevi-Krawczyk [15] and Kolesnikov-Rackoff
[16]. We discuss the challenges that arise due to mistyping. We propose
the first KE definitions in this setting, and formally discuss their guar-
antees. We present efficient KE protocols and prove their security.

1 Introduction

The problem of securing communication over an insecure network is generally
solved using key exchange (KE). KE provides partners with matching randomly
chosen keys, which are used for securing their conversation. Of course, no adver-
sary Adv should be able to mismatch players. Therefore, players must possess
secrets with which they can authenticate themselves. The kind of secrets that
are available to players determines the setting of KE. In the simplest KE setting
players have a long shared random string. KE is more complicated if parties
establish key pairs with the public keys securely published. Using weak and/or
fuzzy credentials, such as passwords or biometrics, further complicates the de-
sign of KE. Finally, using a combination of credentials may make certain aspects
of KE easier (such as incorporating password authentication), but increases the
overall complexity of the solution, as discussed in [16].

Our setting. Two-factor authentication is critical and is used extensively in
secure applications such as banking, VPN, etc. Stored long keys protect against
online adversaries, but are vulnerable against theft. The extra layer of security is
achieved with additional use of a theft-resistant credential, e.g. a short password
or a biometric. Unfortunately, neither password nor biometric can be expected
to be read reliably into the computer.
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We give foundation to this setting by generalizing the work of Halevi-Krawczyk
(HK) [15] and Kolesnikov-Rackoff (KR) [16]. Recall, they address the client-
server setting where both long key and a short password are used for KE. The
servers are incorruptible, but client’s card or password can be compromised.

Motivated by real scenarios, we study the effects of password mistyping. Mis-
typing need not be random, but may be skewed by the adversary, e.g. by technical
means or social engineering manipulation. We thus consider security against
adversaries who can arbitrarily affect user’s mistyping. This consideration is
especially relevant in case biometric credentials are used for authentication, since,
due to technology limitations, biometric readings are expected to be misread.

Mistyping opens subtle vulnerabilities and raises complex definitional issues.
In the sequel, we use terms “password” and “mistype”, although our work applies
to passwords, biometrics, and other short noisy credentials, as noted in Sect. 5.

1.1 Our contributions and outline of work

Our main contribution is the first formal treatment of mistyping of passwords
in KE that uses a combination of credentials.

We discuss recent definitions that consider mistyping-related settings and
issues – robust fuzzy extractors of [7, 6, 10]. We point out a limitation of the
definitions of [7, 6, 10] with respect to robust handling of biometric misread-
ing/mistyping and discuss possible remedies. We demonstrate and correct a vul-
nerability of the definition and protocol of [16], which can only be exploited when
users mistype. These observations further emphasize the subtleties of mistyping
and the need for its formal treatment and deeper understanding.

In Sect. 3, we introduce our setting and the framework of [16] which we build
upon. Then, with simple protocols we illustrate mistyping-related issues, discuss
natural definitional approaches to handling mistyping and their shortcomings.
Most of the mistyping-related subtleties we uncover arise due to the simultaneous
use of both long keys and passwords. In Sect. 4, we formalize our discussion in
a definition, and formally argue that it prevents attacks that exploit mistyping.

In Sect. 5 we discuss applications of our work in biometric authentication.
In Sect. 6 we give efficient protocols; we prove their security in the full version.

1.2 Related work

The problem of key exchange has deservedly received a vast amount of attention.
Password KE was first considered by Bellovin and Merritt [4]. Foundations –
formal definitions and protocols – were laid in [3, 8, 13, 9], and other works.

The use of combined keys in authentication, where the client has a password
and the public key of the server, was introduced by Gong et al. [14] and first
formalized by Halevi and Krawczyk [15]. Kolesnikov and Rackoff [16] extended
this setting by allowing the client to also share a long key with the server, and
gave first definitions of KE in their (and thus in the Gong et al. and HK) setting.

Password mistyping in KE. Despite the large research effort, the defi-
nitional issues of KE password mistyping are formally approached only in the
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UC definition of Canetti et al. [9]. In their password-only setting, mistyping is
modelled by Environment Z providing players’ inputs. Additional use of long
key makes our setting significantly different (and more subtle with respect to
mistyping) from that of [9]. Mistyping was also considered in different settings:
related-key attacks on blockciphers [2] and signing authority delegation [17].

Biometric authentication and fuzzy extractors. A growing body of
work, e.g. [12, 5, 10, 11], addresses the use of biometrics in cryptography. Boyen
et al. [7, 6, 10] consider its application to KE. They introduce the notion of ro-
bust fuzzy extractor (RFE), and give generic constructions of biometric-based
KE from RFE. While their setting is similar to ours, the problems solved by [7,
6, 10] are different. They give KE protocols that accept “close enough” secrets,
thus enabling security and privacy of biometric authentication. They do not
aim to give a formal KE definition that handles biometric/password misread-
ing. Moreover, as shown in Sect. 2, their notion of RFE is insufficiently strong
to guarantee security of their generic KE protocol in many practical settings.
(However, instantiating their KE protocol with their RFE construction is secure,
since the latter satisfies stronger requirements than required by the definition.)

2 Mistyping-related limitations in previous work

On robust fuzzy extractor (RFE) definition and KE protocol [7, 6, 10].
We first clarify underlying biometric technology limitations and assumptions.

Biometrics are “fuzzy”, i.e. each scan is likely to be different from, but “close”
to the “true” scan. Error-correction [12] is then used to extract non-fuzzy keys
usable in cryptography. However, error-correction cannot correct many misread-
ing errors (up to 10%), since this would imply high false acceptance rate3. Thus
misreading beyond error-correction ball occurs often, and must be considered.

We note a limitation of RFE definition [7, 6, 10], prohibiting its use with the
generic KE construction (Sect. 3.3 of [7]) in many scenarios. Roughly, definition’s
domains of correctness and security guarantees coincide. That is, extracted ran-
domness is only guaranteed to be good if the scan is within the error-correction
distance t from the original. There are no guarantees on the randomness if this
condition does not hold. This is, perhaps, due to the papers’ implicit assumption
that “natural” misreadings are almost always “close” and are corrected (i.e. FRR
is negligible). However, as discussed above, this assumption often does not hold.
Strengthening the randomness guarantees of RFE would increase its usability.

More specifically, a RFE (Gen,Rep) may exhibit the following vulnerability.
Given the public helper string P , if the biometric w0 is misread in a special way
w′ outside the error-correction ball, the extracted randomness Rep(w′, P ) is
predictable. Even more subtly, Rep(w′, P ) and Rep(w0, P ) could be related, but
unequal. Clearly, KE protocols, including one of Sect. 3.3 of [7, 6], constructed
from such RFE would not be secure. One solution is to require, for w′ outside the
3 In balanced optimized real-life systems, which compare scans directly, False Reject

Rate (FRR) is usually 1..10%. Notably, NIST reports FRR of fingerprints 0.1..2%,
iris 0.2..1% and face 10%. See [1] for comprehensive overview and references.
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error-correction ball, that either Rep(w′, P ) = ⊥ (property of RFE construction
of [7, 6]) or that Rep(w′, P ) is either equal to or independent from Rep(w0, P ).

Finally, although [7, 6, 10] consider adversarial substitution of P with P ′,
they guarantee Rep(w′, P ′) = ⊥ only for w′ in the error-correction ball. This
vulnerability also can be resolved by separating the error-correction and security
domains. We defer detailed definition, analysis and constructions as future work.

On the definition and construction of [16]. We present the following
practical outside-of-the-model mistyping attack on the protocol (and thus also on
the definition) of Kolesnikov and Rackoff [16]. Specifically, resistance to Denial of
Access (DoA) attacks of the protocol of [16] is compromised if the honest client
ever mistypes. Indeed, since their protocol is not challenge-response, client C’s
message can be replayed. This is not a problem if C always types the correct
password (session keys of C and server S will be independent). However, if the
password was mistyped, both the original and replayed message will cause S to
register password failure, violating the intent of the DoA resistance. We stress
that the KR protocol is otherwise secure against mistyping (and we prove it in
Sect. 6). Our definitions and protocols address and correct the above insecurity.

Above limitations show subtleties of mistyping and the need to address them.

3 Pre-definition discussion

Our main contribution is a formal treatment of mistyping in the combined keys
KE setting of Kolesnikov and Rackoff [16]. The KR setting is a generalization
of the Halevi-Krawczyk setting [15], in which clients have a password and the
public key of S. In KR setting, clients carry stealable cards capable of storing
cryptographic keys – public key of S and long key ` shared by C and S. Addi-
tion of the cards allows better functionality and security than that of HK. KR
definitions and protocol guarantee and achieve strong security when C’s card is
secure, and weaker, password-grade, security, when the card is compromised.

We stress that the definition of KR does not handle mistyping. That is,
it is possible to construct KR-secure protocols that “break” if the client ever
mistypes his password. Sect. 3.3 of [16] provides an example and a short informal
discussion on mistyping, and leaves the problem open. In Sect. 3.2, we expand
this discussion, present more subtle mistyping threats, and discuss approaches
to handling them. This leads to the presentation of our definitions in Sect. 4.

Notation. We concentrate on the two-factor authentication setting, where
a client (denoted C) exchanges keys with a server (S). Both long and short keys
are used for KE. Let P be a player. We denote by Pi the i-th instance of P .
We write PQ

i to emphasize that Pi intends to do KE with (some instance of)
player Q. Denote the adversary by Adv. Sometimes we distinguish the game and
real-life adversary, and denote the latter AdvReal. Denote C’s password by pwd
and long key by `. S’s public/ private keys are pkS and skS . Password failure
and the associated control symbol output by S is denoted by P⊥.

On the Style of Definition. We chose the game (Bellare-Pointcheval-Roga-
way [3]) style, since this allowed using the intuitive definition of KR (only existing
two-factor-authentication KE definition). Extending KR allowed reduction of
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security claims of our definition/setting to those of KR. Further, the stronger
and arguably more intuitive UC model unfortunately is sometimes too strict,
ruling out some efficient protocols which appear to be good enough in practice.

Proposing a simulation-based (especially, UC) definition, and exploring the
relationship between it and our definition would add confidence in both our and
the UC treatment of the problem. We thus leave as an important next step the
design, detailed analysis and comparison of a corresponding UC definition. We
expect that our discussions of ideas and obstacles would aid in this future work.

3.1 Review of the framework of [16]

Our definition is an extension of the KE definition of KR (Def. 2 of [16]).
Recall, KR (and thus our) definition follows the common game-based paradigm.

The real world and real adversary AdvReal are abstracted as a game, played by
the game adversary Adv. Game includes clients and servers – Interactive Turing
Machines (ITM) running the KE protocol Π, communicating via channels con-
trolled by Adv. Game rules mimic reality, and are designed so that Adv’s wins
correspond to real-life breaks. Π is defined secure if no polytime Adv is able to
win above certain “allowed” probability. Definition is thus reduced to the design
of the game. KR break down the real world into five intuitive games (KE1, KE2,
KE3, DOA and SID), which mimic possible real-life attack scenarios.

Game KE1 is the core of the definition; it addresses password security when
the long key is compromised. The difficulty of KE1 design is in balancing the
power given to Adv, since AdvReal’s non-negligible advantage must be accounted
exactly. It is achieved by “charging” Adv for each active attack (i.e. P⊥ output
by S). The allowed Adv win probability is a function of the number of charges.

KE2 models AdvReal posing as S to C. KE3 models KE with uncompromised
card. In both cases, Adv is allowed only negligible success, which is easy to model.
DOA models a “denial of access” attack formalized by KR, which requires that
Adv is not able to cut C’s access to S by exhausting allowed password failures.
Finally, SID is a game preventing technicality-based insecure protocols.

We stress that a good model need not mimic the world exactly. E.g., Adv’s
ability to mistype or to know whether S failed may be different from AdvReal’s,
as long as Adv can win in some way (only) against bad protocols.

Mistyping in KR definitions. In KR games, client ITMs are always instan-
tiated with correct password, which limits Adv’s ability to emulate mistyping.
Many real-life attacks that exploit mistyping cannot be carried in the game, al-
lowing vulnerable protocol to withstand Adv’s attacks and be defined secure. In
Sect. 3.2, we discuss vulnerabilities, some natural “fixes” and their limitations.

3.2 Natural definitional approaches to mistyping (that don’t work)

To better expose subtle definitional issues and the limitations of some natural
approaches, we build presentation incrementally. We propose several mistyping-
vulnerable protocols, each progressively more “tricky”, and show that they are
KR-secure. We then discuss corresponding natural “fixes” of the KR definition
– ways of allowing Adv to modify or substitute client’s password, so as to mimic
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real-life mistyping and allow Adv to carry the real-world attacks. We show that
ultimately they are insufficient and conclude that, for technical reasons, direct
mimicking of mistyping in the games does not result in a good model. For read-
ability, we keep discussion brief and informal (but readily formalizeable).

Mistyping vulnerabilities by example. Let Π be a KR-secure KE proto-
col. Π1, Π2, Π3 below are KR-secure, but fail in progressively more subtle ways.

Π1 (S leaks long key upon mistyping). Let Π1 be a protocol as Π, except that
in Π1 S reveals the long key ` in a message, once password failure P⊥ occurred.

Clearly, Π1 is “bad”. But, it is easy to see that Π1 is secure by KR definition.
Since instances of C never mistype in the game, KRAdv cannot cause P⊥ without
possession of `. Thus, Adv cannot gain from S revealing `, and Π1 is KR-secure.

Π2 (S leaks password upon repeated mistyping). Let pwd be C’s password.Let
Π2 be a protocol as Π, except that in Π2, S reveals pwd once pwd+ 1 was tried
twice. (Limited global state can be communicated among instances of S with
the help of Adv, thus allowing Π2 [16]; see full version for detailed discussion.)

At the first glance, it may appear that Π2 is “good”. Indeed, the advantage
Adv gets from causing the leak is canceled by the effort to obtain it – a redun-
dant password attempt for each attempt of causing the leak (this is the reason
why Π2 is KR-secure). However, this leak can be caused by real-life honest C
mistakenly entering pwd + 1 twice. This is not an unusual situation, and the
resulting password compromise is clearly unacceptable.

Π3 (S leaks a small hint about a password upon repeated mistyping).Let pwd
be C’s password. Let Π3 be a protocol as Π, except that in Π3, S reveals whether
pwd = 0 once pwd+ 1 was tried 4 times. Π3 is bad for the same reason as Π2.

Definitional approaches. We consider strengthening Adv of KR by mim-
icking powers of real-life adversary. Our goal is to disallow above “bad” protocols.

Allowing Adv to specify the password of C’s instances disqualifies Π1.Indeed,
Adv wins the game where he is not given `, as follows. He instantiates C with a
wrong password, causing P⊥ and leak of `, which Adv uses to win.

To disqualify Π2, Adv needs more than simple substitution of C’s password.
Adv needs the power to specify a “mistyping function” applied to the password
given to C (idea also considered in [17]). That is, Adv specifies a map F : D 7→ D,
and C is instantiated with password F (p). (Not every map F is allowed [16].)

While Π3 is bad for the same reason as Π2 (real-life C’s mistyping leaks a
password hint), it is harder to disqualify Π3 due to the small size of the leak.
It turns out that Π3 is an important example, showing that allowing Adv to
influence C’s input is insufficient. We continue this discussion below in Sect. 4.

4 Mistyping-secure KE definition

Π3, the last example of Sect. 3.2 is a (otherwise secure) protocol where S leaks a
small password hint after four certain repeated mistypings. A repeated mistyping
does not help Adv (he is checking already checked password). Since in KR defi-
nition, Adv is charged for each (even repeated) mistyping, the cost of mistyping
outweighs the benefit of the leak, and Adv is not able to exploit the vulnerability.
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This leads to our main idea – to allow Adv to run mistyped KE executions
“for free”. This way, Adv will be able to win whenever a non-negligible amount
of information is leaked due to mistyping. It turns out that this additional power,
applied properly, results in a good (i.e. sufficiently, but not too strong, and easy
to use) definition, presented in this section.

Our extension of KR definition. We would like to give Adv the ability
to observe and actively participate “for free” in mistyped KE sessions. This
is not possible with the approaches we previously discussed, including that of
[16]. This is because there Adv always learns whether S accepted the password,
allowing Adv to verify a password guess, for which Adv must be charged. Our
idea is to withhold failure information from Adv (and not charge him in case of
P⊥) by default, thus allowing “free” mistypings. If Adv wants to obtain failure
information, it is given to him upon special “check” request. Since this gives him
information about the password, he is charged one attempt, if the check reveals
P⊥. Note, this cost structure is a simple generalization of the one used in [16].
This amendment of KR is sufficient to handle mistyping.

Another advantage of this approach is allowing to mimic mistyping without
Adv creating instances with substituted password. Indeed, Adv can make a pass-
word guess, and, based on it, emulate any mistyping sequence of C. As shown in
Sect. 4.1, this guarantees security, since a “free” mistyping-dependent leak would
confirm Adv’s guess, allowing him to win. On the other hand, C’s input substi-
tution, especially using a mistyping map, is technically complex, and makes the
definition less usable, since proofs would have to consider all such maps.

We now present our definition. Let n be a security parameter, and D =
{0, 1}m is the password domain. (In general, m can be a function of n; interesting
cases are when m is constant or logarithmic in n.) All players (Adv, C, S) are
p.p.t. machines. As does [16], we use session IDs (SID) to partner instances of
players, and impose the following correctness requirement. In the absence of
adversary, all sessions terminate and intended parties output same sid and key.

Definition 1. We say that an instance CS
i of a client C and an instance SC

j of
a server S are partners, if they have output the same session id sid.

We start by presenting KE games, which model attacks of a real-life adversary
AdvReal. The first game models the setting where AdvReal obtained C’s long
key, is attacking a server, and is allowed a limited number of password tries.

Game KE1. Adv deterministically chooses active attack threshold q ∈ 1..|D|
(based on security parameter n) and creates an (honest) server S. Adv chooses
S’s name; then S’s public/private keys are set up, and the public key revealed to
Adv. Adv then runs players by executing steps 1-7 multiple times, in any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for
the client; the client C is registered with S, and long key ` and password pwd
are set up and associated with C. Only one honest client can be created. Adv
is given the long key `, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,
choosing any unused name, long key and password for him.
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3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input: his name C, the partner server’s name S, the public key of
S, the long key and the password of C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input: his name S, the private key of S, his partner’s name (C or
Bi) and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. The instance imme-
diately responds with a reply (by giving it to Adv) and/or, terminates and
outputs the result (a sid and either the session key, the failure symbol ⊥, or,
in case of the server instance, the password failure symbol P⊥) according to
the protocol. Adv learns only the sid part of the output.

6. Adv “checks” any completed honest instance – then he is notified whether
the instance output P⊥, ⊥, or a session key. Adv gets charged one attempt,
if he checked SC and it output P⊥.
When Adv accumulates q charges, he becomes restricted – he can neither
deliver messages to any instances SC

j nor check any instances.
7. Adv “opens” any successfully completed and checked honest instance – then

he is given the session key output of that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who
has been instantiated to talk to the honest client C, must have completed, been
checked by Adv, and output a session key. The challenge is, equiprobably, either
the key output by SC

j or a random string of the same length. Adv must not have
opened SC

j or a partner of SC
j , and is not allowed to do it in the future.

Then Adv continues to run the game as before (execute steps 2-7). Finally,
Adv outputs a single bit b which denotes Adv’s guess at whether the challenge
string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

Note that we handle sid differently from [16]. Here we insist that parties
always output sid, while previously sid was only output if a party did not fail.
We need this change, since KE1’s interface needs to be the same for cases when
an instance failed and did not fail. Outputting a sid only if KE succeeded (and
letting it known to Adv for free) helps Adv determine whether P⊥ occurred.

In all other KE games (KE2, KE3, SID and DOA) below, password
mistyping and even the knowledge of pwd should not help Adv. We thus choose
to reveal the password to Adv and remove restrictions on the number of P⊥’s
(thus removing the definition of q). We also allow Adv to specify Ci’s password
at its instantiations. These games are presented by modifying the above KE1.
All of the above four modifications are included in all games below.

KE2 models the setting where Adv stole C’s pwd and `, but is attacking C.

Game KE2 is derived from KE1 as noted in the previous paragraphs; further,
Adv is given ` and must challenge an honest client instance CS

i .
KE3 models the setting where Adv only stole C’s pwd, and is attacking S.

Game KE3 derived from KE1 as noted above, but Adv is not given `.
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SID enforces non-triviality, preventing improper partnering (e.g. players un-
necessarily outputting same sid). Recall, Adv is not allowed to challenge parties
whose partner has been opened; SID ensures that Adv is not unfairly restricted.

Game SID is derived from KE1 as noted above; further, Adv does not ask
for (nor answers) the challenge. Adv wins if any two honest partners output
different session keys.

Note, SID allows for one (or both) of the partners to output a failure symbol.
Adv only wins if two successfully completed parties output different session keys.

Finally, game DOA models resistance to the Denial of Access (DoA) attacks.
This game prevents vulnerabilities due to mistyping (see Sect. 4.1).

Game DOA is derived from KE1 as noted above; further, Adv does not ask
for (nor answers) the challenge. Adv wins if the number of P⊥’s is greater than
the number of client instances where he substituted the password.

Definition 2. We say that a key exchange protocol Π is secure in the Com-
bined Keys model with mistyping, if for every polytime adversaries Adv1, Adv2,
Adv3, Advsid and Advdoa playing games KE1, KE2, KE3, SID and DOA, their
probabilities of winning (over the randomness used by the adversaries, all players
and generation algorithms) is at most only negligibly (in n) better than:

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2 and KE3,
– 0, for SID and DOA.

The definition for the HK setting (where C does not have `) is extracted
from Def. 2 by removing all uses of ` and the games where Adv doesn’t know `.

4.1 Why this is a good definition

First, since Adv is not weaker than Adv of [16], Def. 2 enforces basic security
properties of the protocols. We additionally need to argue that the definition
is not too strict and that it prevents mistyping-caused leaks in protocols. The
former property is intuitive, and we support it by proposing an efficient protocol
and proving its security w.r.t. Def. 2 (Sect. 6). The latter property, on the other
hand, requires significantly more careful consideration, presented in this section.

Note, KE1 is the only game where we need to be careful with not giving Adv
too much power w.r.t. mistyping. In other games, unlimited ability of Adv to
substitute C’s input should not help him win against a secure protocol. At the
same time, such Adv directly models real-life adversary. Therefore, this simple
allowance resolves mistyping problems w.r.t. other games we consider.

KE1 is the core of the definition, and most of the definitional subtleties appear
in KE1. We start with the discussion of the details and ideas about this game.

Why KE1 is a good model. Often, when a definition is proposed, a proof
is provided, demonstrating the relationship between the new and previous defi-
nitions. This adds confidence in the proposed definition. We introduce the first
definition in our setting; thus there is no previous definition to relate it to.
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Our approach. Instead, we prove that if a protocol Π is secure by Def. 2, Adv
of the game KE1 cannot tell the difference between the following two executions,
if he is not allowed to see the outputs of S. In one execution, selected (by Adv)
client instances are instantiated with a mistyping sequence Adv chooses, and in
the other they are instantiated with the password pwd of C. We stress that Adv
is active during these executions; he can perform (almost) all the actions Adv of
KE1 can. This provides an informal “reduction” to the definition of [16], in the
following sense. Assume the definition of [16] is “good”, i.e. accurately identifies
insecure protocols in its “no-mistyping” model. Then Def. 2 is “good” in the
general setting, where clients are allowed to mistype.

Indeed, suppose Π is “bad”. Due to the indistinguishability of the above ex-
ecutions, anything that Π leaks due to mistyping can also be seen and exploited
without mistyping by Adv of KE1 of [16]. Then Π will be insecure by definition
of [16], since, by assumption, it is a good definition. Since KE1 Adv of Def. 2
is at least as strong as that of [16], Π will also be insecure by Def. 2. From
another angle, if active Adv cannot distinguish the above executions, then he
is not learning anything from the mistypings, other than what may be inferred
from the corresponding sequence of P⊥’s, but the latter is unavoidable anyway.

This reduction is informal, and serves only as evidence that our definition is
good. By the nature of definitional work, it is not possible to “prove” definitions.

Formal theorem statement and proof of indistinguishability of the above
executions is in full version. Proof idea is that some passwords used in the mis-
typed execution must be unequal to C’s pwd. Ability to distinguish executions
gives a free hint of what pwd is not, allowing corresponding KE1 Adv to win.

On DoA protection. As mentioned in Sect. 2, the definition of [16] does
not model (and fails to guarantee) DoA resistance when honest users mistype.
We need that a replayed client’s flow must not cause S output P⊥. Therefore,
C must send at least one message that is dependent on S’s message. Thus, the
one-round, two-independent-flow protocols are not possible if DoA is desired.

We change the DOA game accordingly. Adv knows pwd, and is now allowed
to instantiate clients with passwords of his choice. Adv wins DOA, if the number
of P⊥ is greater than the number of client instances with substituted password.

5 Application to biometric authentication

We note that our definitions and protocols are directly applicable to biometric-
based authentication. For example, fuzzy extractors [11] can be naturally used
in our two-factor authentication setting, as follows. The storage card now ad-
ditionally contains the public data pubC of C’s biometric bC . The (potentially
short) randomness extracted from bC plays the role of the password. To authen-
ticate, C first reconstructs the password using extractor’s recovery procedure
Rec(pubC , b′C), and then uses it as prescribed by a KE protocol. Misreading b′C
of bC can cause variety in the output of Rec and thus effect mistypings in the
protocol. Still, our definitions (in-particular, mistyping-security property) and
properties of fuzzy extractors guarantee security of this construction, even if
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Adv captured the card with the long key and pubC . (In the HK setting, where
C only has pkS , we also can use our definition and above protocol – but pubC is
now sent by S to C authenticated by S’s signature, as part of the protocol.)

However, we note that our definitions do not handle the general case, where
bC is used directly as input to C. That is, S knows “acceptance set” of C (ASC),
and accepts if C’s submitted password/biometric bC ∈ ASC . We anticipate that
a natural extension of our definition would handle this case. In particular, the
correctness requirement should be amended w.r.t. ASC , and Adv’s allowed suc-
cess rate may be dependent on AS as well. We leave this definition as future work,
to be performed either as extension of our definition, or in the UC framework.

6 Mistyping-Secure KE Protocols

WLOG, assume protocol messages are formed properly (i.e. values drawn from
appropriate domains, etc.). Let n be a security parameter, E = (Gen,Enc,Dec)
be a CCA2 secure public key encryption scheme, F : {0, 1}n×{0, 1}n 7→ {0, 1}n
be a PRFG, and MAC : {0, 1}n×{0, 1}∗ 7→ {0, 1}n be a message authentication
code. Let NC ∈ {0, 1}n be the name of client C. (Shorter names may be used.)

Although KR definitions do not handle mistyping, their protocol resists all
mistyping-related attacks, except for (perhaps, unimportant in some settings)
DoA resistance. We first prove this fact. Constr. 1 is the protocol of [16], only
with updated handling of sid, to satisfy the syntactic requirements of Def. 2.

Construction 1 (KE with mistyping, no DoA resistance [16])

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α=EncpkS

(NC ,pwd,k)
r → · · · ← α,MAC`(α)

set sid = (r, α), set sid = (r, α),
verify MAC`(α) and NC ; output
if fail, output (sid,⊥),halt (sid,K = Fk(r))

verify pwd;
if fail, output (sid,P⊥),halt

else output (sid,K = Fk(r))

Theorem 1. Constr. 1 satisfies Def. 2, except for the success rate in game DoA.
We now present a fully secure protocol in our model, derived from Constr. 1.

Construction 2 is a challenge-response version of Constr. 1, where CS replies
with (α,MAC`(r, α)) to message r.

Theorem 2. Constr. 2 is secure by Def. 2.

We note that Constr. 2 can be modified to allow S to send confirmation to
C whether he accepted, failed or password-failed. See full version for details.

Proofs of security of Theorems 1 and 2 are presented in the full version.
Achnowledgements: We thank Shai Halevi, Hugo Krawczyk, and anony-

mous referees for valuable comments.
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