
Key Exchange Using Passwords and Long Keys?

Vladimir Kolesnikov and Charles Rackoff

Dept. Comp. Sci., University of Toronto, Toronto, ON, M5S 3G4, Canada,
{vlad|rackoff}@cs.utoronto.ca

Abstract. We propose a new model for key exchange (KE) based on a
combination of different types of keys. In our setting, servers exchange
keys with clients, who memorize short passwords and carry (stealable)
storage cards containing long (cryptographic) keys. Our setting is a gen-
eralization of that of Halevi and Krawczyk [17] (HK), where clients have
a password and the public key of the server.
We point out a subtle flaw in the protocols of HK and demonstrate a
practical attack on them, resulting in a full password compromise. We
give a definition of security of KE in our (and thus also in the HK)
setting and discuss many related subtleties. We define and discuss pro-
tection against denial of access attacks, which is not possible in any of the
previous KE models that use passwords. Finally, we give a very simple
and efficient protocol satisfying all our requirements.

1 Introduction

We consider the goal of enabling multiple independent secure conversations be-
tween pairs of parties over an insecure network. The most convenient and natural
way to achieve this is to perform a key exchange (KE), that is to provide the par-
ties with matching randomly chosen keys that can be used for securing (only)
a particular conversation. Of course, each player wants to communicate with
a particular person, and even a powerful adversary Adv should not be able to
match him up with a wrong partner. Therefore, players must possess some secret
information with which they can authenticate themselves. The kind of informa-
tion that is available to players determines the setting of KE. The simplest KE
setting is when players have a shared random string. KE is more complicated
in the public key setting, where parties have public/private key pairs with the
public keys securely published. The most difficult setting is the pure password
setting, where parties only have a short (presumably memorizable) shared pass-
word. We note that pure password KE protocols, at least in the standard model,
are currently rather complicated and inefficient, due to the complexity of the
setting.

1.1 Our Setting

Consider the client-server setting where both long keys and short keys (pass-
words) are used for KE. Assume that the server’s (e.g. bank’s) keys are securely
? A shorter version of this paper appears in the Theory of Cryptography Conference

2006 [18].

2 Vladimir Kolesnikov and Charles Rackoff

stored. We take advantage of the inherent logistical differences in how keys are
stored by the client (password in memory, long key on a storage card), to achieve
more robust security than what is possible by using either type of key alone. In-
deed, possession of long keys allows strong security guarantees against an online
attacker. However, long keys can not be memorized, and thus must be stored,
perhaps on a convenient plastic storage card. This is the vulnerability of this
solution – the card may be (relatively) easily stolen by a physical attacker. On
the other hand, passwords may be memorized, need not be stored, and thus can
not be stolen. However, the protection against an online attacker one can hope
to achieve with passwords is rather weak – passwords can always be guessed with
relatively high probability. The only (somewhat satisfactory) protection against
guessing attacks is recognizing them and refusing connection after a predeter-
mined number of password failures1.

Combining the benefits of both settings allows us to obtain a system, secure
against both types of attack, and thus suitable for protection of sensitive infor-
mation. This model is even more appealing due to its wide acceptance – it is
natural for us to think of a card and a password, when we do, say, personal
banking. More motivation is given in Sect. 3.

1.2 Our Contributions

We demonstrate a dangerous practical attack on the Halevi and Krawczyk (HK)
[17] protocols, resulting in full compromise of any client’s password (Sect. 2). The
elegance, simplicity and practicality of the HK model and protocols resulted in
their widespread practical use (e.g. their variants are being considered for parts
of the IETF key exchange standard [13, 11]). Therefore, the discovery of our
attack may also have an important practical impact.

We propose and advocate the above Combined Key model of key exchange
(ckKE). To the best of our knowledge, it has never been formally discussed.
ckKE is a generalization of the HK model.

We give a formal definition of security of ckKE (Sect 3). Defining KE even
in simpler settings has proven to be notoriously difficult, with a variety of (only
seemingly!) innocuous decisions to be made. We discuss the subtleties of many
of our choices, such as the necessity of tightness in the allowed success of the
adversary, distinguishing the types of failures and reporting them, etc. Much of
our discussion (e.g. on tightness of allowed success of the adversary Adv) also
applies to and benefits pure password models.

We aim to make our definition as simple and natural as possible. For exam-
ple, we require the server to explicitly indicate in its output whether a password
failure occurred. We find this more intuitive than defining password guessing
attack as an act of interference by the adversary (e.g. a successful imperson-
ation!), as done in previous formalizations, such as [17, 2]. Moreover, in previous

1 We mention (but do not explicitly address) a variation of this defense against “too
many” password guessing attacks. There the server limits the rate with which logins
can be made, e.g. by exponentially increasing wait times between unsuccessful logins.

Key Exchange Using Passwords and Long Keys 3

formalizations, such as [17, 2, 5], the attacks are accounted by the environment;
the server may not even “know” they occurred (e.g. in case of successful im-
personation), which makes attack recognition in practice less intuitive. We also
find the game style of definitions (used in this paper) generally simpler and less
prone to error than the simulation style (see discussion on the style of definition
in Sect. 3.1 for more details).

We discuss unique security features available in ckKE “for free”, such as the
possibility of protection against the following Denial of Access (DoA) attack.
Adv, attacking a player P , tries to connect to P ’s partner Q, using any password
pwd. If pwd is correct, Adv wins; if not, Adv continues until he wins or Q refuses
to connect to P . Then a legitimate P can no longer connect to Q. This easy
to mount attack is unavoidable in any password-based setting (including HK)
and is highly disruptive. We are not aware of the prevention of this attack being
previously formalized. We formalize this attack and show how to prevent it in
our model.

Finally, we give a very simple and efficient two flow KE protocol and prove
its security (Sect. 4). An important feature of our protocol is that its flows are
independent of each other, and thus can be sent in any order (or simultaneously),
allowing for more flexibility and round efficiency.

1.3 Related Work

The problem of key exchange has deservedly received a vast amount of attention
(e.g. [12, 3, 19, 1, 22, 9, 10]). The more complicated setting of pure password-based
KE (pwKE) was first considered by Bellovin and Merritt [4]. Formal definitions
(and protocols) in this setting were given by Bellare, Pointcheval and Rogaway
[2], Boyko, Mackenzie and Patel [6], Goldreich and Lindell [14], and, recently, by
Canetti et al. [8], as well as by many others.

Most relevant to our work is the problem of password-based KE in the asym-
metric client-server setting, where the client has a password and the public key
of the server. The question of resistance to off-line password-guessing attacks in
this setting was first raised by Gong, et al. [15]. Later, Halevi and Krawczyk [17]
formalized the notion of one-way password authentication in this setting and
gave very simple and efficient protocols realizing it. They also extended their
protocols to achieve key exchange with mutual authentication and perfect for-
ward secrecy. The HK model is much simpler than the pure password model.
The work of HK was the inspiration of our paper.

Further, Boyarsky [5] criticised the protocols of the earlier version [16] of [17]
and suggested his own formalization of the same model. He showed several ways
to amend a variant of protocols of [16] to satisfy his definition. We stress that
he does not criticize protocols of the later version [17] we are considering.

Pinkas and Sander [21] consider heuristic approaches to securing password-
only based authentication. They increase the cost of password-guessing and DoA
attacks by using reverse Turing tests (RTT), that is, problems that are easy to
solve for humans, but not for computers. We approach a different problem. In

4 Vladimir Kolesnikov and Charles Rackoff

particular, RTT techniques can not increase security of a particular client against
a determined attacker.

2 Attacking the Protocols of Halevi and Krawczyk [17]

Halevi and Krawczyk give four versions of their protocol (suitable for different
tasks: password transmission, one-way authentication, and key exchange in two
settings). Three of the four versions (with the exception of the Encrypted Pass-
word Transmission protocol) are (similarly) affected. We demonstrate our attack
on their key exchange protocol.

The Halevi-Krawczyk protocol. Let S be a server with the public key
pkS , and p be the password shared between S and the client C. Let function
f(·; ·) be one-to-one on its components, i.e. for every fixed strings p, x, functions
f(p; ·) and f(·;x) are one-to-one. Let E = (Gen,Enc, Dec) be a CCA2 secure
encryption scheme.

Construction 1 (The Halevi-Krawczyk Mutual Authentication and Key Ex-
change Protocol (ΠHK))
S C
pick a nonce n n, pkS → verify pkS

pick random long key k
← C, n, EncpkS

(k, f(p;C,S, k, n))
decrypt and verify
y := PRFk(n, S,C) y → check y = PRFk(n, S,C)
set K = PRFk(y) set K = PRFk(y)

The “decrypt and verify” step outputs “FAIL” if the encryption is invalid or
the received value of f does not match what S computes himself. The nonces
must satisfy the only requirement that they never repeat.

Our Attack exploits the structure of f . We show that the conditions im-
posed on f are insufficient.The flaw of the proof of security of the protocol seems
to be in the incorrect conclusion in Footnote 9 on p. 258 of [17]. We note that
it is possible to make the proof (of security of one-way password authentica-
tion protocol) of Halevi and Krawczyk go through by additionally requiring that
f(·;C, ·) 6= f(·;C ′, ·) for any unequal client names C, C ′.

For simplicity, we describe our attack on a specific instantiation of ΠHK . We
stress that natural variants of our attack apply to many choices for f , and for
nonce strategies, as well as for other parameter settings.

Let client names and passwords be 10 bits long, and nonces be 30 bits long.
For a variable V , let vi be the i-th bit of V . For example, C = 〈c1, c2, ..., c10〉
is the name of the honest player, and n = 〈n1, n2, ..., n30〉 is the nonce. Let
the function be f(p;C,S, k, n) = 〈c1, ...c9, c10 ⊕ p1, n1, ...n21, n22 ⊕ p2, ..., n30 ⊕
p10, S, k〉. Finally, let nonces be chosen sequentially starting from 0. Note that
this is a valid configuration of ΠHK .

The attack proceeds as follows. Adv creates an honest server S, an honest
client C with any name C = 〈c1, c2, ..., c10〉, and a bad client B with the name

Key Exchange Using Passwords and Long Keys 5

B = 〈c1, c2, ..., c10 ⊕ 1〉 and a randomly chosen password p′ = 〈p′1, ..., p′10〉. Let p
be C’s password. Suppose for now that p1 6= p′1, i.e. passwords of C and B differ
in the high order bit. Adv observes one execution of KE between S and C. Adv
records the encryption e sent by C and the nonce n (for concreteness, say n =
00..00, e.g. n is the first nonce). Now, B logs into S as himself, as follows. S sends
the nonce n′ = n+1 = 00..01, and B replies with 〈B,n′, e〉. Now, if S doesn’t fail,
the password of C is computed as pwd = 〈p′1⊕1, n22⊕n′

22⊕p′2, ..., n30⊕n′
30⊕p′10〉

(since for i = 22, ..., 30, it must be that ni−20⊕pi = n′
i−20⊕p′i). Also, if p = pwd,

then S must accept, since f(p′;B,S, k, n′) = f(pwd, C, S, k, n). Thus, if S fails,
pwd is eliminated from the possible passwords list.

B proceeds logging in as himself another 29 − 2 times, eliminating different
passwords one by one, until S accepts and that fact determines C’s password.
If S does not accept after B logged in 29 − 1 times, B changes the first bit of
his password with the server, and repeats the above entire attack (say, starting
with a nonce ending with nine zeros), searching the other half-space. Finally,
the two possible unchecked passwords can be verified by the same approach
(and changing the password of B).

We stress that there were no attempts at impersonating C or S, and all
failures are attributed to B. Neither C nor S know that C was attacked, thus
C’s account is never blocked. If B’s account is blocked due to failures, B can claim
mistyping and restore access. Moreover, there is no need to attack from only B’s
account; the attack can be easily distributed to try only a few passwords from
each of many bad accounts. Again, it is easy to see that our attack is naturally
generalizable to many practical instantiations of ΠHK .

On Boyarsky’s [5] amendments of HK. The earlier version [16] of [17]
had essentially the same protocol as [17], with the exception of the imposed re-
quirements on the encryption scheme ([16] only required so-called one-ciphertext
verification attack resistance, vs ciphertext verification attack resistance in [17]).
Boyarsky [5] (independently from the revision resulting in the current version
[17]) discovered the insufficiency of the weaker encryption. He gives his own for-
malization of the model and suggests three different amendments (see Sect. 5 of
[5]) of the protocols of [16]. Boyarsky limits his consideration to the case where
f is a concatenation function; thus our attack is not applicable to his protocols.

3 Key Exchange in the Combined Keys Model

Recall from the discussion in the Introduction that our setting (client carrying
a plastic storage card and remembering a password) allows the advantage of
robustness, that is graceful degradation of security in case one of the two types
of keys is compromised. In particular, if the client’s password is compromised, the
security of KE should not suffer. On the other hand, if the card is compromised
(e.g. copied), the remaining security should be that of the HK password model.

On resistance to server compromise. Halevi and Krawczyk briefly dis-
cuss resistance to insider attacks, i.e. attacks by rogue server employees who have
access to some, but not all, private information stored on the server (see Sect.

6 Vladimir Kolesnikov and Charles Rackoff

3.3 in [17] for discussion of heuristic defense approaches). As another advan-
tage of our setting, we mention that it allows stronger protection against server
compromise. For example, since our clients have storage cards, public/private
key pairs for each client Ci can be set up and used appropriately. Of course, an
attacker who steals all the server data would now be able to successfully pose
as the server. However, he can be prevented from posing as a client, as long as
the client’s private key remains secret. We note that such protection will require
significant additional complexity of the definition and the protocol, and we leave
it outside the scope of this paper. Therefore, for clarity, as do Halevi and Kraw-
czyk, in our main exposition we assume that the server’s private information is
never compromised. For completeness, after presenting our protocols in Sect. 4,
we briefly discuss how to modify them to protect against some consequences of
server compromise.

On Denial of Access (DoA) attacks resistance. Recall that in the HK
(and also in the pure password) setting, security critically depends on the ability
of servers to suspend clients’ accounts if there are “too many” password failures.
At the same time, it is all too easy for Adv to cause them, making systems
unusable by a trivial and easily mounted attack. In our combined key setting, it
is natural to introduce protection against such DoA attacks. This can be done
by requiring that polytime attackers can not cause password failures (and thus
account suspension) without possession of long keys, stored on the card of the
client. Of course, Adv may attempt attacks even without having the long keys,
and furthermore, such attacks may be noticed by the servers. However, it is not
hard to ensure that Adv does not learn anything from such attacks. This can
be done, for example, by server first verifying possession of the long key (e.g. in
form of a MAC), and immediately failing, if such verification failed. Then Adv
does not learn anything about pwd, since it was not even used by the server.
Therefore, such password guessing attacks are not a threat, and can be ignored.
We formalize resistance to DoA attacks in our definition.

In our view, the main reason for using two types of keys is the two qual-
itatively different layers of protection against compromise. DoA resistance, al-
though an important bonus, may not alone justify the cost of long key storage
and management.

The reader may ask why one can’t simply do two KE’s in the two relevant
models (one with parties sharing long keys, and the HK model) and combine the
keys to obtain a KE protocol in our model. There are a number of issues to be
addressed there. Firstly, a definition of security has to be given anyway – which
is the bulk of our work. We note that some of the definitional subtleties arise
specifically due to the use of both keys simultaneously. These subtleties cannot
be addressed in either of the simpler models separately. See, e.g., the discussion
on password updates in Sect. 4. Secondly, natural ways of combining the two
KE protocols (such as establishing a secure session using long keys, and sending
the password over it) result in less efficient protocols.

Key Exchange Using Passwords and Long Keys 7

3.1 Pre-definition Discussion

We start by briefly recalling the general setting for KE. There is a number of
players (in our case, they are divided into two types – clients and servers) who
have associated credentials, and pairs of whom may have shared common infor-
mation. We think of a player as an identity, which may have many instantiations.
Whenever a player P wishes to talk to another player Q, an instance of P is
created with the required credentials passed. Thus an instance can be thought
of as a participant of a particular conversation.

It is convenient to separate the notions of identity and instance for several
reasons. Firstly, it is easier to talk about the independence of instances. Inde-
pendence is highly desirable to avoid maintaining state and worry about com-
munication and synchronization between instances. Secondly, a need often arises
to have several channels of communication open between two or more parties
simultaneously. Then the notion of instance makes it easier to implement and
model concurrent executions of KE by a player.

We do not discuss how a player P knows that he wants to talk to a player
Q. This may be done as part of previous (possibly insecure) communication,
scheduled to happen at some predetermined time, or be requested by a higher
level protocol. We give Adv the power to initiate conversations between players
to model all possible scenarios.

Our goal is to enable a secure conversation, or session, between the instances
of two players. Key exchange provides corresponding pairs of participants with
matching keys that can be used for securing their communication. Of course,
the keys of honest parties must appear random to the adversary Adv, and Adv
must not be able to cause instances to match up in an inconsistent way2.

To formalize the latter requirement, we need to define the notion of partners
– instances who end up having a (n intended) conversation. We use session IDs
(SID) to partner instances of players. There are several ways of using SID for
this purpose, and we choose what we find to be the most natural – requiring each
party that output a key to have an additional output sid. The other ways (e.g.
requiring sid to be an input to parties, or requiring existence of a partnering
function) seem to be less intuitive. We note that many natural protocols can be
naturally modified to produce session ids. The sid output is not necessary in
real protocols; it is only used for the purpose of defining and analyzing security
of KE protocols.

Definition 1. (KE Partners) Let P be a player. We denote by Pi the i-th in-
stance of P . We write PQ

i to emphasize that Pi intends to do KE with (some
instance of) player Q. We say that an instance CS

i of a client C and an instance
SC

j of a server S are partners, if they have output the same session id sid.

Note that no two instances are partners when they are created; they may
become partners once they’ve executed their KE protocols. We stress that Pi

2 We note that Adv can cause confusion by mismatching instances of players and
making them output unrelated keys. We don’t regard this as a problem.

8 Vladimir Kolesnikov and Charles Rackoff

and PQ
i refer to the same instance of P . We may omit the superscript in PQ

i ,
when it is clear from the context.

Mutual authentication (MA) is an assurance that, if PQ
i successfully com-

pleted and output a key, there must have been a QP
j “communicating” with him.

We choose not to require it, because it can be achieved at the cost of two addi-
tional “key confirmation” flows (and refreshing the session key). Moreover, PQ

i

can never be sure that QP
j “is there” anyway, since QP

j may go offline at any
time. Note, it is rather common and accepted to not require explicit mutual
authentication for these reasons (e.g. [8]). Further, if we required MA, we must
use a special ⊥ output symbol to denote failure. In our definition we allow ⊥,
but don’t insist on its use.

On the notions of attacks and failures. We first note that a special kind
of failure – the password failure – must be introduced in our model to allow
protection against DoA attacks. Intuitively, if Adv’s attack is such that the act
of failure of the server may reveal some information about the client’s password,
then such failure is a password failure.

A natural approach to define adversary’s ability to attack the system is by
counting password checking attempts. However, it is less natural to define what
an “attempt” is. Indeed, previous works on password-based key exchange (e.g.
[17, 2]) define “attempt” essentially as the act of Adv’s interference with the
exchange of messages between two parties. However, it is less clear, for example,
whether an act of Adv changing an insignificant bit of a message or an act of
successful impersonation is such an attempt. Moreover, previously, the number
of attempts was counted not by the server instances (they are not required to
“know” whether a password guessing attack occurred), but by the environment.

An important feature of our definition is that servers themselves determine
when, whether and what type of failure occurred. This explicates the notion of
a failed password attempt, and ensures server’s ability to identify a threat and
react to it. Therefore, depending on the kind of failure, we allow servers to output
either a failure symbol ⊥, or a password failure symbol P⊥. We count password
failures as P⊥’s reported by the servers, and clients accounts are suspended
(to prevent further password guessing) based solely on that information and a
predetermined threshold q. Therefore, a misidentification of an attack by the
server is an omission of the protocol (opening a possibility of either password
checking or DoA attacks), and we deem such protocols insecure.

We note that previous definitions, such as those of [17, 2, 5], can be similarly
amended to ensure “explicit authentication” by additionally requiring that the
server output P⊥ when he thinks a password attack has occurred. However, as
discussed above, it seems to be cleaner to use the server’s output as the only
criterion for determining whether such an attack took place. Further, to ensure
that the server does not misidentify the attacks, his output would need to be
incorporated into the definitions, further complicating them.

The advantage of using smart cards vs storage cards is briefly dis-
cussed in Sect. 4.

Key Exchange Using Passwords and Long Keys 9

On the style of definition. As mentioned earlier, we prefer the game style
of KE definitions in this paper. We find it easier to understand, since the game
of the definition naturally corresponds to the actions and abilities of the ad-
versary. We don’t seem to need the complexity of simulation style definitions.
An exception seems to be the very complex universally composable (UC) defi-
nitions, which can model very subtle issues such as password mistyping (see [8]
and discussion in Sect 3.3). In addition to their complexity, UC-secure proto-
cols currently are significantly less efficient than protocols in other frameworks.
From another point of view, it is highly desirable to have different styles of de-
finitions to discuss their relative strengths and, hopefully, prove equivalence in
some settings.

On modelling the adversary. We consider a powerful Adv, who schedules
events (such as creation of players and their instances) and controls all commu-
nications. This latter is modelled by the parties not sending messages to each
other, but giving them to Adv for delivery. Adv is allowed to arbitrarily modify
the messages (including dropping and injecting them) and schedule delivery. We
allow Adv to create and arbitrarily initialize a polynomial number of accounts
for corrupted clients. Note that in this model the actions of corrupt players need
not be discussed separately from the actions of Adv, since Adv can simulate all
their actions. For example, a message sent by a corrupted party can be viewed
as a message injected by Adv.

Recall, Adv steals either the long key or the password of a client, and attacks
one of the several security features of the protocol. We describe the (five) possible
settings as games the attacker plays. (These games cover all cases – the cases
that are not discussed explicitly are implicitly covered by stronger settings.)

Game KE1 models the most complicated setting where Adv stole the long
key of the client, and is attacking a server (that is trying to distinguish server’s
session key from random). This is the only game where Adv can benefit from
guessing a password. Thus, in KE1 Adv is allowed a limited number of P⊥’s.

Game KE2 models the setting where Adv stole the long key and the password
of the client, but is attacking a client.

Game KE3 models the setting where Adv stole only the password of the
client, and is attacking a server.

Game DOA models the inability of Adv to cause password failures without
stealing the long key.

Game SID models the inability of Adv to cause two honest parties output
different session keys, and is included for technical reasons (see discussion before
the game’s definition in Sect. 3.2 below).

One way to define security is to describe one adversary who, at some point in
his attack, decides which of the five games above he really wants to play. However,
since Adv’s breaking abilities vary significantly among the games, defining al-
lowed success of Adv in a “combined” game would be unnecessarily complicated.
Therefore, we choose to describe five adversaries, each playing the correspond-
ing game. We define the security of ckKE by inability of any of adversaries to
win any of these games “too often”. We note that it is possible to define the

10 Vladimir Kolesnikov and Charles Rackoff

“combined” adversary model carefully, and to prove that any protocol that is
secure with respect to the five adversaries would also be secure with respect to
one “combined” adversary.

Liveness. Note that protocols may never terminate (e.g. when Adv cuts
the communication channels). Instances may also output special failure symbols
instead of (sid, key) pairs (e.g. when they detect Adv’s interference). To ensure
usability of KE protocols, we disallow these exceptional cases, unless Adv indeed
attacks the system. Thus, we require that in the absence of an adversary, when
processes communicate as intended, all sessions terminate, and intended partners
output the same session id and key.

3.2 Formal Definition of Security of Key Exchange in the Combined
Keys Model

Let n be a security parameter, and m be the number of bits in the password. In
general, m can be a function of n; interesting cases are when m is constant or
logarithmic in n. WLOG, say, the password domain is D = {0, 1}m. All players
(Adv, clients and servers) are p.p.t. machines. Recall, the notion of partnering
is defined in Def. 1.

We start by presenting the KE games. Recall, the first game models the
setting where Adv obtained the long key of the client, is attacking a server, and
is allowed a limited number of P⊥’s.

Game KE1. The adversary Adv starts by deterministically choosing the active
attack threshold q ∈ 1..|D| (based on the security parameter n) and creating an
(honest) server S. Adv chooses S’s name; then S’s public and private keys are
set up, and only the public key revealed to Adv. Adv then runs the parties by
executing steps 1-5 multiple times, in any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for
the client; the client C is registered with S, and long key ` and password pwd
are set up and associated with C. Only one honest client can be created. Adv
is given the long key `, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,
choosing any unused name, long key and password for him.

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input: his name C, the partner server’s name S, the public key of
S, the long key and the password of C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input: his name S, the private key of S, the partner client’s name
(C or Bi) and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. That instance im-
mediately responds with a reply (by giving it to Adv) and/or terminates and
outputs the result (either a (sid,session key) pair or the failure symbol ⊥)
according to the protocol. The server instance can additionally output the
password failure symbol P⊥. If the total number of P⊥ for the honest client

Key Exchange Using Passwords and Long Keys 11

is equal to the threshold q, Adv becomes restricted – he can not deliver mes-
sages to any instances SC

j .
Adv learns the output, with the exception of its session key part. Additionally,
at any time Adv may “open” any completed honest instance – then Adv is
given the session key output by that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who
has been instantiated to talk to the honest client C, must have completed and not
failed. The challenge is, equiprobably, either the key output by SC

j or a random
string of the same length. Adv must not have opened SC

j or a partner of SC
j ,

and is not allowed to do it in the future.
Then Adv continues to run the game as before (execute steps 2-5). Finally,

Adv outputs a single bit b which denotes Adv’s guess at whether the challenge
string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

Note the following technicality of KE1. It is possible that Adv may find
himself unable to complete the game. This may happen only when he had just
caused the q-th P⊥ (and hence he is not allowed to deliver messages to servers)
and he has no completed instances whom he is allowed to challenge. One way
to handle this would be to require Adv flip a coin to determine whether he won
or lost. We prefer to simply disallow, by this discussion, such behaviour of Adv,
since the stalemate can be easily avoided by Adv having a “safety instance”
complete before he risks the q-th P⊥.

In all other KE games (KE2, KE3, SID and DOA) below, it is possible (and
natural) to require that the knowledge of pwd does not help Adv. We thus choose
to reveal the password to Adv and remove restrictions on the number of P⊥’s
(thus removing the definition of q). These games are presented by modifying
KE1. All of the above three modifications are included in all games below (and
the last two are omitted in individual descriptions for conciseness).

Game KE2 models the setting where Adv stole the long key and the password
of the client, but is attacking a client.

Game KE2. This game is identical to KE1, with the following additional ex-
ceptions.

– Adv is given pwd (in addition to `) and must challenge an honest client
instance CS

i , who is talking to S.

Game KE3 models the setting where Adv stole only the password of the
client, and is attacking a server.

Game KE3. This game is identical to KE1, with the following additional ex-
ceptions.

– Adv is given pwd, but not the long key `.

Game SID enforces a non-triviality condition, preventing parties from im-
properly partnering up (e.g. by unnecessarily outputting the same session ids).

12 Vladimir Kolesnikov and Charles Rackoff

Recall, Adv is not allowed to challenge parties whose partner has been opened,
and we need to ensure that Adv is not unfairly restricted.

Game SID. This game is identical to KE1, with the following additional ex-
ceptions.

– Adv is given pwd (in addition to `) and does not ask for (nor answers) the
challenge.

– Adv wins if any two honest partners output different session keys.

Finally, game DOA models resistance to the Denial of Access (DoA) attacks.

Game DOA. This game is identical to KE1, with the following additional
exceptions.

– Adv is given pwd, but not the long key `.
– Adv does not ask for (nor answers) the challenge.
– Adv wins if a server instance SC

j outputs P⊥.

Definition 2. (Secure Key Exchange in the Combined Keys Model.) We say
that a key exchange protocol Π is secure in the Combined Keys model, if for every
polytime adversaries Adv1, Adv2, Adv3, Advsid and Advdoa playing games KE1,
KE2, KE3, SID and DOA, their probabilities of winning (over the randomness
used by the adversaries, all players and generation algorithms) is at most only
negligibly (in n) better than:

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2 and KE3,
– 0, for SID and DOA.

KE definition for the HK setting. We note that Halevi and Krawczyk
do not formally define the full notion of KE in their setting, but concentrate
on the one-way password authentication of the client to the server. Because
ckKE is a generalization of the HK setting and thanks to the modularity of
our presentation, it is not hard to extract the KE definition for the HK setting
from Def. 2. The only difference between our and the HK settings is that we
additionally allow for the use of the long shared key `. It turns out that it
suffices to remove the games that do not allow Adv to know ` from Def. 2, to
obtain a definition for the HK setting. (Of course, we also need to remove the
uses of the long key ` from the remaining games.) Indeed, it is not hard to
verify that the remaining games cover all possible attacks Adv can do in the HK
setting. We explicate this definition below.

Definition 3. (Secure Key Exchange in the HK Model.) We say that a key
exchange protocol Π is secure in the Halevi-Krawczyk, or hybrid, model, if for
every polytime adversaries Adv1, Adv2 and Advsid playing (amended as described
above) games KE1, KE2 and SID, their probabilities of winning (over the ran-
domness used by the adversaries, all players and generation algorithms) is at
most only negligibly (in n) better than:

Key Exchange Using Passwords and Long Keys 13

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2,
– 0, for SID.

We note that although the pre- and post-definition discussion (of Sect. 3.1
and 3.3) discusses the ckKE setting, much of it applies to the HK setting as well.

3.3 Post-definition Discussion

On the sufficiency of only one honest server and one honest client. We
note that definition of security is not strengthened by allowing Adv to create
additional (good or bad) servers or good clients. The reason for this is that we
assume independence in the initialization procedures of each pair of identities,
and each instance is initialized only with information relevant to its partner.
More detail follows.

Consider an adversary who wishes to attack a particular player – a client C
or a server S. Suppose we allowed creation of additional good or bad servers.
Note that initialization of a client C proceeds independently for servers S1 and
S2, and, further, CS1

i1
has no information about CS2

i2
, that is not known to Adv.

Therefore, creating accounts for C with more than one server and instances of
C talking to them does not help Adv, since it can be simulated by Adv. On the
other hand, the ability to create many clients with a server is essential, since
server instances talking to different clients do share common information among
themselves – the secret key of the server. In fact, we exploit that in our attack
on ΠHK . Only one honest client is sufficient, however, since additional honest
clients can be played by Adv. We note that had we allowed clients to possess
information common to two or more servers, we would have to allow Adv to
create additional bad servers.

Addressing Boyarsky’s criticism of the single-user case ([5]), we note that
our definition allows Adv to determine whether two honest clients have the
same password, causing at least an (expected) one P⊥ on each of the two clients.
However, we don’t see it as a problem, since, with high probability, clients’
passwords differ. Therefore, determining a large clique of users with the same
password would cause a large number of system-wide password failures and not
cause bigger than expected “bang for the buck”.

On the order of creation of good client and revealing the long key
`. Adv should first create the good client, and only then be allowed to see `. This
is the way the attack works in real life. Had we reversed the order, it would be
easy to construct good protocols that would be defined insecure (e.g., a server
leaks some information, if the client’s name is the same as `.)

On the allowed success of Adv in KE1. Consider the success an adversary
can always achieve (and therefore must be allowed in our definition). After q
queries, Adv can guess the password with probability q/|D|, and if he fails to
guess it, he can distinguish the key from random with probability 1/2. Therefore,
we should allow Adv’s probability of success of at least q

|D| +
1
2
|D|−q
|D| = 1

2
q+|D|
|D| =

1
2 + q

2|D| .

14 Vladimir Kolesnikov and Charles Rackoff

On independence of the states of instances. In our model, there is no
global information, and state is not preserved between executions of instances of
players. Therefore, for example, it is not possible for an instance to know exactly
how many P⊥’s occurred. Nevertheless, some communication and preservation
of state can be achieved with the help of the adversary, as follows. The private
key of S now additionally includes an n-bit MAC key kM . Whenever Sj wants
to publish a message m, he gives (m,MACkM

(m)) to Adv. The server’s proto-
col has an optional field in one of the expected messages. Sj only accepts the
properly MAC’ed messages in that field (this is essential, so that Adv cannot
forge messages). We stress that communication may only happen if it is in the
interest of Adv. Therefore, it can not be used to increase security of protocols,
but mainly to uncover weaknesses of definitions (see example in the next topic).

On continuing the game after q P⊥’s. In the real world, at least ideally,
after q P⊥’s, the server knows there is an attack on C, and will not accept new
connections and will terminate all incomplete instances. How should we model
this in our KE games? Although S may have cut communication with C, old
sessions may still exist, and we need to ensure that they remain secure. That is
why we allow the game to continue as before, but disallow sending messages to
the server instances after q P⊥’s occurred.

Observe that once Adv got the challenge, “trying” another password may
not help him much. Therefore, in particular, it is crucial to allow to challenge
instances after q P⊥’s occurred.

It is not hard to design a concrete protocol demonstrating the necessity of our
choice. Take a secure protocol Π. Modify it as follows to obtain Π ′. Once a P⊥ of
an honest client C occurred in the game (see above discussion on independence
of states), in all future sessions with instances of C the all-zero session key is
chosen with fixed small, but non-negligible probability (say prob = 1

|D|3). Clearly,
this is a bad protocol, since after performing only one active attack, an attacker
certainly breaks into one of the next few sessions. However, Π ′ would be deemed
secure according to the definition, if Adv is not allowed to challenge after q P⊥’s
(this is because Adv is allowed only one challenge, and he does not know which
is the weak session. The expected advantage of Adv is less than what he gets
from the q-th password try.)

On the necessity of tightness in defining the allowed success of
Adv. Note that for every non-negligible slack allowed in Adv’s success, there is a
natural variant of Π ′ above, deemed secure by such definition. While one may be
tempted to not be very careful in denying Adv “a few extra password tries”, Π ′

has a much more dangerous vulnerability, which really should be prevented. We
remark that in the password-only setting, if an indistinguishability of challenge
based security definition does not require tightness, a simpler variant of Π ′,
where players always output an all zero key with sufficiently small (yet non-
negligible) probability, would be deemed secure.

On clients mistyping the passwords. How should we model the case when
an honest client mistypes the password and causes P⊥? Consider the following
protocol. Take a secure protocol, and modify it, so that SC

j reveals ` once P⊥

Key Exchange Using Passwords and Long Keys 15

occurred. It is easy to see that the new protocol remains secure in our definition,
since we implicitly assume that C never mistypes the password. Indeed, in our
definition, if a P⊥ occurred, it must have been caused by Adv. Since Adv cannot
cause P⊥ without possession of `, it is OK if SC

j reveals `. However, intuitively,
we would not want to call such a protocol secure.

The only way to formally address the issue in our model is to allow C to
mistype the password. A natural first idea is to allow Adv to instantiate clients
with the password of his choice. However, it is not clear that this models real
life – most often clients mistype their passwords to something related.

A natural next idea is to instantiate clients with the password being f(pwd),
where the deterministic function f is specified by Adv. Only such an f that
does not allow to check more than one password at a time may be allowed, and
therefore strong restrictions on f are necessary. Indeed, setting f(pwd) = 0 on
the first half of password domain D, and f(pwd) = pwd on the second half,
allows Adv to check half of password domain in one try. Restricting f to be a
permutation does not work either, since applying such f allows to check whether
pwd is a fixed point of f . Therefore functions f that have more than one or fewer
than |D|− 1 fixed points are not allowed. At the same time, it is not hard to see
that functions with 0, 1, |D|−1 or |D| fixed points do not allow Adv to check more
than one password at a time when server is running a secure protocol, and thus
may be allowed in our definition. Indeed, a function with 0 fixed points always
causes SC

j to P⊥; one with 1 fixed point fp always causes P⊥, unless p = pwd, and
thus allows to check precisely one password; one with |D| fixed points (identity)
never causes P⊥; one with |D| − 1 fixed points always succeeds, unless pwd is
the non-fixed point, and thus allows to check precisely one password.

At the same time, the most natural mistyping functions (e.g. confusing the
order of digits) do not satisfy the requirements on f and do help the adversary
(e.g. Adv can quickly test if the pin consists of the same decimal digits). More
generally, Adv may infer a lot from simply observing a large volume of traffic,
noting the patterns of honest clients mistyping their passwords, and matching
them with expected patterns. However, it is not clear how to analyze this ad-
vantage, so we choose not to include password mistypes in our model at all, with
the understanding that protocol designers take this discussion into account.

This subtlety also arises in KE in the pure password model, when passwords
need not be chosen uniformly from D. Indeed, let D1 ⊂ D be all elements of D
that end with a 0, and pwd ∈ D is chosen uniformly from D1. Then a protocol Π
that reveals pwd iff pwd is mistyped only in the last digit, would be secure under
a natural definition that does not allow mistyping. This is because pwd would
not be revealed, unless Adv already had tried it. At the same time, such protocol
Π should not be deemed secure. We note that the recent definition of password
based KE in the complex Universal Composability model ([8]) addresses the
issue of mistyping by allowing the environment both choose and type passwords.

On reporting failures to Adv immediately after failing. Consider a
modification of ΠHK , where, upon a password failure, the server does not report
it to Adv, but produces a random key and simulates successful completion of KE.

16 Vladimir Kolesnikov and Charles Rackoff

This change would have prevented our attack of Sect. 2. However, the achieved
security would be illusory, since, in practice, it is hard to simulate successful
completion well. Indeed, the fact of P⊥ must be somehow registered and used
by S. This changes the state of S (in particular, the counter of active attacks is
incremented). Since C can login after q − 1, but not after q P⊥’s, Adv is able to
infer some information about S′ outputs. To account for such “side channels”,
we require that players don’t have private failure outputs (either ⊥ or P⊥), and
Adv is informed of failure as soon as it output. Note that this discussion relates
to the Additional discussion in Sect. 2.1 of [8], where the authors argue that Adv
need not know whether the passwords of two honest partners matched.

To further illustrate this point, suppose Sj at some point “knows” he is going
to output P⊥, that is, Sj entered a state from which all execution paths lead to
outputting P⊥, and Adv learned this fact. Suppose Sj does not terminate yet,
but is waiting to receive another message. Then Adv can delay the delivery of
the message indefinitely, Sj would never report P⊥, and we don’t count it. In
particular, adding an extra round of communication to a secure protocol Π, in
which parties say whether they failed, makes Π insecure. This is consistent with
our desire to force a server to correctly and timely report active attacks.

4 Our Protocol

Let n be a security parameter. To simplify discussion, we present our construc-
tions with the domains and ranges of PRFG and MAC equal to {0, 1}n. Let
E = (Gen, Enc, Dec) be a CCA2 secure public key encryption scheme, F :
{0, 1}n × {0, 1}n 7→ {0, 1}n be a PRFG, and MAC : {0, 1}n × {0, 1}∗ 7→ {0, 1}n
be a message authentication code. Let NC be the name of the client C, drawn
from {0, 1}n. Shorter names can be used for efficiency, if desired.

Consider the following KE protocol Π, with two types of players, a server S
and a client C who have secretly agreed on a password pwd ∈R D, a long secret
key ` ∈R {0, 1}n. Also, S has generated public/private key pair (pkS , skS), and
gave pkS to C.

Construction 2 (KE in the Combined Key Model (Π).)

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α = EncpkS

(NC , pwd, k)
r → · · · ← α,MAC`(α)

verify MAC`(α) and NC ; output
if fail, output ⊥ and halt K = Fk(r), sid = (r, α)

verify pwd;
if fail, output P⊥ and halt

else output
K = Fk(r), sid = (r, α)

Key Exchange Using Passwords and Long Keys 17

WLOG, we assume that all protocol messages are formed properly (i.e. values
are drawn from the appropriate domains, etc.). Then a client instance never fails,
while a server instance may. Note that Adv may cause non-partnered parties to
output unrelated keys. This is not a problem (see Sect. 3.1 and Footnote 2).

We stress that the two flows of the protocol are independent, and thus either
of the parties can be the initiator. The DoA attacks are prevented if Adv does
not have `, even though, in particular, Adv is able to resend old messages of the
client. The latter causes a server to output a random (from the point of view of
Adv) session key, thus Adv is not able to take advantage of it. This also does
not enable Adv to “reset” the fail counter in real executions (and thus try many
passwords undetected), since the same effect can be achieved by Adv executing
a KE between honest SC

j and CS
i , and then cutting the communication.

We treat the policies of account suspension and resetting of failure counters
as external to our discussion, but stress that care should be taken in designing
and implementing them. In particular, the client’s explicit consent (communi-
cated over a secure session) should be necessary for resetting the failed attempts
counter, since otherwise Adv can be undetected when trying passwords between
legitimate client logins. A natural scenario would be that the server asks the
client whether he mistyped the password a certain number of times, and when
client confirms, the fail counter is reset.

We further note that we can prevent Adv from resending C’s old replies to
S (e.g. if it is undesirable to have “hanging” sessions) by including r in the
encryption of the client’s reply and adding the corresponding verification step
to S. We chose not to include it because it disallows the independence of flows
of KE, and it is unclear whether hanging sessions are “worse” than hanging KE.

An alert reader will notice that smart cards may be gainfully used in place of
client’s storage cards. A smart card may hide the long key `, only exposing the
MAC’ing interface. An interesting setting is when Adv can “borrow” and return
(but not copy) the card, obtaining only a period of ability to MAC strings of
his choice. Our protocol will not benefit from such security improvements: C’s
messages are independent of S’s, and thus Adv can MAC all the strings he might
possibly need for an attack (e.g. strings containing all possible passwords) in one
batch. Again, including r in the encryption of C’s reply resolves this problem.

Π is secure. We first observe that for every Advsid and Advdoa playing
games SID and DOA, their probability of winning is negligible. Indeed, in our
protocol, partners never output different keys (since the session key is determined
by sid). As for Advdoa, for a server to output P⊥, it is necessary to forge a MAC
on an encryption not produced by any of the honest clients. This is only possible
with negligible probability without the knowledge of the long key `, assuming
security of MAC.

We formally consider the remaining games KEi and adversaries in the ap-
pendix. The structure of our proof is as follows. We start by reducing the KE
adversaries to ones playing much simpler games. As a second step, we show
that existence of new adversaries implies insecurity of either of the employed
primitives. We consider several adversarial behaviours separately. Appendix A.1

18 Vladimir Kolesnikov and Charles Rackoff

discusses the most interesting setting, where the adversary sees the long key
and challenges a server instance, and we formally and carefully show the precise
quantitative security of Π. Discussion of this section contains the main ideas of
our entire proof. Appendix A.2 addresses the remaining two games. Altogether,
we’ve proven

Theorem 1. The protocol Π of Constr. 2 is a secure key exchange protocol in
the combined keys model.

On generalizing Constr. 2. Consider creating a family of protocols para-
meterized by a function f similarly to the approach of Halevi and Krawczyk.
The goal is to shorten the plaintext of the encryption α sent by C, which may
improve the performance of the protocol. We note that we already reduce the
amount of data under the CCA2-secure encryption – it is smaller than in any
member of the HK families of KE protocols (but note that HK KE addition-
ally achieve mutual authentication). We do not see how to further significantly
increase efficiency by applying the HK idea to our protocols.

KE protocols for the HK setting. It is easy to see that removing the
uses of the long key ` from the protocol of Constr. 2 casts it into the HK setting.
The obtained protocol (explicated in Constr. 3 below) is a secure KE protocol in
the HK setting, according to Def. 3. This conclusion immediately follows from
the method of construction and Theorem 1.

Construction 3 (KE in the HK setting.)

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α = EncpkS

(NC , pwd, k)
r → · · · ← α

verify NC ; output
if fail, output ⊥ and halt K = Fk(r), sid = (r, α)

verify pwd;
if fail, output P⊥ and halt

else output
K = Fk(r), sid = (r, α)

Protection against the compromise of the server’s password file.
Recall that we previously assumed that the server’s private information is never
compromised. We now briefly discuss how storing passwords in a hashed form
helps maintain a reasonable level of security even if Adv steals the password
file. This discussion is informal, since, even though a password may be forced to
be sufficiently long (40-60 bits), due to human memory limitations, it contains
only a small amount of entropy. Consequently, it is hard, if at all possible, to
formally justify the advantage of the server storing hashes of passwords instead
of their plaintext values. Indeed, if Adv steals a file of hashed user passwords
(or any other information allowing S to verify a password), he can compute the
corresponding passwords in polytime.

Key Exchange Using Passwords and Long Keys 19

However, in practice it is often unclear how to exploit the low entropy of
passwords. See Narayanan and Shmatikov [20] for recent results and background
in password cracking. Further, most of the attacks (including that of [20]) employ
expensive precomputation, after which they can attack multiple passwords at
a much lower cost per password. Recall, the benefits of precomputation are
removed by “salting”, which can be viewed as using a different hash function for
each user’s password. In addition, slow hash functions may be used to increase
the cost of the attack, as discussed in [7] and is done in the UNIX crypt()
implementation.

Thus, storing passwords only in the salted hashed form on the server seems
to provide additional significant level of protection, at least with the current
state of the art of password cracking. We note that our protocols can be trivially
modified to allow for this second line of defense, e.g., as follows. The server S
will store a randomly chosen salt s and a hash h = H(pwd, s), instead of the C’s
password pwd. The client C stores s on the card. When computing α above, C
includes H(pwd, s) instead of the plaintext pwd. The password verification pro-
cedure of SC is amended correspondingly. We envision the above modifications
for most practical situations. As previously discussed, other second-line defense
techniques, e.g. those described in [17], can be used to also achieve heuristic
security against the compromise of the secret key of the server. Finally, we note
that a compromise of the long key ` of the client (which is also stored on the
server) is already addressed in our definition by allowing Adv to steal `.

How to update passwords. In practice, throughout the life cycle of a
client-server system, it might be necessary to update passwords of clients. Usu-
ally, in the KE literature this need is treated as external to the definition and
protocols. It turns out that in our setting it requires special care. We now briefly
describe the subtle problem and informally suggest several solutions.

Suppose client C securely (e.g. in a private meeting with the server S) updates
his password from pwd to pwd′. Then Adv can perform a DoA attack by simply
sending to SC C’s old messages, containing (properly encrypted and MAC’ed)
pwd. Intuitively, the problem arises from the fact that only a part of the key
of C is modified when the password is updated. In other words, clients with
related credentials would exist in the system, violating our assumption on the
independence of key generation of players (see first item in Sect. 3.3 for more
discussion).

A natural solution is to disallow password-only updates, and to require re-
generation of the long key ` as well. Such updates will not cause problems, since
the new key (pwd′, `′) is fully independent from the old one, and all previous
transcripts obtained by Adv become useless3.

We also note that it is possible to allow password-only updates, at the cost
of complicating the protocol (and the definition). This may be desirable when
updates of the client’s storage are inconvenient or costly. Security in this set-
ting can be achieved, for example, by a modification of our protocol into a

3 Note a technicality that incomplete instances SC and CS should be terminated at
the time of key update.

20 Vladimir Kolesnikov and Charles Rackoff

challenge-response one. Alternatively, it is possible to preserve the property of
independence of flows in the KE protocol. This can be done at the cost of keeping
(and appropriately using) password update counters by both S and C4.

Our definitions also would need to be modified if password-only updates are
allowed. Indeed, our protocol of Constr. 2 is secure according to Def. 2, yet it
is clearly vulnerable to the DoA attack in the current setting. We leave the
resulting update to the definitions outside the scope of this paper.

Acknowledgements. We thank Shai Halevi and the anonymous referees of
TCC 2006 for many great comments on earlier versions of this work. We are
grateful to Ian F. Blake for several stimulating discussions. We also thank Vitaly
Shmatikov for a discussion on password cracking and the importance of avoiding
storing passwords in plaintext. The authors were in part supported by Natural
Sciences and Engineering Research Council of Canada (NSERC) grants. The
first author was also supported by Ontario Graduate Scholarship (OGS).

References

1. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the design
and analysis of authentication and key exchange protocols (extended abstract).
In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 419–428, New York, NY, USA, 1998. ACM Press.

2. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In EUROCRYPT 2000, pages 139–155,
2000.

3. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
CRYPTO ’93: Proceedings of the 13th annual international cryptology conference
on Advances in cryptology, pages 232–249, New York, NY, USA, 1994. Springer-
Verlag New York, Inc.

4. Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secureagainst dictionary attacks. In SP ’92: Proceedings of the 1992 IEEE
Symposium on Security and Privacy, page 72, Washington, DC, USA, 1992. IEEE
Computer Society.

5. Maurizio Kliban Boyarsky. Public-key cryptography and password protocols: the
multi-user case. In CCS ’99: Proceedings of the 6th ACM conference on Computer
and communications security, pages 63–72, New York, NY, USA, 1999. ACM Press.

6. V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-hellman. In B. Preneel, editor, Proceedings EURO-
CRYPT 2000, pages 156–171, 2000.

7. Samuel R. Buss and Peter N. Yianilos. Secure short key cryptosystems: 40 bits are
enough. Technical report, NEC Research Institute, Princeton, NJ, 1999.

4 While storage on the server side is readily available, we may have a read-only client’s
storage medium. If so, the counter may be considered as part of the password, with
the assumption that the upper bound on the number of password updates is small.
We stress that in this case, a non-matching counter value will cause SC output ⊥,
and not P⊥.

Key Exchange Using Passwords and Long Keys 21

8. Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKen-
zie. Universally composable password-based key exchange. In EUROCRYPT 2005,
pages 404–421, 2005.

9. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In EUROCRYPT ’01: Proceedings of the International
Conference on the Theory and Application of Cryptographic Techniques, pages 453–
474, London, UK, 2001. Springer-Verlag.

10. Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In EUROCRYPT ’02: Proceedings of the International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 337–
351, London, UK, 2002. Springer-Verlag.

11. T. Clancy. Eap password authenticated exchange, draft archive.
http://www.cs.umd.edu/ clancy/eap-pax/, 2005.

12. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

13. Internet Engineering Task Force. Eap password authenticated exchange.
http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt, 2005.

14. Oded Goldreich and Yehuda Lindell. Session-key generation using human pass-
words only. In CRYPTO ’01: Proceedings of the 21st Annual International Cryp-
tology Conference on Advances in Cryptology, pages 408–432, London, UK, 2001.
Springer-Verlag.

15. L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen
secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,
11(5):648–656, 1993.

16. Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.
In CCS ’98: Proceedings of the 5th ACM conference on Computer and communi-
cations security, pages 122–131, New York, NY, USA, 1998. ACM Press.

17. Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.
ACM Trans. Inf. Syst. Secur., 2(3):230–268, 1999.

18. Vladimir Kolesnikov and Charles Rackoff. Key exchange using passwords and long
keys. In Third Theory of Cryptography Conference, TCC 2006, New York, NY,
USA, March 5-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer
Science, pages 100–119. Springer, 2006.

19. H. Krawczyk. Skeme: a versatile secure key exchange mechanism for internet. In
SNDSS ’96: Proceedings of the 1996 Symposium on Network and Distributed Sys-
tem Security (SNDSS ’96), page 114, Washington, DC, USA, 1996. IEEE Computer
Society.

20. Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords
using time-space tradeoff. In ACM Conference on Computer and Communications
Security, pages 364–372, 2005.

21. Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks. In
CCS ’02: Proceedings of the 9th ACM conference on Computer and communications
security, pages 161–170, New York, NY, USA, 2002. ACM Press.

22. Victor Shoup. On formal models for secure key exchange. Technical Report RZ
3120 (#93166), IBM, 1999.

22 Vladimir Kolesnikov and Charles Rackoff

A Proof of security of the protocol of Constr. 2 (Theorem
1)

We first prove that, assuming security of the underlying primitives of Π, there
does not exist an adversary winning the game KE1 too often. The proof of this
case is delicate due to handling precise quantitative advantage of Adv; it presents
main ideas for the proof of the other cases.

Proposition 1. If the PRFG F and the CCA2 encryption scheme E used in
Π are secure, then for every polytime Adv, the probability p of Adv winning the
game KE1 is no more than 1/2 + q

2|D| + ε, where ε is negligibly small (in the
security parameter n).

Prop. 1 follows from lemmas 1 and 2, presented in the Appendix A.1.
The other cases are handled by

Proposition 2. If the PRFG F , MAC, and the CCA2 encryption scheme E
used in Π are secure, then for every polytime Adv1 and Adv2 the probabilities of
them winning the games KE2 and KE3 respectively are no more than p > 1/2+ε,
where ε is negligibly small (in the security parameter n).

Prop. 2 follows from lemmas 3, 4 and 5, presented in the Appendix A.2.
Theorem 1 follows from Prop. 1 and 2.

A.1 Proof for the case when the adversary is given the long key
and challenges the server

Consider the following game (parameterized by n). that a distinguisher Dist1
plays. We suggest looking at the game briefly at the first reading – the motivation
behind it would be clear in the proof of the reduction from game KE1 (Lemma
1).
Game G1. A maximum number of “password tries” q is deterministically
(based on n) chosen by Dist1 and fixed. The game initializes a CCA2 secure
encryption scheme (by generating public and private keys pkS and skS) and
randomly chooses the password pwd ∈R D. Only the public key pkS is given
to Dist1. Dist1 queries the decryption oracle OD(e′) = DecskS

(e′) to obtain
decryptions of chosen strings. Then Dist1 chooses a “client name” NC . Then,
for i = 1, ..., u, Dist1 queries the encryption oracle OE that produces random
encryptions ei = EncpkS

(NC , pwd, ki), where ki ∈R {0, 1}n are chosen randomly
and unknown to Dist1. Here u is chosen by Dist1. Then Dist1 proceeds by exe-
cuting Steps 1 - 2 multiple times, in any order:

1. Dist1 queries the PRFG oracle OF (i, r) = Fki(r), where ki was chosen (but
not revealed) by OE during it’s i-th query. Here r ∈ {0, 1}n and i ∈ {1..u}
are chosen by Dist1.

2. Dist1 queries the decryption oracle OD(e′), where e′ is chosen by Dist1. He
is not allowed to query OD on any ei obtained from OE.

Key Exchange Using Passwords and Long Keys 23

Then Dist1 chooses i ∈ {1, ..., u} and r0 ∈ {0, 1}n and queries the challenge
oracle OC(i, r0). OC produces a challenge as follows: it randomly chooses a bit b
and a string ρ ∈R {0, 1}n. Then OC(i, r0) = Fki(r0) if b = 0, and OC(i, r0) = ρ
if b = 1. Dist1 is not allowed to query OC(i, r0), if he queried OF (i, r0).

Then, Dist1 continues running Steps 1-2, with the exception that he is not
allowed to query OF (i, r0).

Finally, Dist1 generates a list of q password guesses PL = {p1, ..., pq} and
outputs a bit b′. Dist1 wins if pwd ∈ PL or if b = b′.

Lemma 1. Suppose there exists an adversary Adv that asks for the long key
`, always challenges a server instance, and breaks the protocol Π. Then there
exists Dist1 winning the game G1 with probability non-negligibly greater than
1/2 + q

2|D| , where G1 is run with the same encryption scheme E and PRFG F

as Π.

Proof: We prove the theorem by constructing Dist1 that wins G1, essentially
whenever Adv wins the KE game. Dist1 simulates an environment (i.e. KE
players and their actions), in which he runs Adv, answers Adv’s queries and uses
Adv’s decisions to make decisions in G1. We say “Dist1 stops”, meaning “Dist1
finishes processing Adv’s request and returns control to Adv”, and “Dist1 sends
(outputs) m”, meaning “Dist1 simulates the given player sending (outputting)
m, by giving m to Adv”.

Dist1 starts up Adv, who outputs the threshold q and requests to create (the
only) server S. Dist1 then starts the game G1 with q, and obtains the public
key pkS for Enc. Dist1 sends pkS to Adv as the public key of the server. Dist1
initializes its password list PL to empty.

Dist1 then runs Adv and satisfies its requests for information as follows.
Note that a client C must have been created to create its instances Ci or server
instances SC

j .

1. Adv creates a bad client Bi:
Adv chooses the password and the long key, and reveals them to S (thus
giving them to Dist1).

2. Adv creates (the only) honest client C with the name NC :
Dist1 chooses the name NC for G1 to be the name of the client. Let u
be the upper bound on the number of client instances Adv creates. Then,
for i = 1, ..., u, Dist1 queries oracle OE and obtains random encryptions
ei = EncpkS

(NC , pwd, ki), where ki ∈R {0, 1}n are chosen randomly and
are unknown to Dist1. (We note that Adv did not cause any calls to OF or
OC yet, although he may have created and run server with corrupt clients.
Therefore, there is no conflict with G1’s scheduling.) Then Dist1 randomly
chooses ` ∈R {0, 1}n to be C’s long key. Adv asks for it, so Dist1 reveals `
to Adv.

3. Adv creates an instance SC
j or SBi

j of S and starts the protocol:
Dist1 randomly chooses rj ∈R {0, 1}n and sends it.

24 Vladimir Kolesnikov and Charles Rackoff

4. Adv creates new (i-th) instance Ci of the honest client C.
Recall that Dist1 already obtained ei from OE . Dist1 computes maci =
MAC`(ei) and sends (ei,maci).

5. Adv delivers a message mCi
to an instance Ci of honest client C (allegedly)

from server S:
Dist1 gives to Adv the session id sidi = (mCi , ei). Recall, ei is the encryption
previously sent by Ci.

6. Adv delivers a message mSj
= (e′,m′) to SC

j (allegedly) from client C (recall,
C is honest):
If m′ 6= MAC`(e′), Dist1 outputs ⊥and stops. Otherwise Dist1 proceeds as
follows.
If e′ = ei was obtained from OE , Dist1 gives to Adv the session id sidj =
(rj , ei). Recall, rj is the message previously sent by SC

j .
Otherwise, if e′ was not obtained from OE , Dist1 continues and decrypts e′

by querying the decryption oracle OD(e′) to obtain (N ′
C , pwd′, k′). If N ′

C 6=
NC , Dist1 outputs ⊥and stops. Otherwise, i.e. if the client’s name matches,
Dist1 adds pwd′ to the list PL of passwords to try, unless this causes |PL| >
q. (Since Adv cannot communicate with SC

j after q P⊥’s, the only case when
Adv causes the q + 1-st execution of this clause is when Adv had produced
a valid guess at C’s password. If so, pwd has already been added to PL,
and there is no benefit in adding anything to PL.) Finally, Dist1 outputs P
⊥ and stops. (Note if this response is incorrect, then pwd has been added to
PL, and Dist1 wins, so we don’t worry about properly simulating the game
anymore.)

7. Adv delivers a message mSj = (e′,m′) to SBi

j (allegedly) from client Bi(recall,
Bi is corrupt):
Recall that Dist1 knows Bi’s long key and password. Dist1 verifies MAC;
if MAC failed, Dist1 outputs ⊥and stops. If e′ = ei was obtained by any
oracle call to OE , Dist1outputs ⊥and stops(since the client name would not
verify5.)
Otherwise (if MAC checked and e′ was not obtained from OE) Dist1 proceeds
as follows. Dist1 decrypts e′ by querying the decryption oracle OD(e′) =
(N ′

C , pwd′, k′) and acts according to the Server’s protocol, as follows. Dist1
verifies whether N ′

C equals to the name of Bi. If not, Dist1 outputs ⊥and
stops. Then Dist1 verifies whether pwd′ is the Bi’s password; if not, Dist1
outputs P⊥ and stops. Otherwise, Dist1 gives to Adv the session id sidj =
(rj , e

′).
8. Adv sends an open request on a (completed and not failed or challenged)

client instance Ci of C:
Note that Ci output sidi = (mCi

, ei). Dist1 queries oracle OF (i, mCi
) =

Fki(mCi), and gives the answer to Adv. Note that there are restrictions on

5 This conclusion cannot be made when attempting to reduce the KE game of the
Halevi-Krawczyk protocol to G1 in a natural way, and thus Dist1 cannot answer
correctly without calling OD(ei). However, it is crucial that OD(ei) is not called
here.

Key Exchange Using Passwords and Long Keys 25

when Dist1 is allowed to call OF (OF and OC cannot be called with the
same parameters). We argue later that we are not violating them.

9. Adv sends an open request on a (completed and not failed or challenged)
server instance Sj of S:
Recall that Sj received mSj

= (e′,m′) and Sj output sidj = (rj , e
′). If e′ = ei

was generated by OE , then Dist1 queries oracle OF (i, rj) and outputs the
answer. As in 8, we will later argue that we are not violating G1’s restrictions.
Otherwise, Dist1 decrypts e′ by calling OD(e′) and outputs Fk′(rj), where k′

is the key inside e′. Note that this is the case corresponding to the last para-
graph of case 7 above, since Dist1 always reports failure when SC

j receives
e′ not generated by OE . No OF call is made in this clause.

10. Adv sends a challenge request on a (completed and not failed or opened)
server instance SC

j of S:
Recall, SC

j sent rj , received mSj
= (e′,m′) and output sidj = (rj , e

′). If
e′ = ei was generated by OE (i.e. sent by a client Ci), Dist1 queries the
challenge oracle ch = OC(i, rj), gives ch to Adv and (later, after submitting
the list PL) submits Adv’s output as his answer to the challenge of G1. As
in 8 and 9, we will later argue that we are not violating G1’s restrictions
when querying OC(i, rj).
Note that the case when e′ of mSj

was not generated by OE cannot happen,
since Dist1 would have reported to Adv that SC

j failed.

We note that Dist1 always ensures legality of calls to OD(e) by checking that
e was not generated by OE . We now argue that all calls to OF in 8–9, and to OC

in 10 will be legal requests in G1, that is that Dist1 never calls both OF (i, r)
and OC(i, r), for any pair (i, r).

First note that OF and OC are only called when Adv opens or challenges
instances, respectively. Adv always challenges a server instance. Suppose, he
challenged SC

j , and thus caused the call OC(i, rj), where ei was generated by
OE and sent by some client Ci. Consider two possible cases. First, for k 6= j,
Adv opens (either earlier or later) a server instance Sk, causing a call OF (i′, rk).
This call is legal, since Prob(rj = rk) is negligible. Second, Adv opens a client
instance CS

k , thus causing a call OF (k,mCk
). Suppose this call is illegal, i.e.

i = k (implying that ei = ek) and rj = mCk
. However, in this case, the session

ids output by the parties match. Then SC
j and CS

k are partners, and such Adv’s
behaviour is not allowed in KE1.

Now it is easy to see that the simulated messages provided by Dist1 are
distributed almost identically to those generated in a real execution, until the
point when Adv does guess the password correctly, and Dist1 incorrectly returns
P⊥. What happens after that point, however, does not matter, since Dist1 had
already won the game.

By assumption of the lemma, Adv wins with probability non-negligibly more
than 1/2 + q

2|D| . It is easy to see that Dist1 wins whenever Adv wins, except
for a negligible fraction of the time. Therefore, the constructed Dist1 wins the
game G1 with probability non-negligibly more than 1/2 + q

2|D| .
�

26 Vladimir Kolesnikov and Charles Rackoff

We now show that the adversary Dist1 described in Lemma 1 cannot exist,
if secure primitives are used.

Lemma 2. If the PRFG F and the CCA2 encryption scheme E used in G1

are secure, then for every polytime Dist1, the probability p of Dist1 winning
the game G1 is no more than 1/2 + q

2|D| + ε, where ε is negligibly small (in the
security parameter n).

Proof (sketch): Consider a polytime Dist1. We first argue that he cannot
produce a password list PL containing pwd with probability significantly more
than q/|D|. To prove this, we strengthen Dist1 by allowing him choose ki used
in the calls to OE . Then G1 can be further simplified – Dist1 does not need
access to OF (he can evaluate it himself). It is now easy to see that if Dist1 can
produce a list PL of q passwords with probability significantly more than q/|D|,
he can be used to break the security of E (since he must have obtained some
information about pwd from playing essentially the game of the CCA2 security.)

Now, return to the original Dist1 and G1. Let E1 be the event of Dist1
producing PL containing pwd, and E2 be the event of Dist1 winning by an-
swering the challenge correctly. Then the probability of Dist1 winning G1 is
p = prob(E1)+(1−prob(E1))prob(E2|¬E1). Note that the lemma trivially holds
for n, where q ≥ |D|.

From now on, consider n, such that q < |D| (q is polynomially bounded).
Then, Prob(¬E1) is bounded away from 0 by a polynomial (in n) fraction. We
now show that for Dist1, prob(E2|¬E1) < 1/2+ε2, where ε2 is negligible. Suppose
otherwise. Then we construct a polytime D′ who, with the knowledge of pwd,
answers the challenge of G1 with probability significantly better than 1/2. D′

proceeds as follows. He runs Dist1 up to the point when Dist1 produces PL. D′

checks whether pwd ∈ PL. If so, he flips a coin to answer the challenge. If not
(and this happens non-negligibly often), he continues running Dist1 (and obtains
non-negligible advantage). At the same time, it can be easily shown by standard
hybrid techniques that such D′ cannot exist. Thus prob(E2|¬E1) < 1/2 + ε1.

Therefore, if all the employed primitives are secure, p = prob(E1) + (1 −
prob(E1))prob(E2|¬E1) < q

|D| + ε1 + (1− q
|D|)(1/2 + ε2) = 1/2 + q

|D| + ε.
�

A.2 Other cases

In all other cases, we reduce the KE game to a simpler variant G2 of the game
G1.
Game G2. G2 proceeds exactly as G1 with the following two exceptions. First,
the client’s password pwd is revealed to the distinguisher Dist2 as soon as Dist2
sets the name C. Second, Dist2 is not allowed to win by presenting PL (thus
PL generation is omitted).

Lemma 3. If there exists an adversary Adv breaking the protocol Π that chal-
lenges a client and is given the long key ` and the password pwd, then there exists
Dist2 winning the game G2 with probability non-negligibly greater than 1/2.

Key Exchange Using Passwords and Long Keys 27

Proof (sketch): The construction of Dist2 and the following discussion proceed
almost identically to construction of Dist1 of Lemma 1. Here we only point out
the differences in construction and discussion.

– PL is not created nor used in any way by Dist2.
– In Step 2, when the honest client is created, both the long key ` and the

password pwd (obtained from G2) are given to Adv.
– In Step 6 (Adv delivers a message mSj = (e′,m′) to SC

j (allegedly) from
client C) Dist2 proceeds like Dist1, with the following exception. If e′ (an
encryption of (N ′

C , pwd′, k′)), was not obtained from OE , and the client
name matches (N ′

C = NC), then instead of modifying PL, Dist2 does the
following. Recall, Dist2 knows the password pwd of C. If pwd′ 6= pwd, Dist2
outputs P⊥, otherwise Dist2 outputs sid = (rj , e

′). Recall, rj is the message
previously sent by SC

j .
– Dist2 handles a new type of request: Adv sends a challenge request on a

(completed and not failed or opened) client instance CS
i of C:

Note that CS
i previously received mCi

and output sidi = (mCi
, ei). Dist2

queries the challenge oracle ch = OC(i,mCi
), gives ch to Adv and submits

Adv’s output as the answer to the challenge of G2. Note that there are
restrictions on when Dist2 is allowed to call OC (OF and OC cannot be
called with the same parameters). We argue later that we are not violating
them.

– Request 10 (challenging a server instance) is now not allowed.

We note that all oracle calls made by Dist2 are legal requests in G2. The argu-
ment is also similar to that of Lemma 1. Indeed, as in construction of Dist1, we
always ensure that e was not generated by OE before calling OD(e).

Further, OF and OC are only called when Adv opens or challenges instances,
respectively. Consider the two possible cases (there are only two since Adv always
challenges a client). First, Adv opened and challenged client instances Ci1 and
Ci2 . Then, for the conflict to happen, it must be that ei1 = ei2 , which happens
with negligible probability. Second, Adv opened a server instance SC

j and a
challenged a client instance CS

i . For the conflict to happen, it must be that the
client instance received rj , and the server instance received ei during the game.
However, in this case, the sid output by the instances would match, and thus Ci

and Sj would be partners, and Adv would not be allowed to challenge CS
i and

open Sj .
Now it is easy to see that the simulated messages provided by Dist2 are dis-

tributed almost identically to those generated in a real execution. By assumption
of the lemma, Adv wins with probability non-negligibly more than 1/2. It is easy
to see that case Dist2 wins whenever Adv wins, except for the negligible fraction
of the time. Therefore, the constructed Dist2 wins the game G2 with probability
non-negligibly more than 1/2.

�
Finally, we consider the adversary who is not given the long key `, and is

attacking the server.

28 Vladimir Kolesnikov and Charles Rackoff

Lemma 4. Suppose the employed MAC scheme is secure. Then, if there exists
an adversary Adv breaking the protocol Π who is not given the long key ` and is
attacking the server, then there exists Dist2 winning the game G2 with probability
non-negligibly greater than 1/2.

Proof (sketch): The construction of Dist2 and the following discussion proceed
almost identically to construction of Dist1 of Lemma 1. Here we only point out
the differences in construction and discussion.

– PL is not created nor used in any way by Dist2.
– In Step 2, when the honest client is created, the long key ` is not revealed

to Adv. The password pwd (obtained from G2) is given to Adv.
– In Step 6 (Adv delivers a message mSj

= (e′,m′) to SC
j (allegedly) from

client C) Dist2 proceeds like Dist1. We note that e′ was not obtained from
OE only with negligible probability (since otherwise we can construct a forger
for MAC), and thus we don’t handle the corresponding clause.

– In Step 10 (Adv sends a challenge request on a (completed and not failed
or opened) server instance SC

j of S:) Dist2 proceeds like Dist1. (Note that
e′ was not obtained from OE only with negligible probability, due to the
security of MAC; thus we don’t handle the corresponding clause.)

We note that all oracle calls made by Dist2 are legal requests in G2. The ar-
gument is analogous to that of Lemma 1. Thus, the simulated messages provided
by Dist2 are distributed almost identically to those Adv sees in a real execution.
By assumption of the lemma, Adv wins with probability non-negligibly more
than 1/2. It is easy to see that case Dist2 wins whenever Adv wins, except for a
negligible fraction of the time. Therefore, the constructed Dist2 wins the game
G2 with probability non-negligibly more than 1/2.

�
We now show that the adversary described in Lemmas 3 and 4 cannot exist,

if secure schemes are used.

Lemma 5. If the PRFG F and the CCA2 encryption scheme E used in G2 are
secure, then there does not exist a polytime Dist2 winning the game G2 with
probability p > 1/2+δ, where δ is not negligibly small (in the security parameter
n).

The proof of Lemma 5 is done by a standard hybrid argument, and is omitted.
�

