
RANDOMIZED ALGORITHMS FOR

RELIABLE BROADCAST
by

Vinod Vaikuntanathan

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

c©Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 30, 2009

Certified by .
Shafi Goldwasser

RSA Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Terry P. Orlando

Chair, Department Committee on Graduate Students

No two on earth in all things can agree. All have
some daring singularity.

Winston Churchill

Contents

List of Tables 6

1 Introduction 12
1.1 Byzantine Agreement in the Full Information Model 15
1.2 Trading off Fault-Tolerance with Other Parameters 16
1.3 Auditing Distributed Protocols and Applications 17

1.3.1 An Application of Auditing: “Boosting” Fault-Tolerance
of Protocols . 18

1.4 Overview of the Thesis . 19

2 Preliminaries 22
2.1 Modeling a Synchronous Distributed System 22

2.1.1 Remarks on the Model and Extensions 25
2.2 Reliable Broadcast and Byzantine Agreement 26
2.3 Probabilistic Lemmas . 29

3 Classical Work on Reliable Broadcast 30
3.1 A Weaker Variant of Reliable Broadcast 30

3.1.1 Graded Broadcast . 31
3.2 Byzantine Agreement and Random Selection 32

4 New Byzantine Agreement Protocols 38
4.1 Committee Election Protocols 38

4.1.1 Feige’s Committee Election Protocol 39
4.1.2 Russell and Zuckerman’s Committee Election Protocol . . 41

4.2 Byzantine Agreement Protocols 44
4.2.1 Byzantine Agreement Protocol I 44
4.2.2 Byzantine Agreement Protocol II 54

4.3 Can the Round-Complexity be Improved? 59

5 Auditing a Distributed Protocol and an Application 60
5.1 The Guarantees of an Audited Protocol 61

5.1.1 The Audit Transformation 63
5.2 Boosting the Fault-Tolerance of Distributed Protocols 65

5.2.1 Informal Description of the Compiler 66
5.2.2 Construction of the Compiler 68

4

CONTENTS 5

6 Extensions 72
6.1 A Trade-off between Fault-Tolerance and Trusted Setup 73
6.2 A Trade-off between Fault-Tolerance and Efficiency 74
6.3 A Trade-off between Fault-Tolerance and the Quality of Random-

ness . 76

A Combinatorial Tools 78
A.1 Construction of Committees . 78

Bibliography 82

List of Tables

2.1 Reduction from Reliable Broadcast to Byzantine Agreement 27
2.2 Reduction from Byzantine Agreement to Reliable Broadcast 28

3.1 The Graded Broadcast Protocol of Feldman and Micali 33

4.1 Feige’s Committee Election Protocol with Built-in Broadcast Channels. 39
4.2 The RZ Committee Election Protocol with Built-in Broadcast Channels. 43
4.3 Feige’s Committee-Election Protocol without Broadcast. 48
4.4 Our Committee-Election Protocol without Broadcast. 56

5.1 The transformation Audit 64

6

Acknowledgments

FIRST AND FOREMOST, I would like to thank my advisor, Shafi Goldwasser.
She took me under her wing during my very first months of graduate school, a

time when I knew little of anything. She has been an endless source of fascinating
problems, and amazingly creative ideas over the years. If there is one thing I hope
I inherit from her, it would be her exquisite taste in research directions.

Getting through the frustrating first years of grad school would have been im-
possible without the mentorship of Alon Rosen. He taught me the cryptographic
way of thinking, and always had time to listen to my ideas. Rafael Pass is a dear
friend and collaborator. He has been an amazing person to work with – creative,
energetic and brilliant.

I am grateful to Ran Canetti, Silvio Micali, Madhu Sudan and Ron Rivest for
always being available to answer my questions and for their inspiring courses.
Special thanks to Silvio for expressing keen interest in my work, and for his
generous help and guidance. Ran hosted me at IBM Research during the summers
of 2006 and 2007. I am very grateful for the warm and active atmosphere at IBM,
and the people responsible for it.

The summer of 2007, which I spent at SRI International as an intern, was
one of the most fun and productive times I have ever had. I am grateful to Chris
Peikert and Brent Waters for hosting me at SRI and for the terrific collaborative
work during that summer.

The results in this thesis are based on joint work with Michael Ben-Or, Shafi
Goldwasser and Elan Pavlov. Michael sent me a draft of his result which started
off the work in this thesis – I am very grateful to him for that. I would like to thank
my super-star co-authors on all the papers I wrote during graduate school, none of
which appear in this thesis, but all of which I consider formative. Special thanks
to Adi Akavia, Zvika Brakerski, Susan Hohenberger, Yael Kalai, Guy Rothblum,
abhi shelat, Eran Tromer and Mayank Varia.

I would like to thank the graduate students at MIT who contributed to my
wonderful grad school experience. Thanks to Be Blackburn and Joanne Hanley
for their timely and meticulous help with all the administrative details. Special
thanks to Jaykumar, Sreeja and Vivek for their help and friendship. Sravana has
been a wonderful companion and a source of immense inspiration – her love and
support are deeply appreciated.

I thank my brother Visakh for his encouragement and all the “little-brother-ly
stuff”. Finally, and quite obviously, none of this would have been possible without

8

LIST OF TABLES 9

my physical existence and upbringing, for which I thank my parents, SUDHA and
VAIKUNTANATHAN. This thesis is dedicated to them.

Please forgive me any omissions.

Abstract

In this thesis, we design randomized algorithms for classical problems in fault-
tolerant distributed computing in the full-information model. The full-information
model is a strong adversarial model which imposes no restrictions on the
computational power of the faulty players nor on the information available to
them. Namely, the faulty players are infinitely powerful and are privy to all the
communications in the network.

Our main result is the construction of two efficient randomized protocols for
Byzantine agreement, a classical problem in distributed computing. Byzantine
agreement is the problem of simulating the reliable broadcast functionality
in a network where all communication is person-to-person. We design two
randomized Byzantine agreement protocols in a synchronous network with an
expected round-complexity of O(log n) rounds. One of the protocols is resilient
against an all-powerful, full-information adversary that corrupts less than a third
of the number of players (whereas the other protocol is resilient against a fourth
fraction of corruptions). Our protocols have the following additional features.

• The fault-tolerance of our protocols can be increased to less than a half
fraction of faults, if there is a public-key infrastructure setup available that
allows the players to compute (public-key) digital signatures.

• Our protocols work even if the source of randomness is a “somewhat
random” source (also called a Santha-Vazirani source). The price we pay is
a decreased fault-tolerance.

Our second result is the design of a compiler that transforms a randomized dis-
tributed protocol that tolerates benign, fail-stop faults into a protocol that tolerates
malicious, Byzantine faults. Fail-stop faults follow the protocol specification, but
may stop in the middle of the execution. On the other hand, Byzantine faults are
arbitrarily malicious. The resulting protocol has almost the same fault-tolerance
and efficiency as the original protocol. Our compiler suggests a modular way to
design distributed protocols: first, design a protocol that tolerates fail-stop faults,
and use our compiler to “boost” the fault-tolerance to Byzantine faults. The design
of the compiler is based on a new protocol technique that we develop, called
“auditing” of distributed protocols.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science

10

1
Introduction

A reliable broadcast channel is a communication channel that guarantees the
recipient of a message that everyone else received the same message. The
existence of built-in reliable broadcast channels is a convenient abstraction,
widely assumed by protocol designers in distributed computing and cryptogra-
phy [GMW87, BGW88, CCD88, GGL98].

Despite its utility, reliable broadcast channels do not exist in nature. Con-
sider the two most natural kinds of networks that we encounter, namely wired
networks (a quintessential example being the internet itself) and wireless and
radio networks. In the internet, where all communication is person-to-person (at
best!) and some of the people involved are untrustworthy, the reliable broadcast
guarantee no longer exists. Though an untrustworthy sender may claim to send
the same message to everyone, he could actually send different messages to
different people. In the case of a wireless or a radio network, a malicious wireless
transmitter might tactfully interfere with a transmission so that a message is heard
by one person but not by another. Again, in this case, the guarantee of reliable
broadcast does not exist. Faced with this situation, we would like to

efficiently simulate a reliable broadcast channel on top of traditional
networks.

This is called the reliable broadcast problem, which is the focus of this thesis.

RELIABLE BROADCAST AND BYZANTINE AGREEMENT. In 1980, Pease,
Shostak and Lamport [PSL80] insightfully defined the problem of Byzantine
agreement, which is equivalent to the problem of simulating a reliable broadcast
channel over point-to-point networks. Since then, Byantine Agreement has
arguably become the central problem in distributed computation tolerating faulty
behavior. Informally, the problem is to maintain a common view of the world
in the presence of faulty processes that strive to prevent the good processes from

12

INTRODUCTION 13

reaching agreement. The faults can range from simple “crashing of processes”
to processes with malicious intent co-ordinating to mislead the good ones into
disagreement.

Definition 1. A protocol among n players, in which each player starts with an
input is a Byzantine Agreement protocol, if the following conditions hold:

• Completeness (Validity): If the input values of all the honest players are the
same (say, a value v), then the output of all the honest players is v itself.

• Soundness (Agreement): No two honest players have different outputs,
regardless of the inputs of the players.

Given a Byzantine agreement protocol, achieving reliable broadcast is easy:
the sender in the reliable broadcast scenario sends his message to all the players,
and the players then run a Byzantine agreement protocol to agree on a message.
If the sender is honest, the completeness property of Byzantine agreement
guarantees that all the honest players receive the sender’s message. On the other
hand, even a malicious sender cannot force the honest players into disagreement.

From this point on, we will focus our attention on the problem of Byzantine
agreement.

OUR MODEL. The players can communicate to each other via point-to-point
links. We assume that the network is synchronous: that is, there is a global (but
“implicit”) clock governing the time required to deliver messages. The protocol
execution, thus, happens in “rounds” (for simplicity, think of each round as a tick
of the global clock), and the messages sent at the end of a round are delivered at
the beginning of the next round.

We address a very strong fault-model. An all-powerful adversary corrupts a
subset of t players in the beginning of the protocol. The adversary is Byzantine,
meaning that the strategy of the corrupted players is computationally unbounded
and the worst possible. The adversary is a full-information adversary, meaning
that it makes its decisions based on the information about the state of all the
players (faulty as well as honest) including their coin tosses up to and including
the current round, and the entire history of communications between them.1 Thus,
the adversary is privy to all the activity in the internals of all processors as well as
in the network. No meaningful privacy guarantees can be made in the presence of
such an adversary. In addition, the delivery of messages is in the rushing model.
Namely, a dishonest player may possibly see all messages sent in round i by other
players, before he sends his own round i messages.

1There have been at least two models of full-information adversaries in the literature.
Goldreich, Goldwasser and Linial [GGL98] defines a full-information adversary as one that has
access to all the communications in the network, but not the internal coin-tosses of the players. The
stronger variant, which we use in this thesis, gives the adversary access to the (past) coin-tosses of
all the players as well. This stronger adversary was called an intrusive adversary in the work of
Chor and Dwork [CD89].

14 INTRODUCTION

PREVIOUS WORK. Since its introduction in the work of Pease et al.[PSL80],
the problem of Byzantine Agreement has been a source of enormous attention.
Pease et al. proved (in [PSL80] itself) that no deterministic algorithm can achieve
Byzantine Agreement among n players in the presence of t faults if n ≤ 3t (This
bound was later extended to the case of randomized algorithms by Karlin and
Yao [KY86]). They also constructed a (deterministic) algorithm that solves BA
for any n > 3t, in a synchronous full-information network. Once the feasibility
of BA was shown, further attempts concentrated on reducing the complexity
of achieving agreement. The standard complexity measures of interest are the
number of rounds, and the total communication and computational complexity
of the protocol, the former being the most interesting of them. The protocol
of [PSL80] had a round complexity of t + 1 rounds, which was shown to be
optimal for deterministic protocols by Fischer and Lynch [FL82]. However, the
communication complexity of the protocol was exponential in n. Following a
series of works [BG89a, BGP92], Garay and Moses [GM98] constructed a BA
protocol that runs for t+ 1 rounds, with a polynomial communication.

Faced with the lower bound on the round complexity for deterministic proto-
cols, the natural direction of research was to find ways to overcome this limitation,
the first choice being to resort to randomization. This direction was pursued early
on, starting with the work of Ben-Or and Rabin [Ben83, Rab83] who showed how
to reach Byzantine agreement quickly given a source of “common coins”.2 Thus,
the bulk of the attention was concentrated on constructing protocols that generate
a common-coin in a network. Numerous subsequent works trod this path, showing
how to design better common-coin protocols (see [Bra87, DSS90, CMS89, CC85]
and the references therein).

This line of research culminated in the work of Feldman and Micali [FM97],
who designed a protocol to generate a common coin in O(1) rounds and
with polynomial communication, under the assumption that the point-to-point
channels connecting pairs of processors are private, or that the processors are
computationally bounded and cryptography exists. This, in turn, gave Byzantine
Agreement protocols that run in O(1) rounds. On the other hand, without the
assumption of private channels or a computationally bounded adversary (i.e, in
the full-information model), the best known protocol that achieved Byzantine
Agreement was due to Chor and Coan [CC85] and had a round complexity of
Θ(t

logn) rounds. This raises the following natural question:

How efficient can Byzantine Agreement be, relying only on ran-
domization, without using cryptographic techniques or the private
channels assumption?

Our first and main contribution in this thesis is to construct efficient Byzantine
agreement protocols in the full-information model, namely without relying on
cryptographic techniques or the private channels assumption.

2The work of Ben-Or is in the asynchronous model, where deterministic Byzantine agreement
is impossible [FLP83]. Rabin’s result holds in both the synchronous and asynchronous models.

1.1. BYZANTINE AGREEMENT IN THE FULL INFORMATION MODEL 15

Achieving results in the full information model is important, as these results
hold unconditionally. Currently, all results in the computational model hold
only under intractability assumptions such as the existence of one-way functions.
The results in the private channels model are conditioned on the availability of
private physical communication channels between pair of players. This elegant
abstraction is implemented by resorting to secure encryption, the existence of
which is again based on intractability assumptions.

1.1 Byzantine Agreement in the Full Information Model

The main result in this thesis is the construction of two protocols for Byzantine
agreement in the full-information model with a logarithmic round-complexity.
The first of these protocols achieves a fault-tolerance of t ≤ (1/4− ε)n, whereas
the second achieves a fault-tolerance of t ≤ (1/3 − ε)n. Both protocols have
an expected round-complexity of O(log n/ε2) rounds. The second of these
protocols achieves asymptotically optimal fault-tolerance, as Pease, Shostak and
Lamport [PSL80] and Karlin and Yao [KY86] show that BA is not possible if
n ≤ 3t.

These protocols constitute an exponential improvement in the round-complexity
over the best previously known Byzantine agreement protocol in the full-information
model, due to Chor and Coan [CC85]. The Chor-Coan protocol had an expected
round-complexity of O(n/ log n) rounds.

The Byzantine agreement protocols are derived via new and collective coin-
flipping protocols in the full-information model without built-in reliable broadcast
channels. There is an extensive body of work [GGL98, GVZ06, Fei99, RZ01,
Blu81] on efficient random selection protocols in the full information model,
which we could potentially take advantage of. However, the challenge in using
these protocols, is that in all of these works, an additional assumption is made:
reliable broadcast channels exist for free. Since our goal is to design protocols
that simulate reliable broadcast, this is an assumption we simply cannot make.
Indeed, both the correctness and efficiency (including the round complexity) of
[GGL98, GVZ06, Fei99, RZ01, BL85] hold only under the additional assumption
that broadcast is an atomic unit-cost operation. Nevertheless, we use the ideas
from the coin-flipping protocols of [Fei99, RZ01] in an essential way in our
Byzantine Agreement protocol.

CONCURRENT WORK. In a concurrent work, King, Saia, Sanwalani and
Vee [KSSV06a, KSSV06b] constructed a Byzantine agreement protocol in the
synchronous full-information model with a polylog(n) round-complexity tolerat-
ing t < (1

3 − ε)n dishonest players. In addition, their protocols achieve a slightly
weaker notion of agreement – called “almost everywhere agreement” – with the
optimal communication complexity of Õ(n).

16 INTRODUCTION

1.2 Trading off Fault-Tolerance with Other Parameters

We show various tradeoffs between the fault-tolerance of Byzantine agreement
and other parameters of the system. In particular, we show how to tradeoff the
fault-tolerance against the setup assumptions available, the round-complexity and
the quality of randomness available.

SETUP ASSUMPTIONS. The first extension deals with increasing the fault-
tolerance. The result of Pease, Shostak and Lamport [PSL80] shows that no
Byzantine agreement protocol can achieve a fault-tolerance better than a third,
unless there is some additional setup. The most common setup assumption is that
of a Public-key Infrastructure. Assuming that a PKI is available, we show how
to construct a logarithmic-round BA protocol even when upto half the players are
corrupted.

One drawback of this setting is that one has to assume a computationally
bounded adversary (to allow for cryptographic signtures). We note that the
advantage in this protocol is that we use signature schemes, which are typically
much easier to construct (and also complexity-theoretically simpler) than public-
key encryption schemes (which are necessary to implement private channels).

ROUND-COMPLEXITY. The second result shows how to achieve a better round-
complexity at the expense of the fault-tolerance of the BA protocol. In contrast to
our main result which shows a logarithmic round BA protocol tolerating a constant
fraction of faults, we show how to achieve an expected round-complexity ofO(1):
the price we pay is that the fault-tolerance of this protocol is only n/ logO(1) n,
sublinear in the number of players.

QUALITY OF RANDOMNESS. In the context of synchronous Byzantine agree-
ment, randomness is a critical resource that enables achieving solutions with
far higher efficiency than the deterministic solutions. However, typically, the
randomized algorithms for BA are designed under the assumption that the players
have access to a source of unbiased, independent coins. Physical sources of
randomness, on the other hand, are rarely unbiased and independent although
they do seem to exhibit somewhat imperfect randomness. Thus, it is a natural
question whether “imperfect randomness” is good enough for to achieve efficient
Byzantine agreement in the full-information model.

This question was first posed by Goldwasser, Sudan and Vaikuntanathan [GSV05]
who answered this question in the affirmative in the case where all the players have
access to independent block-wise random sources with sufficient min-entropy.
Recently, Kalai, Li, Rao and Zuckerman [KLRZ08] improved this result to
the case where each player has an independent general weak random source.
However, both these results assume that the random sources of any two players
are independent of each other.

We show a Byzantine agreement protocol where each honest player has access
to a Santha-Vazirani (SV) source, and where the random sources of the players
are not necessarily independent. A γ-SV source is one that outputs a sequence

1.3. AUDITING DISTRIBUTED PROTOCOLS AND APPLICATIONS 17

of bits where each bit is somewhat random (that is, has a bias of at most γ) even
given all the other bits in the output. In particular, we consider the case where the
concatenation of the random sources of all the players forms a γ-SV source for
some γ = c

logn . Given such a random source, we show how to achieve Byzantine
agreement tolerating t < 1 − 5

6e
2c faulty players. In particular, for γ = 1

12 logn ,
this gives us a fault-tolerance of (1 − 5

6e
1/6)n = 0.003n faulty players. As c

becomes smaller and smaller, this number gets better and better (tending to 1/3 in
the limit).

1.3 Auditing Distributed Protocols and Applications

We introduce a new protocol transformation called Audit. The goal of Audit is to
transform any distributed protocol Π that possibly assumes broadcast channels,
into another protocol that simulates Π “as well as possible” when no reliable
broadcast channels are given.

Of course, one could simulate any protocol assuming broadcast channels, by
replacing each broadcast instruction of the protocol with the execution of a sub-
protocol for implementing reliable broadcast. This naive approach, however, runs
into trouble, as it may increase the round-complexity of the simulated protocol
prohibitively. For example, consider the leader election protocols of [Fei99] and
[RZ01] which run in O(log∗ n) rounds. Replacing, every broadcast instruction
made in [Fei99, RZ01], by the best Byzantine agreement protocol currently known
for the full information model (that is, from the work in this thesis), would yield
a O(log n log∗ n) leader election protocol. Moreover, even if one were to design
a Byzantine agreement protocol with expected round-complexity k = o(log n), it
would not merely imply an O(k) factor slow-down in the number of rounds. As
already observed by Chor and Rabin [CR87], the probability that all executions
of a probabilistic protocol halt within the expected number of rounds proved for a
single execution can be exponentially small in the number of executions.

Audit allows us to take any protocol Π designed assuming reliable automatic
broadcast and the identity of a special player P (called the “auditor”) and produce
a protocol Audit(P,Π) which does not assume automatic broadcast. When
the auditor P is a good player, the output distribution of non-faulty players in
Audit(P,Π) will be as in Π. Even when P is not an honest player, the output of
the non-faulty players in Audit(P,Π) will be as in Π except that some non-faulty
players may output ⊥. A significant feature of Audit is that the round-complexity
of Audit(P,Π) is a (small) constant times that of Π.

Informally, the role of the auditor P is to “audit” the execution of Audit(P,Π)
and ensure that in each round all honest players get the same messages, thus
simulating the reliable broadcast functionality. If the auditor is honest, this will
be ensured. Otherwise the worst that may happen is that some honest player will
receive a ⊥ message instead of what was sent by honest players.

In independent work, Katz and Koo [KK06] introduced the notion of moder-
ated Verifiable Secret Sharing (VSS). The idea of a moderator is very reminiscent

18 INTRODUCTION

of the idea of an auditing committee which consists of a single auditor. In contrast
with our work, [KK06] obtain their results in the private channels model. We
remark, that although our primary interest in this paper is the full information
model, the Audit transformation introduced here will apply to the private channels
model as well.

1.3.1 An Application of Auditing: “Boosting” Fault-Tolerance of
Protocols

Designing distributed algorithms that tolerate Byzantine failures is a complex task.
The task of the protocol-designer would be simpler, were there a compiler that
takes as input a distributed protocol Π that tolerates benign failures, and outputs a
robust distributed protocol Π′ that tolerates the most severe failures.

The problem of designing a compiler that automatically converts any de-
terministic protocol that tolerates fail-stop faults to one that tolerates Byzantine
faults was considered by Hadzilacos[Had83] and Neiger and Toueg [NT90]. They
provide a procedure that converts any deterministic protocol Πin that tolerate fail-
stop faults into Πout whose output in the presence of Byzantine faults, is identical
to the output of Πin in the presence of fail-stop faults. We remark that their
transformation explicitly assumes that in Πin the inputs of honest players is sent
to all other players in the first round, however when the adversary is intrusive this
restriction is unnecessary.

Bracha [Bra84] explicitly raised the question, which we partially address
here, whether such a transformation is possible for randomized protocols as well.
The additional challenge over the deterministic case is that a fail-stop fault in
a randomized protocol will flip coins fairly as prescribed by the protocol, but a
Byzantine failure could potentially use any biased coins it likes (or none at all, in
particular).

We show a compiler that takes any randomized protocol Πin designed to
tolerate a Fail Stop t-adversary, where the source of randomness of all players
in Πin is an SV-source [SV84],3 into a protocol Πout that tolerates a Byzantine
min(t, n3)-adversary. If the round-complexity of Πin is r, that of Πout is
O(r log∗ n). Previously, Hadzilacos, Neiger-Toueg, and Bracha [Had83, NT90,
Bra84] constructed such a compiler for deterministic protocols, and [Bra84]
raised as an open question, whether such a compiler exists for randomized
protocols.

Our main result of this section is:

Theorem 1. There is a compiler that converts any rΠ-round protocol Π in
which the randomness source is a γ-SV-source and which tolerates a fail-stop
t-adversary, to a rΠ′-round protocol Π′ that uses a uniformly random source and
tolerates a Byzantine t′-adversary where t′ = min(t, n3), and rΠ′ = O(rΠ log∗ n).

3Namely, given all coins tossed by all players thus far, the probability that the next coin is
“heads” is bounded between 1

2
− γ and 1

2
+ γ for some γ > 0.

1.4. OVERVIEW OF THE THESIS 19

This result partially answers the open question of Bracha [Bra84]. The
compiler we construct assumes that the input protocol works even if the coins of
the players are drawn from an SV-source; thus, it is not the most general statement
we would like to make. It is an interesting question whether the condition in the
above theorem on the coins of the players in the input protocol can be removed.

1.4 Overview of the Thesis

The main contribution of this thesis is the construction of efficient Byzantine
agreement (or equivalently, reliable broadcast) protocols in the full-information
model. In this journey, we additionally construct tools that enable us to remove
the assumption of built-in reliable broadcast channels from distributed protocols.

Chapter 2 - Preliminaries. We introduce basic notation and recall basic notions
that will be used throughout the thesis.

Chapter 3 - Classical Work on Byzantine Agreement. We recall classical
definitions of Byzantine agreement, reliable broadcast, graded broadcast and
various random selection problems. We also prove and refine the classical
connection between randomized Byzantine agreement and random selection
problems.

Chapter 4 - New Byzantine Agreement Protocols. This chapter contains
the main contribution of our work, namely the construction of two Byzantine
Agreement protocols in the full-information model, with an expected round-
complexity of O(log n).

These results proceed by constructing committee-election protocols that
do not assume broadcast channels, using technical ideas from the works of
Feige [Fei99] and Russell and Zuckerman [RZ01]. In particular, these results
give us the most efficient leader-election, collective coin-flipping and committee-
election known so far in the full-information model without built-in broadcast.

Chapter 5 - Auditing a Distributed Protocol and an Application. The main
motivation behind the construction of reliable broadcast protocols is to convert
distributed protocols that assume built-in broadcast channels into ones that do not
make such an assumption. This transformation, however, comes at a cost: each
invocation of the reliable broadcast channel in the original protocol is replaced
with a reliable broadcast protocol, and this increases the round-complexity of the
original protocol by a multiplicative factor of O(log n) (using the protocols in
Chapter 4, which are the best known so far in the full-information model).

This raises the following question: given a protocol that assumes built-in
reliable broadcast channels, is it possible to run (a modified version of) the

20 INTRODUCTION

protocol that (a) does not take much more time to run than the original protocol,
and (b) still provides a meaningful guarantee? We answer this question in the
affirmative.

We show how to apply this to the problem of boosting the fault-tolerance
of distributed protocols. Namely, we design a mechanism that transforms
randomized distributed protocols tolerating fail-stop faults (satisfying certain
technical conditions) into an equivalent protocol that tolerate Byzantine faults.

Chapter 6 - Extensions. In this chapter, we show various tradeoffs between
the fault-tolerance of Byzantine agreement and other parameters of the system.
In particular, we show how to tradeoff the fault-tolerance against the setup
assumptions available, the round-complexity and the quality of randomness
available.

ACKNOWLEDGMENTS. This thesis is based on the material in joint work with
Michael Ben-Or, Shafi Goldwasser and Elan Pavlov, and has been supported
by NSF Grants CCF-0514167 and CCF-0635297, an Israel Science Foundation
Grant 700/08 and an MIT Akamai Presidential Fellowship. Portions of the thesis
originally appeared as extended abstracts in the 38’th Symposium on the Theory of
Computing [BPV06] and the 47’th Foundations of Computer Science [GPV06].

2
Preliminaries

2.1 Modeling a Synchronous Distributed System

We first present a computational model for algorithms in a synchronous distributed
system. The reader might find it convenient to refer back to this section, since
much of the later chapters will use the model presented here. Our modeling
follows in a large part the material in Lynch [Lyn96, Chapter 2] and Feldman
and Micali [FM88], while adapting them to our setting.

The modeling consists of defining the network characteristics, the computa-
tion of a protocol and the adversarial model.

THE NETWORK. We consider a distributed system made up of n players,
P1, . . . , Pn, and denote by P = {P1, . . . , Pn} the set of players. The commu-
nication network is made up of a bidirectional communication link between every
pair of players, which is the only means by which the players can communicate.
In particular, we stress that there is no built-in broadcast channel in the system.
One can imagine generalizations of this model where not all pairs of players are
connected by direct communication links; we will deal with some of these cases
in Section 2.1.1.

THE COMPUTATION. A distributed protocol Π is specified by an n-tuple of
interacting (possibly randomized) Turing machines (Π1,Π2, . . . ,Πn), where we
think of Πi as the program executed by player Pi.

The execution of a distributed protocol Π proceeds in “rounds”. In each round,
every player Pi receives the messages that were sent to Pi in the previous round,
does some local computation (as specified by its program Πi) and sends messages
to all the players. In particular, the model makes the implicit assumption that
there is a global clock that governs the rate of computation, and that the messages
sent by a player are received within a bounded amount of time by the intended
recipient.

22

2.1. MODELING A SYNCHRONOUS DISTRIBUTED SYSTEM 23

Formally, we will let statei,r denote the configuration of the Turing machine
Πi in the beginning of round r. The configuration consists of the contents of all
the tapes of the Turing machine, as well as the finite state control. Let mr

j→i
denote the message sent from player Pj to Pi in the beginning of round r. Then,
the program Πi computes

(statei,r+1,m
r+1
i→1, . . . ,m

r+1
i→n)← Πi(statei,r,mr

1→i, . . . ,m
r
n→i)

Pi sends the messages mr+1
i→j to player Pj and updates its local state to statei,r+1.

At some point, the Turing machine Πi enters a special halt state and writes a
string on the output tape, which is the local output of Pi on this execution.

THE RANDOMNESS. We consider randomized distributed protocols. Each of the
programs Πi that define the distributed protocol Π are allowed to access a random
source, namely a sequence of bits generated according to some distribution. In
such a case, each step of the Turing machines Πi is randomized. If we denote the
random tape of the Turing machine Πi by ρi = (ρi,1, ρi,2, . . .), then

(statei,r+1,m
r+1
i→1, . . . ,m

r+1
i→n)← Πi(statei,r,mr

1→i, . . . ,m
r
n→i; ρi,r)

When considering a randomized protocol, both the output and the running time of
the protocol are random variables.

We define two specific distributions of randomness in this work – the
uniform distribution, and the Santha-Vazirani distribution [SV84]. The uniform
distribution of randomness is the one that is traditionally assumed by randomized
distributed protocols. Here the concatenation of random tapes ρ1 ◦ ρ2 ◦ . . . ◦ ρn
consists of a sequence of completely unbiased and independent bits.

The second one is a distribution defined by Santha and Vazirani [SV84],
called the Santha-Vazirani source (or, SV-source). Informally, in an SV-source
parametrized by a real number γ ∈ [0, 1

2], each bit has a bias of upto γ, and
the exact bias can depend on the values of all the previous bits. Slightly more
precisely, for γ ∈ [0, 1

2], a γ-SV-source is a sequence of bits (b1, b2, . . .) such that
for any i,

1
2
− δ ≤ Pr[bi+1 = 0 | b1, . . . , bi] ≤

1
2

+ δ

When γ = 0, this is exactly the uniform random source, and when γ = 1
2 ,

this is an arbitrary string. In this case, the concatenation of the random tapes
ρ1 ◦ρ2 ◦ . . .◦ρn is a γ-SV source. Note that in this case, there is no independence
guarantee, as any two bits used by the distributed protocol can be dependent on
each other.

THE ADVERSARY. We consider a strong adversarial model, namely the full-
information model. A full-information t-adversary has unbounded computational
power, and can “corrupt” up to t players in the beginning of the protocol execution.
On corruption of a player Pi, the program of Pi, namely Πi, is replaced by a
program Π̃i that the adversary chooses.

24 PRELIMINARIES

We consider three different degrees of corruption – namely, fail-stop, omission
and Byzantine corruption – in the increasing order of severity. In the case of fail-
stop corruption, the program Π̃i is the same as Πi, except that it can halt, in an
arbitrary time during the execution of the protocol. We stress that the time when
Π̃i halts can (adversarially) depend on the particular execution of the protocol so
far. Once Π̃i halts, it does not send or receive any more messages. A slightly
stronger corruption model is the omission model, which is the same as the fail-
stop model except that Π̃i can continue participating in the protocol even after
omitting to send or receive an arbitrary subset of the messages. The most severe
corruption model is the Byzantine model, where the program Π̃ is completely
arbitrary.

A corrupted program Π̃i can observe all the communication in the network,
namely the messages sent between any two players. In each round r, the corrupted
program Π̃i decides what messages to send to all the players in round r (resp.
decides whether to omit messages in the case of an omission adversary, or halt in
the case of a fail-stop adversary), after observing the messages sent by the honest
players in all the previous rounds, inclduding round r. The ability to observe the
messages sent in the same round before deciding what to send in that round is
called rushing. This is to model the fact that although some form of synchrony
is achievable in the network, perfect synchrony is almost impossible to achieve.
We stress that a corrupted program can observe all the messages exchanged in
the network, even the ones that honest players exchange amongst themselves. In
other words, no communication is assumed to be secret (this models the “full-
information” aspect of the adversary).

Thus, to recap, the full-information adversary is powerful in that it has (a)
unbounded computing power, (b) the ability to observe all the messages sent in
the network between any two players (that is, full-information), and (c) the ability
to decide what to send in a given round r (resp. whether to halt or omit messages),
based on the messages that the other players send during round the same round r
(that is, rushing).

Formally, a full-information t-adversary A is a Turing machine with unbounded
computational power that outputs a sequence of at most t indicesB = (b1, . . . , bt),
and t programs Π∗1, . . . ,Π

∗
t . Define Π̃i = Πi if i /∈ B, and Π̃i = Π∗j where

bj = i. The execution of the protocol Π against the adversary A is define to be
the execution of the protocol Π̃ = (Π̃1, . . . , Π̃n). To model the full-information
aspect of the adversary, the execution of the corrupted and uncorrupted programs
have different syntax. While an uncorrupted program executes just as before, a
corrupted program Π̃i acts as follows. In round r, Π̃i computes the state at the
beginning of round r+ 1, namely statei,r+1, and the messages to be sent in round
r, namely {mi,j,r}j∈[1...n], as a function of all the messages that have been sent in
the network upto and including the messages in round r+ 1. Namely, it computes

(statei,r+1,m
r+1
i→1, . . . ,m

r+1
i→n)← Πi(statei,r, {mr+1

j→k}j,k∈honest(P,A))

2.1. MODELING A SYNCHRONOUS DISTRIBUTED SYSTEM 25

One of the drawbacks of the model is that the adversary has to choose which
players to corrupt in the beginning of the protocol execution. This is called a
static adversarial model. The stronger model of dynamic (or adaptive) adversaries,
where the adversary can choose which player to corrupt adaptively during the
execution of the protocol, is much harder to handle. In fact, see Section 2.1.1 for
comments on this model.

COMPLEXITY MEASURES. The main measure of the complexity of a protocol
Π is its round-complexity. The round-complexity of a protocol Π against an
adversary A, denoted by rounds(Π,A) is defined to be the total number of
rounds in an execution of Π̃ before all the honest players halt. The round-
complexity of Π is the supremum of this quantity over all adversaries A. That
is, rounds(Π) = maxA rounds(Π,A). In the case of a randomized protocol,
rounds(Π) is a random variable and we will be concerned with the expected value
of this quantity.

We are also concerned with the communication complexity of Π, denoted by
cc(Π), which is the total number of bits communicated by all the honest players in
an execution of Π against an adversary A. Analogous to the round-complexity, in
the case of a randomized protocol, we will talk about the expected communication
complexity.

2.1.1 Remarks on the Model and Extensions

AUTHENTICATED CHANNELS. A physical assumption implicit in our model is
the assumption of “authenticated pairwise channels”. Namely, we assume that
the adversary cannot modify or inject messages into the pairwise communication
channel between two honest players Pi and Pj . Without this assumption, a single
faulty player could impersonate as many players as he likes, and this would
make achieving Byzantine agreement (and indeed, any form of reliable distributed
computation) impossible. Authenticated channels thus appears to be an essential
physical assumption necessary to achieve Byzantine agreement!

PARTIAL CONNECTIVITY. Our model assumes that there is a pairwise communi-
cation channel between every two players Pi and Pj which allows reliably sending
a message from Pi to Pj in one time-step. The networks that arise in practice,
however, are not fully connected and are sometimes quite sparse (think of the
internet, or even the MIT intranet!) In such a case, we will run one of the many
efficient reliable communication protocols which simulates a complete network
over any network of “sufficient” connectivity. In particular, the results of [] show
that we can simulate a complete network over any t + 1-connected network of
diameter δ, using a protocol that tolerates t faults and runs in O(δ) rounds.

ADAPTIVE ADVERSARIES. Our adversarial model assumes that the adversary
chooses the set of players to corrupt in the beginning of the protocol execution.

26 PRELIMINARIES

The set of corrupted players is then fixed throughout the execution of the protocol.
A stronger, adaptive (or dynamic) adversary is endowed with the capability to
corrupt players during the execution of the protocol. Unfortunately, constructing
an efficient Byzantine agreement protocol in the full-information model tolerating
an adaptive adversary is impossible, as shown by Ben-Or and Bar-Joseph [BB98].
In particular, they show that any Byzantine agreement protocol that tolerates
an adaptive adversary corrupting O(n) players will have an expected round-
complexity of Ω̃(

√
n). In contrast, the protocols we present have a round-

complexity that is logarithmic (in n).

2.2 Reliable Broadcast and Byzantine Agreement

The problem of reliable broadcast is to simulate the functionality of a broadcast
channel, a mechanism by which a possibly malicious player, called the sender, can
transmit the same message to all the n players. A formal definition is as below.

Definition 2 (Reliable Broadcast). LetM be a finite message space. Let the input
of a designated player S ∈ P be a message m ∈ M, and the inputs of all the
other players be a special symbol⊥. Then, a protocol Π is said to achieve reliable
broadcast among the n players if:

1. Termination: All the honest players Pi terminate with probability 1, where
the probability is over the coin-tosses of the honest players. On termination,
player Pi writes a value mi ∈M on the output tape.

2. Agreement: Any two honest players have the same output. That is, for any
two honest players Pi and Pj , mi = mj .

3. Validity: If the sender S is honest, then every honest player outputs m.
That is, if S is honest, mi = m for every honest player Pi.

We want our protocols to be probabilistic in the “best possible way”: that
is, we require them to be always correct, and probably fast. That is, an unlucky
sequence of coin-tosses may cause our protocol to to run longer, but when it halts
both agreement and validity are guaranteed to hold.

Note that the above definition requires that the termination, agreement and
validity conditions hold with probability 1 over the coin-tosses of the honest
players. In this case, the running-time of the protocol is allowed to be a random
variable, and the principal complexity measure of interest is the expected running
time of the protocol.

The closely related problem of Byzantine Agreement [PSL80] is as defined below.

Definition 3 (Byzantine Agreement). Let M be a finite message space. Let the
input of each player Pi be a value mi ∈M. Then, a protocol Π is said to achieve
Byzantine Agreement among the n players if:

2.2. RELIABLE BROADCAST AND BYZANTINE AGREEMENT 27

PROTOCOL Πbcast-from-BA(S,m): CODE FOR A PLAYER Pi

Input: m if Pi is the sender S, and ⊥ otherwise.
Output: yi.

Step 1. If Pi = S, then send m to all the players through the pairwise
communication channels. If Pi 6= S, do nothing.

Step 2. Let zi denote the value received from S in Step 1. Run the Byzantine
agreement protocol BA with input zi. The output yi is the same as the
output of the BA protocol.

Table 2.1: Reduction from Reliable Broadcast to Byzantine Agreement

1. Termination: All the honest players Pi terminate with probability 1, where
the probability is over the coin-tosses of the honest players. On termination,
player Pi writes a value mi ∈M on the output tape.

2. Agreement: Any two honest players have the same output. That is, for any
two honest players Pi and Pj , mi = mj .

3. Validity: If all the non-faulty players have the same input, then That is, if
there is an m such that for every honest player Pi, mi = m, then for every
honest player .

It is elementary to see that reliable broadcast is equivalent to the problem of
achieving Byzantine Agreement. We will present a proof of this very simple fact,
which will serve to introduce the reader to our method of presenting the protocols
and structuring the proofs. Furthermore, some of the subtleties associated with the
running-time of randomized protocols under parallel composition already show up
in this reduction.

Proposition 1. If t < n
2 , reliable broadcast and Byzantine agreement are

equivalent.

Proof. We first show that if there is a Byzantine agreement protocol ΠBA with
round-complexity r and communication complexity c, then there is a reliable
broadcast protocol Πbcast-from-BA with (expected) round-complexity r + 1 and
(expected) communication complexity c + O(n). The protocol Πbcast-from-BA is
given in Table 2.1.

Since ΠBA terminates within a finite amount of time, so does Πbcast-from-BA.
To show validity of Πbcast-from-BA, suppose that the sender is honest and has input
m. Then, all the honest players start the BA protocol ΠBA with input the same
inputm and, by the validity of ΠBA, all of them outputm too. This proves validity

28 PRELIMINARIES

PROTOCOL ΠBA-from-bcast: CODE FOR A PLAYER Pi

Input: mi ∈M.
Output: yi.

Step 1. Run the reliable broadcast protocol ΠBCast(Pi,mi) with Pi as the
sender and mi as the input to the sender.

Step 2. Pi receives n outputs, one from each invocation of the reliable
broadcast protocol ΠBCast(Pj ,mj). Let yi,j be the output of Pi on the
jth invocation, namely ΠBCast(Pj ,mj).

If there is a value y such that more than n/2 of the yi,j’s are equal to y,
then let the output yi = y, else yi = ⊥.

Table 2.2: Reduction from Byzantine Agreement to Reliable Broadcast

for Πbcast-from-BA. All the honest players agree on the output in Πbcast-from-BA,
simply because of the agreement property of ΠBA.

The claims about the round-complexity and communication-complexity of
Πbcast-from-BA are easy to verify. The overhead in the complexity is caused by
the initial round, where the sender sends his input to all the players, which takes
1 round a communication equivalent to O(n) messages.

For the converse, we show that if there is a reliable broadcast protocol ΠBCast

with round-complexity r and communication complexity c, then there is a BA
protocol ΠBA-from-bcast with round-complexity r and communication complexity
O(n · c). The protocol ΠBA-from-bcast is given in Table 2.2.

Since ΠBCast terminates within a finite amount of time, so does ΠBA-from-bcast.
To show validity, suppose that all the honest players have the same input m.
Consider any honest player Pi, and the n values yi,j that Pi receives as the
output of the reliable broadcast sub-protocols, in the beginning of Step 2. If Pj is
honest (and therefore has input m, by assumption), then by the validity of ΠBCast,
yi,j = m too. Since there are more than n/2 honest players, a majority of the
yi,j’s will be m and thus, Pi will output m. Thus, all the honest players output m,
which proves validity of ΠBA-from-bcast. We will now show agreement. For any
two honest players Pi and Pj , the set of n values that Pi and Pj receive as outputs
of the n reliable broadcast subprotocols is identical. Thus, Pi and Pj output the
same value, since the output is the majority of these n values.

The overhead in the complexity is caused by executing n instances of ΠBCast

in parallel, which costs n times the expected communication complexity of a
single invocation of ΠBCast. The expected round-complexity of the protocol is
the expected time it takes for n independent, parallel executions of ΠBCast to all
finish. This could be more than the expected running-time of a single execution
of ΠBCast, and in some cases, as large as log n times the expected running-time of

2.3. PROBABILISTIC LEMMAS 29

a single execution of ΠBCast. The upshot is that the expected round-complexity of
ΠBA-from-bcast is tightly related to the expected round-complexity of n instances
of ΠBCast running in parallel.

2.3 Probabilistic Lemmas

We use the following version of Chernoff Bound.

Proposition 2. Let X1, X2, . . . , Xn be independent random variables such that,
for 1 ≤ i ≤ n, Pr[Xi = 1] = pi, where 0 < pi < 1. Then, for X =

∑n
i=1Xi,

µ = E[X] =
∑n

i=1 pi, and any δ > 0,

Pr[X > (1 + δ)µ] <
[eδ

(1 + δ)(1+δ)

]µ
In particular, if δ = 2, we get Pr[X > 3µ] < e−µ.

3
Classical Work on Reliable

Broadcast

This chapter presents two classical results from the literature on reliable broadcast,
and refines these results. Our protocols for reliable broadcast in Chapter 4 build
on the material in this chapter.

The first is a definition of a weaker variant of reliable broadcast, called graded
broadcast. Graded broadcast is a natural relaxation of reliable broadcast, and more
importantly, it can be achieved by a very efficient deterministic protocol. This
primitive was first defined by Feldman and Micali [FM97], and indeed they used
it as a key ingredient in their reliable broadcast protocol in the private-channels
model. Here, we use graded broadcast as a tool to achieve fully reliable broadcast,
but in the full-information model. This material is presented in Section 3.1.

The second result is a classical connection between randomized algorithms
for reliable broadcast (and also the related problem of Byzantine agreement),
and protocols that achieve various forms of random selection. The connection
between Byzantine agreement and random selection was first discovered by Ben-
Or [Ben83] and Rabin [Rab83], and from then on, this has been the preferred
route for constructing efficient randomized protocols for reliable broadcast. We
follow this time-tested path, and refine it in order to achieve some additional
properties of the resulting reliable broadcast protocol, such as sequential and
parallel composition. This material is presented in Section 3.2.

3.1 A Weaker Variant of Reliable Broadcast

A useful intermediate step in achieving fully reliable broadcast is to define a notion
of “semi-reliable” broadcast, and achieve a round-efficient implementation of such
a notion. A grotesquely over-simplified specification of a semi-reliable broadcast
channel is the following:

30

3.1. A WEAKER VARIANT OF RELIABLE BROADCAST 31

A semi-reliable broadcast sometimes loses messages, but never
delivers different messages to two different players.

Feldman and Micali [FM88] defined the notion of graded broadcast which
captures and strengthens the above over-simplified specification. We next present
the definition of graded broadcast and a protocol achieving this definition; the
material in this section is taken from the work of Feldman and Micali [FM88].

3.1.1 Graded Broadcast

Just as in the problem of reliable broadcast, there is a sender S with an input v that
he wishes to broadcast to all the players. A protocol achieves graded broadcast if,
at the end of the protocol, each player outputs a value vi and a grade gi such that:

1. Each grade gi can take a value in {0, 1, 2}, 0 being the lowest grade and 2
the highest.

2. If the sender S is honest, all the players receive v (the sender’s value) with
a grade of 2.

3. Even if the sender is dishonest, the following properties hold: (a) the grades
gi and gj of two honest players Pi and Pj cannot differ by more than one;
and (b) if Pi receives a value vi and Pj receives a value vj with grades of at
least one, then vi = vj .

The grade represents the degree of confidence that the recipient has on the
fact that everyone else received the same value. If Pi outputs a value vi with
grade gi = 2 (that is, the highest grade), then Pi “knows” that all the other honest
players Pj received the same value, although with possibly different grades. That
is, vj = vi, but gj can be either 1 or 2. If Pi outputs a value vi with grade gi = 1,
then it might be the case that another honest player Pj either recieves vj = vi or
vj = ⊥, but it is never the case that vj /∈ {vi,⊥}. Finally, a grade gi = 0 does not
give any guarantees on the other players’ values.

More formally,

Definition 4 (Graded Broadcast). LetM be a finite message space. Let the input
of a designated player S ∈ P be a message m ∈ M, and the inputs of all the
other players be a special symbol ⊥. Then, a protocol Π is said to achieve graded
broadcast among the n players if each honest player Pi outputs a pair (mi, gi)
with mi ∈M∪ {⊥} and gi ∈ {0, 1, 2}, and the following conditions hold:

1. Termination: All the honest players Pi terminate with probability 1, where
the probability is over the coin-tosses of the honest players.

2. Graded Agreement: For any two honest players Pi and Pj , |gi − gj | ≤ 1.
Furthermore, if gi > 0 and gj > 0, then mi = mj .

3. Validity: If the sender S is honest, then every honest player outputs (m, 2).
That is, if S is honest, mi = m and gi = 2 for every honest player Pi.

32 CLASSICAL WORK ON RELIABLE BROADCAST

The following lemma is proven in [FM97].

Lemma 1 (Feldman-Micali [FM97]). There exists a deterministic protocol Πgcast

among n players which achieves graded broadcast as long as t < n
3 players

are corrupted by a Byzantine adversary. Πgcast runs in 4 rounds, and has a
communication complexity of O(n2) bits.

Proof. The protocol is in Table 3.1. It is clear from the description of the protocol
that it terminates in 3 rounds, and communicates at most O(n2) messages. We
will now show that it satisfies the validity and the graded agreement properties.

To show validity, suppose that the sender S is honest; we show that all honest
players Pi output (v, 2) where v is the input of the sender. Consider a particular
honest player Pi. In Step 1, Pi receives v from the sender, and in Step 2, it sends
yi = v to all the players. In turn, Pi receives the value v from all the honest
players in Step 3, and thus sets zi = v, and sends zi to all the players. In Step 4,
Pi again receives v from the all the n− t honest players, and thus outputs (v, 2).

We now show graded agreement, when the sender S is not necessarily honest.
Suppose some honest player Pi outputs (v, 2), for some value v. Working
backwards, this means that Pi received the value v from at least n − t players
in Step 4. Since there are at most t dishonest players, at least n − 2t honest
players sent the value v in Step 3. Thus, any other honest player Pj receives the
value v from at least n − 2t players. Since n − 2t ≥ t + 1, Pj will output either
(v, 1) or (v, 2) (the latter in case he receives more than 2t copies of v).

We also show that if an honest player outputs (v, 1), for some value v, then all
the honest players will output (v′, b) or (⊥, 0), where v′ = v and b ∈ {1, 2}. In
other words, v′ is either v or ⊥, and never a legal value different from v. To show
this, suppose some honest player Pi outputs (v, 1). Then, working backwards,
this means that in Step 4, Numi(v) ≥ t + 1. Since there are at most t dishonest
players, this means that at least one honest player sent v in Step 3. Pi sends v in
Step 3 only if he received at least n− t copies of v in Step 2. Therefore, no honest
player Pj could have sent a value v′ 6= v in Step 3. This is because every other
honest player Pj receives v from at least (n − t) − t = n − 2t players in Step 3.
Therefore, for any other value v′ 6= v, at most 2t < n − t players sent v′ to Pj
in Step 2. Now, this means that Numj(v′) ≤ t in Step 4, since no honest player
sends v′ in Step 3 and there are at most t dishonest players. The only possibilities
for Pj then are to output (v, 2), (v, 1) or (⊥, 0).

3.2 Byzantine Agreement and Random Selection

Ben-Or [Ben83] and Rabin [Rab83] showed a reduction from achieving Byzantine
agreement tolerating t < n/3 dishonest players to solving various random
selection problems tolerating t dishonest players. If the random-selection protocol
has a round-complexity of r, then the expected round-complexity of the resulting

3.2. BYZANTINE AGREEMENT AND RANDOM SELECTION 33

PROTOCOL Πgcast: CODE FOR PLAYER Pi

Input: A value v, if Pi is the sender S, and ⊥ otherwise.
Output: A pair (vi, gi), where gi ∈ {0, 1, 2}.

Step 1. If Pi = S, then send v to all the players through the pairwise
communication channels. If Pi 6= S, do nothing.

Step 2. Let yi denote the value received from S in Step 1. Send yi to all the
players.

Step 3. Let zi,j denote the value received from Pj in Step 2. Let zi =
Thresholdn−t(zi,1, . . . , zi,n). Send zi to all the players.

Step 4. For every value w, let Numi(w) be the number of players that sent
w to Pi in Step 3.

• If there is somew such that Numi(w) ≥ 2t+1, then output (w, 2).

• Else, if there is some w such that 2t ≥ Numi(w) ≥ t + 1, then
output (w, 1).

• Else, output (⊥, 0).

Table 3.1: The Graded Broadcast Protocol of Feldman and Micali

Byzantine agreement protocol is O(r). Thus, to design efficient Byzantine
agreement protocols, it suffices to design efficient random-selection protocols.

What is random-selection? The term is used to refer to a broad class of
problems which, very informally, require the following:

Given a universe U , design a protocol Πrandsel at the end of which all
players output an element u ∈ U such that despite the faulty behavior
of at most t players, u is guaranteed to be “sufficiently random”.

Two classical examples of random selection problems are collective coin-
flipping and leader-election. In collective coin-flipping, the universe U contains
two elements {0, 1}, and the n players are required to run a protocol Πcoin at the
end of which all the players output a bit b that is relatively unbiased, even though
a set of t players may be dishonest and might try to bias the output bit. More
formally,

Definition 5 (Collective Coin-Flipping). A protocol Πcoin among n players is said
to be an (ε, δ) collective coin-flipping protocol if, at the end of the protocol, each
player Pi outputs a bit bi such that the following hold:

34 CLASSICAL WORK ON RELIABLE BROADCAST

1. Agreement: With probability at least ε, all the players output the same bit
b. That is,

Pr[∃b such that ∀i, bi = b] ≥ ε

2. Randomness: Given that all the players output the same bit b, the bias of b
is at most δ. That is,

1
2
− δ ≤ Pr[b = 0 | ∃b such that ∀i, bi = b] ≤ 1

2
+ δ

In the problem of leader election, the requirement is that the players run a
protocol and output the identity of some player (called the “leader”), with the
guarantee that with high probability, the leader is an honest player. More formally,

Definition 6 (Leader Election). A protocol Πleader among n players is said to be an
(ε, δ) leader election protocol if, at the end of the protocol, each player Pi outputs
a number `i ∈ [1 . . . n] such that the following hold:

1. Agreement: With probability at least ε, all the players output the same
number. That is,

Pr[∃` ∈ [1 . . . n] such that ∀i, `i = `] ≥ ε

2. Good Leader: Given that all the players output the same number `, the
probability that P` is an honest player is at least δ. That is,

Pr[` ∈ honest(P,A) | ∃` such that ∀i, `i = `] ≥ δ

These two problems are related to each other. In particular, it is easy to see that
given a protocol for (ε, δ) leader election, there is also a protocol for (εδ, 1

2(1−δ))
collective coin-flipping. This is done by simply asking the elected leader to toss
a random coin and send it to all the players. The better the parameter δ is, the
larger the probability that an honest player will be elected as the leader, and thus
the smaller is the bias of the resulting coin-flip.

It has been shown [Sak89] that both collective coin-flipping and leader
election are achievable in the full-information model only if a majority of the
players are honest, that is only if t < n/2. Under this condition, a large number
of protocols with progressively better parameters and round-complexity have been
designed for these problems [Sak89, ORV94]. The best protocols known are due
to Feige [Fei99] and Russell and Zuckerman [RZ01], both of which have a round-
complexity of O(log∗ n) (where log∗ n is the inverse of the Ackermann function).
For a discussion of the range of parameters ε and δ achievable for collective coin-
flipping and leader election, see [Fei99].

BEN-OR AND RABIN’S REDUCTION. Ben-Or and Rabin presented a reduction
from Byzantine agreement to the problem of collective coin-flipping. In particular,
they showed that if there is a protocol for (ε, δ) collective coin-flipping (resp.

3.2. BYZANTINE AGREEMENT AND RANDOM SELECTION 35

(ε, δ) leader election) with some constant values of ε, δ > 0 that runs in r rounds
tolerating t < n/3 dishonest players, then there is a protocol for Byzantine
agreement that runs in O(r) rounds tolerating t dishonest players, too. This
reduction forms the basis of all the later works [FM88, CC85, DSS90, CR93] on
constructing randomized Byzantine agreement protocols; all these works use the
Ben-Or-Rabin reduction, and deal only with the problem of constructing collective
coin-flipping (resp. leader election) protocols.

Here, we present another random selection problem, namely committee
election, which is a generalization of the leader election problem. We then
show how to transform any leader election generalized problem, called committee
election, and also a more general reduction that preserves the complexity of
parallel executions.

A NEW RANDOM SELECTION PROBLEM – COMMITTEE ELECTION. The prob-
lem of committee election was defined and used as a subroutine in the collective
coin-flipping protocols of Feige [Fei99] and Russell and Zuckerman [RZ01]. The
problem is to construct a protocol among n players, where all the players output a
subset of players S ⊆ P , such that the fraction of honest players in S is “roughly
the same as” the fraction of honest players in the entire player-set P .

We require an even weaker form of committee election for our purposes.
Namely, we only require that the subset S contains at least one honest player.
More formally,

Definition 7 (Committee Election). A protocol Πcomm among n players is said
to be an (c, ε, δ) committee election protocol if, at the end of the protocol, each
player Pi outputs a subset Si ⊆ P such that the following hold:

1. Agreement: With probability at least ε, all the players output the same set
S. That is,

Pr[∃S ⊆ P such that ∀i, Si = S] ≥ ε

2. Good Committee: Given that all the players output the same set S, the
probability that S contains at least one honest player is at least δ. That is,

Pr[S ∩ honest(P,A) 6= ∅ | ∃S such that ∀i, Si = S] ≥ δ

3. Size of the Committee: Given that all the players output the same set S,
|S| ≤ c.

It is trivial to deterministically elect a committee with t + 1 players that
contains at least one good player. Simply output the identities of the first t + 1
players, for example. The non-trivial problem here is to elect a much smaller
committee. In such a case, it is easy to see that a deterministic algorithm will not
suffice.

A REDUCTION FROM BYZANTINE AGREEMENT TO COMMITTEE ELECTION.
Given any committee-election protocol that outputs a committee S, we can

36 CLASSICAL WORK ON RELIABLE BROADCAST

construct a randomized Byzantine agreement protocol that runs in an (expected)
O(|S|) rounds. If the committee-election protocol tolerates t dishonest players,
then the resulting Byzantine agreement protocol tolerates min(t, n/3) dishonest
players. We state this lemma formally below.

Theorem 1 (follows from [BG89b]). There is a reduction from binary Byzantine
agreement to committee election. If Πcomm-elect is a (c, ε, δ) committee election
protocol tolerating t faults, then ΠBAreduction is a Byzantine agreemnet protocol
that tolerates t faults, and runs in expected O(c/εδ) rounds.

4
New Byzantine Agreement

Protocols

This chapter contains the main contribution of our work, namely the construction
of two Byzantine agreement protocols in the full-information model, with an
expected round-complexity of O(log n).

We proceed by first constructing committee-election protocols, and then
using the reduction from Byzantine agreement to committee election (Chapter 3,
Theorem 1) to derive the Byzantine agreement protocols. The construction of the
two committee-election protocols build heavily on the protocols of Feige [Fei99]
and Russell and Zuckerman [RZ01], respectively. The protocols of [Fei99] and
[RZ01] work in the full-information model with built-in broadcast channels,
which is exactly the assumption that what we are trying to avoid. Thus, the
main technical effort is to design committee-election protocols (following [Fei99]
and [RZ01]) in the full-information model without assuming built-in broadcast
channels.

ORGANIZATION OF THIS CHAPTER. We first present the protocols of [Fei99] and
[RZ01], using built-in broadcast channels in Section 4.1. Section 4.2 describes the
construction of our committee-election protocols without using built-in broadcast
channels. As a consequence, we obtain two Byzantine agreement protocols.
Section 4.3 concludes with a discussion of some natural ways to improve the
round-complexity of these protocols, and roadblocks to achieving this goal.

4.1 Committee Election Protocols

In this section, we describe the committee-election protocols of Feige [Fei99]
and Russell and Zuckerman [RZ01]. Although it suffices (for the purposes of
constructing Byzantine agreement, using the reduction in Theorem 1) to elect a

38

4.1. COMMITTEE ELECTION PROTOCOLS 39

PROTOCOL ΠFeige: CODE FOR A PLAYER Pi

Input: A real number ε > 0.
Output: The identities of a set of players S = {P1, . . . , Pk}.

Step 1. Define the constant a ∆= 2
ε2

. Choose a random number Bi ∈
[1 . . . n

a logn] and use the reliable broadcast channel to broadcast Bi to
all the players. Let bin(Pi) = Bi.

Step 2. Let SB = {Pi : bin(Pi) = B}. Output the set SB that has the
minimal size. That is, output SB such that |SB| is the smallest.

Table 4.1: Feige’s Committee Election Protocol with Built-in Broadcast Channels.

committee that has at least one honest player, these protocols do much more: the
protocols elect a committee which contains roughly the same fraction of dishonest
players as in the entire player-set P . The protocols are described in Sections 4.1.1
and 4.1.2.

4.1.1 Feige’s Committee Election Protocol

In 1999, Feige proposed an exceedingly simple and elegant protocol – called the
“lightest bin” protocol – to select from among n players, a set S of O(log n)
players such that the fraction of good players in S is approximately the same as
the fraction of good players in the entire player-set P . The basic idea of Feige’s
protocol is selection by elimination: assume that there are k � n “bins” and that
each player has a “ball” in his hand. Each player picks a random bin and throws
the ball into the bin. When all the n players are done, they pick the lightest bin,
namely the bin that contains the fewest balls; the elected committee consists of
the players in the lightest bin. Clearly, the lightest bin has at most n

k players,
and thus if k were sufficiently large, the selected committee is small. On the
other hand, since the honest players choose at random, they are almost evenly
distributed among all the bins, assuming that k is not too large (informally, this is
true because of an analogy with the coupon-collector problem. See the analysis
in Lemma 2 for details). Thus, with high probability (over the randomness of
the honest players), each bin contains a large number of honest players. Now, if
the adversary wants to include too many dishonest players in a bin, he will end
up making the bin too heavy which, in particular, means that the bin will not be
chosen.

A formal description and claim about Feige’s protocol appears in Table 4.1
and Lemma 2.

Lemma 2. Let β denote the fraction of dishonest players in the entire player-set P .
For every constant ε > 0, at the end of the protocol ΠFeige, all the players output

40 NEW BYZANTINE AGREEMENT PROTOCOLS

(the same) committee S ⊆ P such that |S| ≤ 2 logn
ε2

, and with probability at least
1− 1

n , the fraction of dishonest players in the elected committee is at most β + ε.
ΠFeige runs in 1 round, and the communication- complexity is Õ(n2) bits

(where each bit that is broadcast counts as O(n) bits).

Proof: Since the protocol uses a built-in broadcast channel, all the players output
the same set S. We will now show that with probability at least 1 − 1

n , the set S
contains at least (1− β − ε)|S| honest players.

First, observe that |S| ≤ a log n. This is because there are n players, and
n

a logn bins, and by the pigeonhole principle, at least one of the bins contains at
most a log n players. In particular, the lightest bin contains at most a log n players.

Secondly, we claim that with probability at least 1 − 1
n , all the bins contain

at least (1 − β − ε)a log n honest players. Define the indicator random variables
Xi,b for 1 ≤ i ≤ n and 1 ≤ b ≤ n

a logn as follows.

Xi,b =
{

1 if player Pi chooses bin b
0 otherwise

Since the honest players choose their bin at random, for every honest player
Pi and every bin b, the expectation E[Xi,b] = a logn

n .
Denote the number of honest players in a particular bin b by Xb. Then, Xb is

simply the sum of all random variables Xi,b for all honest players Pi. That is,

Xb =
∑

i:Piis honest
Xi,b

By linearity of expectation, the expected number of honest players in a bin b
is

E[Xb] =
∑

i:Piis honest
E[Xi,b] =

∑
i:Piis honest

a log n
n

= (1− β)a log n

Since the random variablesXi,b are independent, we can bound the probability
that Xb is much smaller than the expectation, using Chernoff bound,

Pr[Xb < (1−β−ε)a log n] ≤ Pr[|Xb−E[Xb]| ≤
ε

1− β
E[Xb]] ≤ 2·e−ε2a logn/(1−β)

By a union bound, the probability that some bin b contains less than (1 − β −
ε)a log n honest players is at most

Pr[∃b such that Xb < (1− β − ε)a log n] ≤ n

a log n
2
n2

<
1
n

These two observations together mean that the smallest bin contains at most
a log n − (1 − β − ε)a log n ≤ (β + ε)a log n dishonest players, with high
probability. Thus, the fraction of dishonest players in the smallest bin is at most
β + ε.

4.1. COMMITTEE ELECTION PROTOCOLS 41

The claims about the round-complexity and communication-complexity of
ΠFeige are easy to verify.

REMARK. Feige uses this committee-election protocol for leader-election and
collective coin-flipping. This is done by recursively using the committee-selection
protocol to select smaller and smaller committees and finally a single player, who
is then chosen as the leader. As for coin-flipping, the chosen leader will then
flip a coin and send it to all the players. However, we will not use this recursive
procedure for our purposes, and instead use only the committee-selection protocol
as above.

4.1.2 Russell and Zuckerman’s Committee Election Protocol

In 1998, building upon the work of Ostrovsky, Rajagopalan and Vazirani [ORV94]
and Zuckerman [Zuc97], Russell and Zuckerman [RZ01] designed an elegant
protocol for committee election. The basic idea of the Russell and Zuckerman
protocol (which we call the RZ protocol) is similar to Feige’s protocol, namely
“selection by elimination”. As in the case of Feige’s protocol, the RZ protocol
also uses a reliable broadcast channel as a built-in primitive. However, in contrast
to Feige’s protocol which elects an arbitrary set of O(log n) players, the RZ
protocol deterministically fixes a polynomial (in n) number of committees before
the execution of the protocol, and uses the protocol to elect one of these poly(n)
committees.

The RZ protocol works as follows: first, the players deterministically compute
a collection of m = poly(n) “prospective committees” Ci, where each of these
committees hasO(log n) players. Assume that the entire player-setP contains a β
fraction of dishonest players. Then, the set of committees C = {C1, C2, . . . , Cm}
has the following property:

The number of committees Ci that have “significantly more” than a β fraction of
dishonest players is “very small”.

Slightly more precisely, fixing an ε > 0 and a set B of at most βn dishonest
players, call a committee C bad if the fraction of dishonest players in C is more
than β + ε. Let

Badε(B, C) = {Ci ∈ C : the fraction of dishonest players in Ci is more than β + ε}

We require that for any constant ε > 0, there is a deterministic algorithm
Prospective(1n, ε) which outputs a collection C of m = poly(n) committees such
that for any set B of at most βn dishonest players, |Badε(B, C)| ≤ 3n.

Informally, one could think of the construction of the collection of prospective
committees as achieving the following goal.

Even though the fraction of dishonest players in the entire player-set
P is β, the fraction of bad committees is only 3n

m , which is much
smaller than β.

42 NEW BYZANTINE AGREEMENT PROTOCOLS

The existence of such a collection of committees (for appropriate choices
of parameters) follows by a simple probabilistic argument, which is included
for completeness in Appendix A. The probabilistic argument, in addition, gives
us an exponential-time deterministic algorithm for constructing the collection of
prospective committees. We state this result below.

Lemma 3. There is a deterministic algorithm Prospective(1n, ε) which outputs
a collection C of m = O(n2) committees Ci, where each Ci has O(log n/ε2)
players such that: for every ε > 0 and for any set B of at most βn dishonest
players, |Badε(B, C)| ≤ 3n.

Moreover, Nisan [Nis96] and Zuckerman [Zuc97] showed an explicit and
polynomial (in n and log(1/ε)) algorithm Prospective(1n, ε), using explicit
constructions of extractors. In the rest of our exposition, we use the above non-
explicit construction for the sake of simplicity.

Given the collection of prospective committees, the protocol proceeds as
follows. In the first and the only communication-round of the protocol, the players
elect one of these m prospective committees. The following paragraph contain an
informal (and somewhat incorrect!) description of how a committee is elected;
this paragraph is only meant to give a rough intuition of the process. We refine
these ideas and make them precise in the paragraph after.

Very roughly, committee-election proceeds by elimination: each player picks
a 1

2n fraction of all the committees uniformly at random, and broadcasts this
choice to all the players. The semantics of a player Pi picking a committee C
is that Pi chooses to eliminate C from consideration.

1. On the one hand, since the number of bad committees is very small, all
of them will be eliminated by some honest player or the other (with high
probability over their coin-tosses).

2. On the other hand, the total number of committees eliminated by all the
players is at most m

2n · n < m, and therefore at least one committee is not
eliminated by any of the players.

Thus, all the committees that are not eliminated are good committees (namely,
they have roughly a β fraction of bad players), and there is at least one committee
that is not eliminated. The lexicographically smallest such committee is the
elected committee.

The strategy outlined above does not work as such.1 The modification that
needs to be made is in the way the players pick the committees to be eliminated.
Russell and Zuckerman use the notion of hitting sets for combinatorial rectangles
to design a process of elimination. An (n, a,m)-hitting set (for our purposes)
is a function h : C → {1 . . . a}n (for some a > 0) such that for every
{R1, R2, . . . , Rn} ⊆ 1 . . . a such that |Ri| = a − 1, there is a C ∈ C such

1What fails in the informal description is property (1) above. Namely, it is not true that the
uniformly random selection eliminates all bad committees with high probability.

4.1. COMMITTEE ELECTION PROTOCOLS 43

PROTOCOL ΠRZ: CODE FOR A PLAYER Pi

Input: A real number ε > 0.
Output: The identities of a set of players S ⊆ P .

Step 1. Run the algorithm Prospective(1n, ε) that outputs a collection of
committees C. Run HittingSet(1n) that outputs a function h : C →
{1 . . . a}n.

Step 2. Choose rj ∈ [a], and broadcast rj to all the players.

Step 3. Let the bit-vector ~e = 〈e1, e2, . . . , em〉 where

ei =
{

1 if for some 1 ≤ j ≤ n, h(C)|j = rj
0 otherwise

Output the lexicographically smallest committee Ci such that ei = 0.

Table 4.2: The RZ Committee Election Protocol with Built-in Broadcast Chan-
nels.

that h(C) ∈ R1× . . .×Rn. The existence of such a function can be easily proven
via a probabilistic argument, which is included for completeness in Appendix A.
The lemma is stated below.

Lemma 4. There is a deterministic algorithm HittingSet(1n) which outputs a
function h : {1, . . . ,m} → {1, . . . , a}n such that h is an (n, a,m)-hitting set,
where m = n2 and a = n

4 logn .

Moreover, Linial, Luby, Saks and Zuckerman [LLSZ97] give explicit con-
structions of an (n, a,m)-hitting set for any n, a and m = poly(a log n). In the
rest of our exposition, we use the above non-explicit construction.

Given a collection of committees C and a hitting set h : C → [a]n, the
protocol is simple: each player Pi chooses a random number ri ∈ {1, . . . , a}
and broadcasts ri to all the players. Every committee C such that h(C)|i = ri
for some i are eliminated. In other words, the committees that are not eliminated
are exactly those C for which h(C) ∈ ([a]− {r1})× . . .× ([a]− {rn}). By the
property of hitting sets, there is at least one such committee. On the other hand,
since there are only a few bad committees, all of them are eliminated. A formal
description of the protocol ΠRZ is in Table 4.2.

Lemma 5. Let β denote the fraction of dishonest players in the entire player-set
P . For every constant ε > 0, at the end of the protocol ΠRZ, all the players output
(the same) committee S ⊆ P such that |S| = O(logn

ε2
), and with probability at

least 1 − 3
n , the fraction of dishonest players in the elected committee is at most

β + ε.

44 NEW BYZANTINE AGREEMENT PROTOCOLS

ΠRZ runs in 1 round, and the communication- complexity is Õ(n2) bits (where
each bit that is broadcast counts as O(n) bits).

Proof: Say that a committee Ci is eliminated if ei = 1. Note that there is a
“rectangle” R1 ×R2 × . . .×Rn where each Ri ⊆ {1 . . . a} is of size a− 1 such
that for every committee C that is not eliminated, h(C) ∈ R1 × R2 × . . . × Rn.
Since h is a hitting set, there is at least one such C. This committee C is not
eliminated.

Also, out of the m committees, at most 3n are bad. The probability that a bad
committee Ci is not eliminated is at most (1− 1

a)n−t ≤ (1− 2 logn
n)(1−β)n ≤ 1

n2 .
Thus, the probability that there exists a bad committee that is not eliminated is at
most (by a union bound), 3n · 1

n2 ≤ 3
n . Thus, with probability at least 1− 3

n , ΠRZ

outputs a good committee.

4.2 Byzantine Agreement Protocols

In this section, we present two Byzantine agreement protocols – the first builds
on Feige’s committee-election protocol, and the second one is based on the RZ
protocol. The first protocol achieves a fault-tolerance of t < (1/4 − ε)n (for
any constant ε > 0), and runs in an expected O(logn

ε2
) rounds. The second

protocol achieves an almost optimal fault-tolerance of t < (1/3 − ε)n, and
has the same expected round-complexity as the first protocol, namely O(logn

ε2
)

rounds. Although the second protocol is superior (in terms of fault-tolerance),
we present both the protocols here as we believe that they use techniques that are
independently interesting.

4.2.1 Byzantine Agreement Protocol I

This section is devoted to proving the following theorem.

Theorem 2. For any constant ε > 0, there exists an explicit protocol BAε
that reaches Byzantine Agreement in a synchronous full-information network
tolerating t < (1

4 − ε)n non-adaptive Byzantine faults, and runs for expected
O(logn

ε2
) rounds.

We first describe an outline of the protocol. The formal description of the protocol
and the proof follow.

Overview of the Byzantine Agreement Protocol

In light of the reduction from Byzantine Agreement to Committee Election
(Chapter 3, Theorem 1) it suffices to construct a protocol that elects a committee
of size O(logn

ε2
) tolerating t < (1/4 − ε)n Byzantine faults, without a built-in

reliable broadcast channel. We will call this protocol ΠElect-BPV – the protocol
first appeared in a joint work of the author with Michael Ben-Or and Elan
Pavlov [BPV06].

4.2. BYZANTINE AGREEMENT PROTOCOLS 45

Our starting point is the committee-election protocol of Feige, namely the
protocol ΠFeige in Table 4.1. However, we cannot use Feige’s protocol as such,
because it works under the assumption of a built-in broadcast channel, which we
of course cannot assume. Thus, the main technical work in our protocol is in
(significantly) modifying ΠFeige so that it performs correctly without a broadcast
channel.

Recall that Feige’s committee-election protocol involves each player choosing
a random bin among a set of O(n/ log n) bins. They announce this choice to all
the players using the built-in broadcast channel. The bin that the smallest number
of players chose is the selected bin. The committee consists of all the players that
chose the selected bin.

For the rest of this section, assume that all the bins in an execution of Feige’s
protocol contain at least 3

4a log n honest players. If this event does not happen,
then we cannot guarantee that the elected committee is a good committee, or even
that all the players agree on a single committee. Fortunately, by Lemma 2, this
event happens with probability 1− 1

n over the coin-tosses of the honest players.
In the absence of a built-in broadcast channel, our first idea is to let the players

announce their (random) choices of the bins using a graded broadcast protocol. In
particular, in the first round of our protocol, each player Pi chooses a bin Bi at
random and runs a graded broadcast protocol with Bi as the input. This ensures
that a dishonest player cannot “convince” two different honest players that he
chose different bins. In other words, for every dishonest player P ∗, there is a
unique bin B∗ such that each honest player Pi “sees” that P ∗ is either in bin B∗,
or not in any of the bins at all. If each honest player Pi now chose the smallest bin,
we have the guarantee that each such bin will contain at most a 1/3rd fraction of
dishonest players. However, different honest players might choose different bins
as the lightest; in other words, there is no agreement among the honest players as
to which bin is the lightest. Moreover, the honest players do not even agree on
the set of players that belong to a particular bin. Despite these shortcomings, we
retain the idea of asking all the players to announce their choices of a bin using a
graded broadcast protocol.

Each player Pi receives the output of n graded broadcasts. Pi’s output on
Pj’s graded broadcast is a pair (Bi,j , gi,j), where Bi,j is the identity of a bin (that
is, a number between 1 and n/a log n) and gi,j is the grade that Pi assigns to
Pj’s graded broadcast. Pi now classifies the graded broadcasts he receives into
the following two “views”. He defines the set Viewi(B), where a player Pj is in
Viewi(B) if Pi heard Pj’s graded broadcast that “I chose bin B” with a grade of
2. More formally,

∀B,Viewi(B) = {Pj | Bi,j = B and gi,j = 2}

Pi also defines the set Viewi(B) (the “closure” of Viewi(B)), where a player
Pj is in Viewi(B) if Pi heard Pj’s graded broadcast that “I chose bin B” with a
grade of at least 1. More formally,

46 NEW BYZANTINE AGREEMENT PROTOCOLS

∀B,Viewi(B) = {Pj | Bi,j = B and gi,j ≥ 1}

It is obvious from the definition above that if Pi is an honest player and some
(not necessarily honest) player Pj ∈ Viewi(B), then Pj is also in Viewi(B). That
is,

∀B, ∀ honest Pi,Viewi(B) ⊆ Viewi(B)

In fact, a stronger statement is true: namely, if a player Pj ∈ Viewi(B) for some
honest player Pi, then Pj is also in Viewi′(B) for all honest players Pi′ . This
is true because of the “graded agreement” property of the graded broadcast – if
Pi receives Pj’s message (namely, “I chose bin B”) with a grade of 2, then Pi′
receives it with a grade of at least 1. Formally,

∀B, ∀ honest Pi, Pi′ ,Viewi(B) ⊆ Viewi′(B)

This observation can be interpreted as saying that (although the players may
not agree on the content of each bin) there is some form of “graded agreement”
among the players.

The second idea is to run a protocol among the players in a bin to decide if the
bin has too many players, and therefore should be eliminated from consideration.
That is, in some sense, the players in a bin decide to “self-destruct” if they detect
that the bin contains too many players. More concretely, the idea is to mark a bin
B as “disqualified” if there is some subset of at least 3

4a log n players in B who
decide that B has too many players. Consider the following two cases.

• B has at most a log n players in total: all the honest players inB will decide
not to eliminate B. Since the number of dishonest players in B is less than
1
4a log n, they cannot reverse the decision of the honest players. Thus, B
will not be disqualified.

• B has more than a log n players in total: in this case, the honest players in
B will decide to disqualify B.

A fatal flaw with this idea is that the set of players in a bin is not even
well-defined at this point, since different players have different views about the
composition of a bin, namely, the set of players that chose the bin. Nevertheless,
we retain this idea too (in spirit).

One way to fix the flaw with this idea is to ask each subset S of 3
4a log n

players 2 to decide the fate of each bin, namely whether each bin survives or is
disqualified. This decision is reached by letting the players in S run a Byzantine
agreement protocol to decide on a common “view of bin B”; if the bin B is
deemed too large, it is disqualified and otherwise, it survives. In particular, the
players in each subset S (of size 3/4a log n) run a Byzantine agreement protocol,
at the end of which each player Pi ∈ S computes two sets SetViewi,S(B) and

2There are
(

n
3/4a logn

)
such subsets.

4.2. BYZANTINE AGREEMENT PROTOCOLS 47

SetViewi,S(B). SetViewi,S(B) (resp. SetViewi,S(B)) contains a player P if P is
in Viewj(B) (resp. Viewj(B)) for all the players Pj ∈ S. More formally,

SetViewi,S(B) :=
⋂
Pj∈S

Viewj(B) and SetViewi,S(B) :=
⋂
Pj∈S

Viewj(B)

These sets can be computed by asking each player in Pi to broadcast Viewi(B)
and Viewi(B), using a reliable broadcast protocol among the players in S. Since
the set S is of size O(a log n), we can use a deterministic reliable broadcast
protocol that runs in O(a log n) rounds (for example, the protocol of [GM98]).
Of course, note that if the set S contains a large fraction of dishonest players
(which could happen for many sets S), then the deterministic reliable broadcast
protocol will fail. We show later that this is not a problem – in fact, all we require
is the existence of some subset S that has a large fraction of honest players (and
also satisfies certain requirements, which we specify shortly).

Now, the players in S decide whether to disqualify the bin B (based on the
fact that it has too many dishonest players). Player Pi’s estimation of the size of
B can be based on either SetViewi,S(B) or SetViewi,S(B). It turns out that the
right decision is the conservative one: that is, decide to disqualify B if the larger
set, namely SetViewi,S(B) is too large.

More precisely, each player Pi sets the bit disqi,S(B) = 1 (meaning that
player Pi decides to disqualify bin B, as part of the verdict of the subset S) if
SetViewi,S(B) has more than a log n players. That is, Pi computes

disqi,S(B) =
{

1 if |SetViewi,S(B)| > a log n
0 otherwise

Pi also defines compositioni,S(B) = SetViewi,S(B).

Note that the definition of disqi,S(B) refers to the set SetViewi,S(B) and
the definition of compositioni,S(B) refers to the set SetViewi,S(B). Very
roughly speaking, the rationale for this asymmetry is to ensure the following:
if SetViewi,S(B) is too large, then so is SetViewi,S(B), and if that is the case,
B will be disqualified. This ensures that the composition of the bin B, namely
SetViewi,S(B) is never too large for a bin B that is not disqualified .

The players in each of the sets S finally send a message containing both
disqi,S(B) and compositioni,S(B) to all the players. Each player Pj receives
messages from all the subsets S about each bin B. Pj decides that a bin B is
disqualified if (a) some subset S of players tells Pj to disqualifyB, and (b) Pi sees
that all the players in S belong to Viewj(B). Finally, the players also consolidate
the opinions of all the sets and decide on the composition of the bin.

The above description, although incomplete, contains the main ideas of the
protocol. For a formal and complete protocol, see Table 4.3.

48 NEW BYZANTINE AGREEMENT PROTOCOLS

PROTOCOL ΠElect-BPV: PSEUDOCODE

Input of Player Pi: ⊥
Output of Player Pi: A committee C ⊆ {P1, . . . , Pn}.

Step 1 (Each player Pi) Let a ∈ N be a parameter of the system. Choose a
random bin Bi ∈ [1 . . . n

a logn]. Do a graded broadcast of Bi to all the
players.

Denote what is received by player Pi sent to him The out-
put of Pi from all the graded broadcasts is a list of n pairs[
(Bi,1, gi,1), . . . , (Bi,n, gi,n)

]
, where (Bi,j , gi,j) is what Pi received as

a results of Pj’s graded broadcast.

Step 2 (Each player Pi, locally) Construct a local view of the composition
of the committees. Pi computes two sets Viewi(B) and Viewi(B) for
every bin B.

Viewi(B) = {Pj | Bi,j = B and gi,j = 2}

Viewi(B) = {Pj | Bi,j = B and gi,j ≥ 1}

Step 3 (Each subset S ⊆ [n] where |S| = a log n) All the players in S run a
deterministic BA protocol in S to compute the following quantities for
every bin B.

SetViewi,S(B) :=
⋂
Pj∈S

Viewj(B) and SetViewi,S(B) :=
⋂
Pj∈S

Viewj(B)

Each player Pi ∈ S computes a local binary variable disqi,S(B) as
follows: disqi,S(B) = 1 if |SetViewi,S(B)| > a log n and 0 otherwise.

Pi sends the tuple
[
S,B, disqi,S(B), SetViewi,S(B)

]
to all the players.

Step 4 (Each player Pi, locally) Pi collects the messages received from all
the players (Note that Pi could have received many messages from a
single player P , since P is part of many subsets S).

If Pi received messages of the form (S,B, 1, ∗) from some set of
players S′ such that (a) |S′| ≥ 1

2a log n, and (b) S′ ⊆ S ⊆ Viewi(B),
then set disqi(B) = 1.

Step 5 (Each player Pi, locally) For every bin B and each set S ⊆
Viewi(B), Pi does the following: If Pi receives messages of the form
(S,B, 0, D) from some set of players S′ ⊆ S of size at least 1

2a log n,
then let compositioni,S(B) = D, else set compositioni,S(B) =⊥.

Pi defines the final composition of the binB, denoted compositioni(B)
as the largest compositioni,S(B) among all subsets S.

Step 6 (Each player Pi, locally) Pi outputs C := compositioni(B) as the
chosen committee, where B is the lexicographically smallest bin such
that disqi(B) = 0.

Table 4.3: Feige’s Committee-Election Protocol without Broadcast.

4.2. BYZANTINE AGREEMENT PROTOCOLS 49

Formal Proof of Theorem 2

The formal specification of the protocol is in Table 4.3. To prove Theorem 2,
it suffices to prove the following lemma, which states that ΠElect-BPV is a
committee-election protocol that runs in O(log n/ε2) rounds, elects a committee
of size O(log n/ε2), and has o(1) error probabilities (namely, the probability that
the players do not agree on the elected committee, as well as the probability that
the elected committee is bad). Then, by Theorem 1, we get a Byzantine agreement
protocol that runs in expected O(log n/ε2) rounds.

Lemma 6. For any constant ε > 0, the protocol ΠElect-BPV is an (O(logn
ε2

), 1 −
1
n , 1−

1
n) committee-election protocol in a synchronous full-information network

of n players tolerating t < (1/4− ε)n Byzantine faults. That is, all honest players
output the same committee of size O(logn

ε2
) with probability at least 1 − 1

n , and
given that all the players output the same committee, the probability that the
elected committee is good is also at least 1 − 1

n . ΠElect-BPV runs in O(logn
ε2

)
rounds.

Proof: We show the following:

1. With probability 1 − 1
n , all the honest players agree on the list of bins that

have not been disqualified. That is, for every two honest players Pi and Pj ,
{B | disqi(B) = 1} = {B | disqj(B) = 1}. Furthermore, for every bin
B that is not disqualified, all the players agree on the composition of B,
namely the set of players that belong to bin B. This is shown in Lemma 7.

2. By Lemma 8, at least one bin is not disqualified.

3. By Lemma 9, all the committees that are not disqualified have at most
3
4a log n players, of which at least a 2

3 fraction are honest players.

Together, these statements mean that with probability 1 − 1
n , all the players

agree on the identity of the committee elected. Conditioned on this event, the
elected committee is good with probability at least 1− 1

n . The elected committee
has size 3

4a log n = O(log n/ε2).
Let us now determine the round-complexity of this protocol. Step 1 and step

3 are the only interactive rounds. Step 1 takes O(1) rounds, and step 3 consists
of a number of parallel executions all of which terminate by a log n + 1 rounds.
Thus, ΠElect-BPV runs in O(logn

ε2
) rounds.

To start with, we note the following elementary fact, which states that if
a player P ∈ Viewi(B) for some honest player Pi, then P ∈ Viewj(B) for
every other honest player Pj . This follows directly from the “graded agreement”
property of graded broadcast. Proposition 3 below records this observation.

Proposition 3 (Graded Broadcast Lemma). For any two honest players Pi and Pi′
and any bin B, the following is true: for all players Pj , if Pj ∈ Viewi(B), then
Pj ∈ Viewi′(B).

50 NEW BYZANTINE AGREEMENT PROTOCOLS

Proof: This follows from the graded agreement property of graded broadcast. If
Pi is an honest player, then the fact that Pj ∈ Viewi(B) implies (by the definition
of the views) that Pj’s graded broadcast (with the message “I choose bin B”)
was received by Pi with a grade of 2. Therefore, all other honest players Pi′ will
accept Pj’s graded broadcast with a grade of at least 1. This, in turn, means that
Pj ∈ Viewi′(B) for all honest Pi′ .

The lemma below shows that the honest players agree on the set of bins
that are disqualified. Namely, for every two honest players Pi and Pj and
every bin B, disqi(B) = disqj(B). Moreover, for every bin B that is not
disqualified, all the honest players Pi agree on its composition (that is, the set
compositioni(B) defined in Step 5 of the protocol). Namely, the lemma says
that for every two honest players Pi and Pj and for every bin B such that
disqi(B) = 0 (= disqj(B)), compositioni(B) = compositionj(B).

Lemma 7 (Agreement Lemma). For every two honest players Pi and Pj and every
bin B, the following holds:

1. disqi(B) = disqj(B).

2. If disqi(B) = disqj(B) = 0, then compositioni(B) = compositionj(B).

Proof: We divide the proof of the first assertion into two cases. In both cases, we
will show that if an honest player Pi sets disqi(B) = 1 for some bin B, then all
the honest players Pj set disqj(B) = 1 too.

Case 1: Pi set disqi(B) = 1 because Pi received messages of the form
(S,B, 1, ∗) from some set S′ ⊆ S of at least 1

2a log n players such that
the set S consists of less than 1

4a log n bad players.

The total number of players in S is 3
4a log n. Thus, the fraction of players

in S that are corrupt is less than 1/4a logn
3/4a logn = 1

3 . Therefore, the Byzantine
agreement protocols within S (in Step 3) will succeed. Consequently, all
the honest players Pk ∈ S have the same value for disqk,S(B).

Furthermore, since |S′| ≥ 1
2a log n and Pi received an (S,B, 1, ∗) message

from all the players in S′, there is at least one honest player Pk ∈ S′ such
that disqk,S(B) = 1. Since all the honest players Pk in S have the same
value for disqk,S(B), all of them set disqk,S(B) = 1.

Now, there are more than 1
2a log n honest players in S, and we just showed

that each such player Pk sets disqk,S(B) = 1. All these players will send
a message (S,B, 1, ∗) to all the players. Thus, each player Pj will receive
messages of the form (S,B, 1, ∗) from the (at least) 1

2a log n honest players
in S. Thus, Pj will set disqj(B) = 1 too.

Case 2: Pi set disqi(B) = 1 because Pi received messages of the form
(S,B, 1, ∗) from some set S′ ⊆ S of at least 1

2a log n players such that
the set S consists of at least 1

4a log n bad players.

4.2. BYZANTINE AGREEMENT PROTOCOLS 51

Note that Pi accepts the disqualification messages (S,B, 1, ∗) from the
players in S′ only if S′ ⊆ S ⊆ Viewi(B). By Proposition 3, this means
that for every other honest player Pi′ , S ⊆ Viewi′(B) as well.

Let us now count the number of players in Viewi′(B). As we just saw,
Viewi′(B) contains all the players in S. In particular, since S contains at
least 1

4a log n bad players, Viewi′(B) contains all these players as well.
In addition, since every bin has more than 3

4a log n honest players, all of
these players are in Viewi′(B) as well. Thus, for every honest player Pi′ ,
|Viewi′(B)| > 1

4a log n+ 3
4a log n = a log n.

In fact, we can make an even stronger statement. Consider the setGS (short
for “good set”) that consists of some 3

4a log n honest players that chose the
bin B. By assumption, there is at least one such set. The argument in the
above paragraph immediately generalizes to show that for any such “good
set” GS that consists entirely of honest players,

|
⋂

Pi′∈GS
Viewi′(B)| > a log n

Now, all the players in the good set will decide that the bin B is too large.
This is because for any honest player Pk ∈ GS,

SetViewk,GS(B) =
⋂

Pi′∈GS
Viewi′(B)

and thus, |SetViewk,GS(B)| > a log n.

Thus, the good setGS will decide to disqualifyB, and notify all the players
of this decision by sending a message (GS,B, 1, ∗). SinceGS ⊆ Viewj(B)
for every honest player Pj , Pj will accept this message and set disqj(B) =
1 too.

In short, we proved above that in both the cases, if an honest player Pi sets
disqi(B) = 1 for some bin B, then every honest player Pj sets disqj(B) = 1 as
well.

We will now prove the second assertion, namely that if a bin B is not
disqualified, then all the honest players agree on the composition of B. Observe
that for any bin B that is not disqualified, the following is true: if a set of players
S ⊆ Viewk(B) for some honest player Pk, then S must have more than two-thirds
fraction of honest players. Otherwise, the bin B would have been disqualified by
a “good set” using an argument exactly like the proof of Case 2 above.

This means that the Byzantine agreement protocol in S succeeds. Thus,
all the honest players Pk in S compute the same set compositionk,S(B) (and
send it to all the players). Since there are at least 1

2a log n honest players in S,
this means that any two honest players Pi and Pj will set compositioni(B) =
compositionj(B) = compositionk,S(B). This ensures agreement.

Lemma 8 below shows that there is some bin B that is not disqualified.

52 NEW BYZANTINE AGREEMENT PROTOCOLS

Lemma 8 (Survivor Lemma). There is at least one bin B such that disqi(B) = 0
for all honest players Pi.

Proof: We will explicitly exhibit a bin B that cannot be disqualified.
Let H denote the set of all honest players. We define a set C(B) which

contains all the players that are in Viewk(B) for some honest player Pk. Formally,
define

C(B) =
⋃
Pk∈H

Viewk(B)

Note that the set C(B) is defined purely for the purposes of our analysis, and is
never explicitly computed by any of the players.

We will show that there is some bin B for which the set C(B) is “small”
(namely, of size at most a log n). Subsequently, we will show that such a bin B
cannot be disqualified.

Claim 1. There exists a bin B such that |C(B)| ≤ a log n.

Proof: First, we prove that for any two bins B 6= B′, C(B) and C(B′) are
disjoint. This essentially follows from the graded agreement property of graded
broadcast. More formally, if a player P ∈ Viewi(B) for some honest player Pi
and bin B, then P /∈ Viewi′(B′) for any honest player Pi′ and bin B′ 6= B. This
immediately implies that C(B) and C(B′) are disjoint.

Moreover, since there are n players in total,

|
⋃
B

C(B)| ≤ n

Since there are n/a log n bins in total, by pigeonhole principle, it follows that at
least one of them contains at most a log n players. That is, there is some bin B for
which |C(B)| ≤ a log n.

Consider the bin B, such that |C(B)| ≤ a log n, guaranteed by Claim 1. We
show that B cannot be disqualified. Suppose not, for the sake of contradiction.
That is, suppose that there is some honest player Pj who sets disqj(B) = 1. Pj
sets disqj(B) = 1 because it receives messages of the form (S,B, 1, ∗) from some
set S ⊆ Viewj(B). Consider two cases.

1. S has at least 1
4a log n dishonest players: Since the honest player Pj accepts

messages of the form (S,B, 1, ∗), it must be the case that S ⊆ Viewj(B).
In particular, Viewj(B) contains all the dishonest players in S – there are
at least 1

4a log n of them, by assumption. In addition, Viewj(B) contains
all the honest players in B – there are more than 3

4a log n such players, by
assumption. Thus, |Viewj(B)| > a log n. By Proposition 3,

C(B) =
⋃
Pk∈H

Viewk(B) ⊇ Viewj(B)

This means that |C(B)| > a log n, contrary to assumption. In other words,
this case cannot happen.

4.2. BYZANTINE AGREEMENT PROTOCOLS 53

2. S has less than 1
4a log n dishonest players: Since S has more than 2

3 fraction
of good players, Byzantine Agreement in S succeeds.

The good players in S compute
⋂
Pi∈S Viewi(B) to decide if the bin is too

big. But, note that⋂
Pi∈S

Viewi(B) ⊆
⋂

honest Pi∈S
Viewi(B) ⊆

⋃
honest Pi

Viewi(B)
def
= C(B)

By the choice of B, |C(B)| ≤ a log n, and therefore the good players in S
do not disqualify B, contrary to assumption.

In short, we have shown that there is a bin B that cannot be disqualified.

Finally, we show that for any bin B that is not disqualified, (for any honest
player Pi) compositioni(B) contains more than a 2

3 fraction of honest players. In
particular, we show that compositioni(B) contains at most 3

4a log n players, of
which more than 1

2a log n are honest.
Note that the entire player-set contains at least 3

4 fraction of honest players,
but the committee contains only a 2

3 fraction of honest players. This degradation
is an artifact of our protocol.

Lemma 9 (“The Chosen One is Good” Lemma). For any honest player Pi, if
disqi(B) = 0, then 3

4a log n < |compositioni(B)| ≤ a log n. Furthermore,
compositioni(B) contains at most 1

4a log n dishonest players. In particular, the
fraction of dishonest players in compositioni(B) is less than 1

3 .

Proof: Analogous to Lemma 8, define the set D(B) to be the set of all players that
are in Viewk(B) for some honest player Pk. The only difference between C(B)
(defined in Lemma 8) and D(B) is that the former refers to Viewk(B) whereas
the latter refers to Viewk(B). Clearly, D(B) ⊆ C(B).

Formally, letH denote the set of all honest players and define

D(B)
def
=
⋃
k∈H

Viewk(B)

We now show that for any bin B that is not disqualified, D(B) is small. (Note
that this is somewhat of a partial converse to the claim in Lemma 8 which states
that if C(B) is small, then B is not disqualified).

Claim 2. If a bin B is not disqualified, then D(B) is small. In particular, if
disqi(B) = 0 for some honest player Pi, then |D(B)| ≤ a log n.

Proof: Consider an arbitrary set GS (the “good set”) that consists of 3
4a log n

honest players in B; there must exist at least one such set, since each bin contains
more than 3

4a log n honest players. Since disqi(B) = 0, the good set GS did not
disqualify B.

Suppose, for contradiction, that |D(B)| > a log n. For every honest player
Pk, Viewk(B) ⊇ D(B) by Proposition 3. Thus,⋂

Pk∈GS
Viewk(B) ⊇ D(B)

54 NEW BYZANTINE AGREEMENT PROTOCOLS

Thus,
|
⋂

Pk∈GS
Viewk(B)| > a log n

and therefore the good set GS will disqualify B, contrary to assumption. Thus,
|D(B)| ≤ a log n.

Now, since B is not disqualified, exactly as in the proof of Lemma 8, any set
S whose decision matters has less than 1

4a log n bad players.
The composition forB advertised by the good set contains all the good players

inB – there are more than 3
4a log n of them. This means that |compositioni(B)| >

3
4a log n. Suppose this is not the final composition chosen. This can happen only
if there exists another set S̃ that advertises a larger composition for B. i.e, a
composition of size more than 3

4a log n.
Now, we upper bound the number of bad players in any such advertised (and

accepted) composition. Recall that the players in S̃ agree on
⋂
Pk∈S̃ Viewk(B) as

the composition. For any honest player Pk ∈ S̃, Viewk(B) has less than 1
4a log n

dishonest players. Thus,
⋃
Pk∈H Viewk(B) has at most 1

4a log n dishonest players.
We now show an upper-bound on the size of compositioni(B). This follows

from the fact that⋂
Pk∈S̃

Viewk(B) ⊆
⋂

honest Pk∈S̃

Viewk(B) ⊆
⋃
Pk∈H

Viewk(B)
def
= D(B)

Thus, since |D(B)| ≤ a log n, compositioni(B) =
⋂
Pk∈S̃ Viewk(B) is of size at

most a log n too.
We just showed that 3

4a log n < |compositioni(B)| ≤ a log n. Furthermore,
we showed that compositioni(B) has at most 1

4a log n dishonest players; in other
words, at most a 1

3 fraction of dishonest players.

4.2.2 Byzantine Agreement Protocol II

This section is devoted to proving the following theorem.

Theorem 3. For any constant ε > 0, there exists a protocol BAε that achieves
Byzantine Agreement in a synchronous full-information network of n players
tolerating t < (1

3 − ε)n faults. The round complexity of BAε is O(logn
ε2

), and
the communication complexity is Õ(n2) bits.

First, we describe an outline of our protocol. The formal description of the
protocol and the proof will follows.

Overview of the Byzantine Agreement Protocol

As in our first construction of a Byzantine agreement protocol, we construct a
committee election protocol that elects a committee of size O(logn

ε2
) tolerating

t < (1/3 − ε)n Byzantine faults, with the protocol ΠRZ as the starting point.
The reduction from Byzantine Agreement to Committee Election (Chapter 3,

4.2. BYZANTINE AGREEMENT PROTOCOLS 55

Theorem 1) then immediately gives us a Byzantine agreement protocol with the
same parameters.

The rest of this section describes in a very high level the working of our
committee-election protocol ΠElect-GPV. Let us first condition on the event that
the random choices of the honest players eliminate all the bad committees – by
Lemma 5, this event happens with probability 1− 1

n . If this event does not happen,
then we cannot guarantee that the committee that is elected will be good, or even
that all the players agree on the elected committee. For the rest of the discussion,
we assume that this event happens.

The first idea is to let the players announce their (random) choices, using a
graded broadcast protocol. This ensures that a dishonest player cannot “convince”
two different honest players that he chose two different sets of committees to
eliminate. In other words, for every dishonest player P ∗, there is a unique set of
committees S∗ (which could possibly be ⊥) such that each honest player Pi sees
thatP ∗ chose to eliminate S∗, or chose nothing at all! If each honest playerPi now
chooses the lexicographically first among the surviving committees, we have the
guarantee that all the honest players will choose a good committee. However, two
different honest players might choose two different committees; in other words,
there is no agreement among the honest players as to which committee is chosen.

To remedy this problem, we will ask each committee (more precisely, the
players in each committee) to run an agreement protocol among themselves to
decide if the committee should be eliminated. A committee decides to eliminate
itself (that is, “self-destruct”) if it detects a possible disagreement among the
players about its fate. This is, in some sense, a safety mechanism. We will
show that this process ensures the following properties. First of all, all the bad
committees are already eliminated by the good players’ choices. The protocol
within the committee C can decide to eliminate C, and not “un-eliminate” C.
This one-sided decision helps ensure that a bad committee can never be chosen.
Secondly, we will show that the self-destruct mechanism makes sure that all the
players agree on the list of committees that have been eliminated. Thirdly, there
will be at least one (necessarily good) committee that is neither eliminated nor
self-destructs. These three properties will together show that the committee-
election protocol succeeds.

Formal Proof of Theorem 3

The formal description of the protocol is in Table 4.4. To prove Theorem 2,
it suffices to prove the following lemma, which states that ΠElect-GPV is a
committee-election protocol that runs in O(log n/ε2) rounds, elects a committee
of size O(log n/ε2), and has o(1) error probabilities (namely, the probability that
the players do not agree on the elected committee, as well as the probability that
the elected committee is bad). Then, by Theorem 1, we get a Byzantine agreement
protocol that runs in expected O(log n/ε2) rounds.

56 NEW BYZANTINE AGREEMENT PROTOCOLS

PROTOCOL ΠElect-GPV: PSEUDOCODE

Pre-Computation: Run deterministic algorithms that on input 1n and ε
output a collection of committees C = {C1, C2, . . . , Cm},
and a hitting set h : C → {1 . . . a}n.

Output of Player Pi: A committee Ci ∈ C.

Step 1 (Each Player Pi) Choose ri randomly from {1 . . . a} and graded
broadcasts ri to all the players. The output of Pi from the graded
broadcasts is a list of n values

[
(ri,1, gi,1), (ri,2, gi,2), . . . , (ri,n, gi,n)

]
.

Construct an m-bit list (ei,1, . . . , ei,m) as follows: set ej = 1 if there is
a k ∈ [1 . . . n] such that h(Cj)|k = ri,k and gi,k = 2.

Remark: ei,j = 1 if player Pi “thinks” that committee Cj has been
eliminated.

Step 2 (Each Player Pi in Committee Cj) Set the variable

SelfDestructi,j =
{

1 if ∃k where h(Cj)|k = ri,k and gi,k ≥ 1
0 otherwise

All players in Cj run a Byzantine agreement protocol, where the input
of the ith player is SelfDestructi,j . This is done by using a deterministic
reliable broadcast protocol among the players in Cj . Each player sets
SelfDestructi,j to be the output of the BA protocol.

Remark: All the players in committee Cj run an agreement protocol
among themselves, to determine if some player Pi (possibly outside the
committee) “thinks” that Cj is eliminated. The guarantee provided by
this step is the following: If Cj is a good committee, and some honest
player Pi has set ei,j = 1 in the previous step, then all honest players
Pk in Cj will set SelfDestructk,j = 1.

Step 3 (Each Player Pi in Committee Cj) Send, via pairwise channels
SelfDestructi,j to all the n players.

Local Step 3′ (Each Player Pi) Receive for every player Pk in committee
Cj , a bit si,j,k. Modify the list (ei,1, . . . , ei,n) as follows: Set ei,j = 1 if
there are at least 2|Cj |/3 k’s such that si,j,k = 1. Otherwise, leave ei,j
unchanged.

Remark: Consolidate the opinions of all the players in Cj about
whether to self-destruct Cj , by taking a threshold vote among the
players in Cj . This is the key step that ensures agreement.

Output the lexicographically smallest Cj such that ei,j = 0.

Table 4.4: Our Committee-Election Protocol without Broadcast.

4.2. BYZANTINE AGREEMENT PROTOCOLS 57

Lemma 10 (Committee-selection without Broadcast Channels). For any constant
ε > 0, the protocol Πcomm-elect is an (O(logn

ε2
), 1− 1

n , 1−
1
n) committee-election

protocol in a synchronous full-information network of n players tolerating t <
(1/3−ε)n Byzantine faults. That is, all honest players output the same committee
of size O(logn

ε2
) with probability at least 1 − 1

n , and given that all the players
output the same committee, the probability that the elected committee is good is
also at least 1 − 1

n . Πcomm-elect runs in O(logn
ε2

) rounds, and the communication
complexity is Õ(n2) bits.

Proof: We show the following.

1. First of all, Lemma 11 shows that at the end of ΠElect-GPV, all the bad
committees are eliminated.

2. With probability 1− 1
n , all the honest players agree on the list of committees

that have not been eliminated. This is shown in Lemma 11.

3. Finally, at the end of the protocol Πcomm-elect, no honest player outputs
“fail”. That is, with probability 1, there is at least one committee that is not
eliminated. This is shown in Lemma 12.

Together, these statements mean that with probability 1 − 1
n , all the players

agree on the identity of the committee elected, and conditioned on this event, the
elected committee is good with probability 1− 1

n . Clearly, the elected committee
has size O(log n/ε2).

The round-complexity is the sum of the round-complexities of Steps 1, 2
and 3. Step 1 is a graded broadcast, which takes O(1) rounds. Step 2 consists
of a reliable broadcast protocol run within each committee in parallel. Using
the deterministic reliable broadcast protocol of [GM98], this takes O(|C|) =
O(log n/ε2) rounds. Step 3 is a single round, where each player communicates to
every other player via the pairwise channels.

The bottleneck in the communication complexity is Steps 2 and 3. Step
2 consists of Õ(n2) Byzantine agreement among O(log n) players, where the
input in each protocol is single bit. Step 3 consists of each player in each
committee sending a bit to all the players. This takes Õ(n2) bits too. The total
communication is thus Õ(n2) bits.

The lemma below shows that with high probability, at the end of ΠElect-GPV,
all the bad committees are eliminated.

Lemma 11. With probability 1 − 1
n over the coin-tosses of the honest players,

all bad committees are eliminated at the end of ΠElect-GPV. Formally, for every
honest player Pi and for every bad committee Cj , ei,j = 1.

Proof: First of all, by Lemma 5, for every bad committee Cj , there is an honest
player Pk such that Pk eliminates Cj in the protocol ΠRZ. In other words, for
every bad committee Cj , there is an honest player Pk such that h(Cj)|k = rk.
Since Pk is honest, his graded broadcast is received by every other honest player

58 NEW BYZANTINE AGREEMENT PROTOCOLS

Pi with the maximum grade of 2. This means that every honest player sets ei,j = 1
at the end of Step 1.

The next lemma shows that all the honest players agree on the list of
committees that have been eliminated, at the end of the protocol. In other words,
for every two honest players Pi and Pi′ , the lists ei = (ei,1, . . . , ei,m) and
ei′ = (ei′,1, . . . , ei′,m) are identical, at the end of Local Step 3′.

Lemma 12. For every two honest players Pi and Pi′ , ei = ei′ at the end of the
protocol Πcomm-elect.

Proof: It is sufficient to show that for every j such that ei,j = 1, ei′,j = 1
also. First of all, for every bad committee Cj , ei,j = ei′,j = 1. This is because
ei,j = ei′,j = 1 at the end of Step 1 for every bad committee Cj (be Lemma 11),
and once ei,j (resp. ei′,j) is set to 1, it is never reset back to 0.

In the rest of the proof, we let Cj be a good committee. If ei,j is 1, then it is
because of one of the following reasons.

1. Pi received a bit si,j,k = 1 from at least 2|C|/3 players Pk in committee
Cj . Consequently, Pi sets the bit ei,j = 1. Since Cj is a good committee
and the players compute the bits si,j by running a BA protocol, all other
honest players Pi′ will receive at least 2|C|/3 bits si′,j,k = 1 too. Thus, P ′

will set the bit ei′,j = 1.

2. Pi set the bit ei,j = 1 in Step 1, because it received from some player Pk
a value rj with grade 2 such that h(Cj)|k = rk. This means that every
other honest player Pi′′ received rk with grade at least 1, and thus will set
SelfDestructi′′,j = 1. In particular, this is true for all the honest players
in the committee Cj , which means that the BA protocol will result in all
of them receiving an output of 1. In turn, all the honest players Pi′′ in the
committee Cj sending a bit si′′,j = 1 in Step 3. When an honest player Pi′
receives this message from all the honest players in Cj , it will set the bit
ei′,j = 1 too.

Finally, we show that there is at least one committee is not eliminated. That
is, for every honest player Pi, there is a committee Cj such that ei,j = 0.

Lemma 13. There exists a committeeCj such that ei,j = 0 for every honest player
Pi.

Proof: Fix the collection of messages rj sent by all the players (including
the faulty ones). By Lemma 5, there is at least one committee Cj such that
h(Cj)|k 6= rk for any k. This means that ei,j = 0 for every honest player Pi,
and the committee Cj survives.

4.3. CAN THE ROUND-COMPLEXITY BE IMPROVED? 59

4.3 Can the Round-Complexity be Improved?

The main contribution to the round-complexity of the above two protocols is the
Byzantine agreement protocol that we run among the players in each committee.
In a sense, these two reliable broadcast protocols can be viewed as a reduction
from reliable broadcast among n players to many instances of reliable broadcast
among a much smaller number of players (which, in our case is O(log n)).

Two possible venues to improving the round-complexity of these protocols
come to mind. The first is to design a committee-election protocol that outputs
a smaller committee. Since the complexity of the Byzantine agreement protocol
within the committee is proportional to the size of the committee, this will directly
result in a smaller round-complexity of the resulting reliable broadcast protocol.
We remark that given any one-round committee-election protocol that outputs a
committee of size c, possibly using a broadcast channel, we know how to convert
it into anO(c)-round committee-election protocol without using broadcast. There
are no lower-bounds on the number of rounds required for committee-election or
even leader-election. Thus, in principle, it is possible that there is a one-round
protocol for leader-election, which we can immediately convert to an O(1)-round
reliable broadcast protocol. In fact, we show how to do exactly this in Chapter 6
for a fault-tolerance of O(n/ logO(1) n).

The second possibility is to use a protocol with a smaller than linear round-
complexity in order to run Byzantine agreement among the players in each
committee. For example, one might think of using the O(log n) round reliable
broadcast protocol we just designed to bootstrap the Byzantine agreement protocol
within each committee, by recursion. We remark that this strategy does not work
because of a curious property of randomized protocols. Given any randomized
protocol with an expected running-time of t, executing poly(n) independent
copies of the protocol blows up the running-time to t · O(log n). Thus, even
if we have a Byzantine agreement protocol with expected running-time O(1),
executing it on all the m = n2 committees independently in parallel will increase
the running-time to O(log n), which means that we really gained nothing at all!

A third possibility is to somehow correlate the m Byzantine agreement
protocols taking place in parallel so that their total expected running-time is much
smaller than O(log n) times the individual round-complexity. Indeed, we showed
how to do this for any polynomial number of Byzantine agreement protocols
running among the same set of players (see Chapter 3). In that case, we could
make sure that the total expected running-time was the same as the expected
running-time of each individual protocol. The situation is different here, as we are
running the different Byzantine agreement protocols on different sets of players.

5
Auditing a Distributed Protocol

and an Application

The main motivation behind the construction of reliable broadcast protocols is
to convert distributed protocols that assume built-in broadcast channels into ones
that do not make such an assumption. This transformation, however, comes at a
cost: each invocation of the reliable broadcast channel in the original protocol is
replaced with a reliable broadcast protocol (as in Chapter 4), and this increases the
round-complexity of the original protocol by a multiplicative factor of O(log n)
(using the protocols in Chapter 4, which are the best known so far in the full-
information model).

This raises the following question: given a general protocol that assumes built-
in reliable broadcast channels, is it possible to run (a modified version of) the
protocol that (a) does not take much more time to run than the original protocol,
and (b) still provides a meaningful guarantee? In fact, graded broadcast can
be thought of as exactly such a mechanism: it provides the functionality of a
“semi-reliable broadcast channel” which is quite meaningful, although weaker
than the reliable broadcast functionality, and furthermore, can be implemented
very efficiently.

In this chapter, we present a general transformation of protocols, called
auditing. Given any distributed protocol Π that possibly assumes broadcast
channels, auditing Π results in a protocol Π′ that has the effect of running
Π “as well as possible” even when no reliable broadcast channels are given.
Furthermore, the round-complexity of Π′ is tightly related to that of Π. This
transformation is inspired by the techniques of Chapter 4.

AN APPLICATION OF AUDITING: BOOSTING FAULT-TOLERANCE OF PROTO-
COLS. We show how to apply the audit transformation to the problem of boosting
the fault-tolerance of distributed protocols. We explain this informally below.
When designing distributed protocols, it is often convenient to first design a

60

5.1. THE GUARANTEES OF AN AUDITED PROTOCOL 61

protocol for a weaker model of faults, and then use a general transformation to
convert the protocol to also work with a stronger fault-model. The weakest model
of faults that is still reasonable to consider is the fail-stop fault model, whereas
the Byzantine fault-model is by far the strongest. Bracha [Bra84] and later,
Neiger and Toueg [NT90] designed a mechanism that transforms a deterministic
distributed protocol tolerating fail-stop faults into an equivalent protocol that
tolerate Byzantine faults. The question of whether such a transformation can be
applied to randomized protocols as well was left open by their work. We use the
auditing transformation to answer this question in the affirmative.

ORGANIZATION OF THIS CHAPTER. In Section 5.1, we formally define the
guarantees provided by the audited protocol. In Section 5.1.1, we construct the
auditing transformation itself, and in section 5.2, we show how to apply the
auditing transformation to boosting the fault-tolerance of distributed protocols.

5.1 The Guarantees of an Audited Protocol

Consider any distributed protocol Π where all the players receive the same
output.1 For any such protocol Π and for any player P (the “auditor”), we define
an “audited” protocol Π′ = Audit(P,Π). We will refer to Π′ as a P -audited
version of Π. Informally, the execution of Π′ with the auditor P provides the
following guarantees.

• If the auditor P is honest, Π′ works exactly like Π. In particular, the output
of the protocol is distributed exactly as in Π, and furthermore, all the honest
players receive the output in Π′.

• Even if the auditor is dishonest, he can do only minimal damage – the worst
he can do is set the outputs of some of the players to ⊥. In other words,
the output of the protocol is still distributed exactly as in Π except that an
arbitrary subset of the honest players do not get the output in Π′.

To define this precisely, we need a notion of what it means to simulate a
protocol by another protocol.

SIMULATION OF A PROTOCOL BY ANOTHER PROTOCOL. We letD(Π, ~x,A; ~R)
denote the output distribution of the protocol Π against the adversary A, when the
input vector of the players is ~x = (x1, . . . , xn). Here, ~R = (R1, . . . ,Rn) where
Ri is the random source for player Pi. Note that the sourcesRi could, in general,
be dependent on each other.

The definition below of what it means for a protocol Π′ to simulate a protocol
Π is cryptographic in flavor. Essentially, it says that for any adversary A′ that can

1The condition that all the players receive the same output is made so that the definition is
simple. We remark that the results in this section can be generalized to an arbitrary distributed
protocol.

62 AUDITING A DISTRIBUTED PROTOCOL AND AN APPLICATION

force a particular output distribution in Π′, there is a corresponding adversary A
that can force the same distribution in Π. In other words, Π′ is “as good as” Π.
Note that since we are in working in the full-information model, both A and A′

are unbounded algorithms, can corrupt t players each statically, and can listen to
all communication in the network.

Definition 8 (Perfect Simulation of a Protocol Π by a Protocol Π′). Protocol
Π′ with randomness source ~R′ is said to perfectly simulate Π with randomness
source ~R if,

(1) for every adversary A′, there exists an adversary A such that for every input
vector ~x, the output distribution of Π′ under the influence of A′ is identical
to the output distribution of Π under A. That is,

∀A′,∃A such that ∀~x, D(Π′, ~x,A′;R′) ≡ D(Π, ~x,A;R)

(2) all the players in Π′ receive the output D(Π′, ~x,A′;R′).

In such a case, we write Π′ ∼ Π.

In our setting, we also need the notion of best-effort simulation of a protocol
Π by a protocol Π′. Essentially, Π′ “best-effort simulates” Π if the output
distribution of the players in Π′ is identical to that of Π, except that some players in
Π′ do not receive any output. We note that the set of players that do not receive any
output in Π can be chosen by the adversary depending on the particular execution
of the protocol.

Definition 9 (Best-Effort Simulation of a Protocol Π by a Protocol Π′). Protocol
Π′ with randomness source ~R′ is said to best-effort simulate Π with randomness
source ~R if the condition (1) in Definition 8 holds and

(2′) there exists a set of players S (possibly empty) that receive the output in Π′,
namely D(Π′, ~x,A′;R′).

In such a case, we write Π′ ∼⊥ Π.

AUDITING A DISTRIBUTED PROTOCOL. Given any distributed protocol Π
that possibly assumes broadcast channels, we would like execute Π “as well as
possible” when no reliable broadcast channels are given. Of course, one way to
do this would be to simulate every invocation of broadcast in Π with a reliable
broadcast (equivalently, Byzantine Agreement) protocol. However, since the
best known Byzantine Agreement protocol in the full-information model costs
Θ(log n) rounds of communication (as in Chapter 4), this transformation is not
very efficient. What we would like to do is to get as good a guarantee as possible
on the output of the protocol, while preserving the efficiency of the original
protocol. This leads us to the notion of an audited protocol.

5.1. THE GUARANTEES OF AN AUDITED PROTOCOL 63

Definition 10 (Audit(P,Π)). There exists a protocol transformation Audit that has
the following properties. Audit takes as input a protocol Π among n players that
possibly assumes the existence of a built-in broadcast channel, as well the identity
of a special player P , called the auditor. The output of Audit is a protocol Π′ that
does not assume reliable broadcast channels. The protocol Π′ = Audit(P,Π) has
the following guarantees.

• When P is honest, the protocol Π′ perfectly simulates Π.

• Even when P is malicious, the protocol Π′ best-effort simulates Π.

• The round-complexity of Π′ is the same as the round-complexity of Π, upto
constant factors. That is, rounds(Π) = O(rounds(Π′)).

Remark. We can generalize the definition of Audit so that the auditor is not a
single player, but a set of players C (called a “committee”). In this case, we
would require that Π′ perfectly simulate Π whenever the committee C has a large
fraction of honest players, and it best-effort simulates Π otherwise. Note that
auditing by a single player is a special case of auditing by a committee. One the
one hand, this generalization gives us more flexibility in the choice of the auditor;
however, the complexity of the audited protocol Π′ will grow linearly with the
size of the set C. We do not pursue this generalization further in this work.

5.1.1 The Audit Transformation

In this section, we construct the Audit transformation that converts any protocol
Π that possibly assumes reliable broadcast to an audited protocol Π′ that does not
assume reliable broadcast.

Informally, the motivation for the construction is the following: First, note
that if Π is a protocol that implements the reliable broadcast functionality for
a dealer D, then the guarantees provided by Audit(D,Π) are identical to the
guarantees of a semi-reliable broadcast protocol, where the dealer D acts as the
auditor in Audit(D,Π). This observation suggests a way of constructing the
Audit transformation – replace each broadcast instruction in the protocol Π by
the execution of a semi-reliable broadcast protocol. Such a simple transformation
indeed works if Π is a one-round protocol. In the case of multi-round protocols,
it turns out that we make this idea work using the stronger primitive of graded
broadcast; the different grades guaranteed by graded broadcast can be used in a
more sophisticated way to ensure that the dishonest players cannot skew the output
distribution (beyond forcing some of the outputs to ⊥).

Theorem 4. There exists a transformation Audit that satisfies Definition 10. Let
Π′ = Audit(P,Π). Then,

• If the fault-tolerance of Π is t, that of Π′ is min(t, bn−1
3 c).

64 AUDITING A DISTRIBUTED PROTOCOL AND AN APPLICATION

THE TRANSFORMATION Audit(P,Π): PSEUDOCODE

Input: Protocol Π.
Output: Protocol Π′ = Audit(P,Π)

Π′ works by simulating each round of Protocol Π as follows.

1. (Each Player Pi) If Π instructs Pi to send a message to Pj , Π′ instructs
the same.

2. (Each Player Pi) If Π instructs Pi to broadcast a message m to all the
players, the following subroutine is invoked.

(a) (Player Pi) Run a graded broadcast subroutine with Pi as the
sender, that sends m to all the players.

(b) (The Auditor P) Let m′ denote the message that P received as a
result of Pi’s gradecast, in Step 2(a). P runs a graded broadcast
subroutine to send m′ to all the players.

(c) (Every player Pj) Let (mi, gi) and (mP , gP) denote the outputs
of Pj from the gradecast in step (a) and the gradecast of the
auditor P in step (b), respectively. Pj will takemP as the message
broadcast by Pi in the underlying execution of Π.

(d) (Every player Pj) Set a bit failj = 1 if either

• mP 6= mi and gi = 2, or
• gP 6= 2.

3. Finally, each player Pj gets an outputOi from the underlying execution
of Π. Pj outputs Oj if failj = 0, and ⊥ otherwise.

Table 5.1: The transformation Audit

• If the round-complexity of Π is rΠ, the round-complexity of Π′ is at most
3rΠ.

Proof. We will show that the protocol Π′ = Audit(C, β,Π) (given in Table 1)
satisfies Definition 10.

If all the honest players Pj set failj = 1 at the end of Π′, then all of them
output ⊥, and there is nothing to prove. Our goal will be to show that if some
honest player Pj sets failj = 0 (that is, his output is not ⊥) then for every time
a broadcast instruction in the protocol is simulated by Step (2) of Audit, all the
honest players in fact receive the same message (and thus, the functionality of
broadcast is achieved).

Suppose some honest player Pj sets failj = 0. This means that, in all steps of
the simulation (that is, every time some possibly dishonest player Pi broadcasts a

5.2. BOOSTING THE FAULT-TOLERANCE OF DISTRIBUTED PROTOCOLS 65

message m), in the view of Pj , both the following hold:

(i) gP = 2 for the auditor P , and

(ii) mP = mi or gi 6= 2.

This follows from Step 2(d) of Audit.
Since gP = 2, every other honest player receives the same message from

the auditor committee P , with confidence at least 1. Thus, it follows that all the
players receive the same value for the broadcast of player Pi. Moreover, if Pi is
good, then gi = 2. Then, by condition (ii) above, mP = mi. This means that,
if Pi is good, all players accept the message that Pi “broadcast” (regardless of
whether the auditor P is good or not). Thus, we showed that every player gets
the same message as a result of Pi’s broadcast and moreover if Pi is good, they
accept the message Pi sent. This simulates the functionality of reliable broadcast
perfectly, in each round.

Since graded broadcast can be implemented with a fault-tolerance of bn −
1/3c and a round-complexity of 3, the claims about the fault-tolerance and round-
complexity of Audit(P,Π) follow.

5.2 Boosting the Fault-Tolerance of Distributed
Protocols

In this section, we show how to compile any randomized protocol that tolerates
fail-stop faults into a protocol that tolerates Byzantine faults. Recall that when the
corruption is fail-stop, all the players (including the corrupted ones) execute the
code of the prescribed protocol, using the prescribed random source, except that
the corrupted players can halt at any time during the protocol. On the other hand,
the Byzantine adversary is arbitrarily malicious; in particular, a player corrupted
by a Byzantine adversary does not necessarily follow the prescribed protocol nor
does it use the prescribed random source.

In particular, our compiler expects as input a fail-stop-tolerant protocol where
all the players have access to a γ-SV source as the source of randomness. A γ-SV
source produces a sequence of possibly biased and possibly dependent bits such
that the bias of each bit bi is bounded by γ, even when conditioned on the values
of all the other bits. In our context, giving all the players access to a γ-SV source
has the following meaning: the concatenation of the random sources of all the
players constitutes a γ-SV source. The compiler transforms such a protocol into a
protocol that tolerates Byzantine adversaries, where the protocol gives each of the
players access to a uniformly random source.2

In particular, our compiler has the following input-output behavior.

2Note that in this case, the dishonest players may choose not to use the prescribed source of
randomness.

66 AUDITING A DISTRIBUTED PROTOCOL AND AN APPLICATION

Input: Any full-information protocol Πγ−SV
fs that tolerates a fail-stop t-adversary

in which all the players have access to a γ-SV-source as the source of
randomness, for some γ = O(t/n).

Output: A protocol Πbyz in the full-information model that “realizes the same
functionality” as Πγ−SV

fs , tolerates a Byzantine min(t, n3)-adversary and
uses a uniformly random source. Furthermore the round-complexity of Πbyz

is a constant times the round-complexity of Πγ−SV
fs .

Formally, we show that for every adversary A in the output protocol Πbyz,
there is an adversary A′ and a γ-SV source Rγ in Π such that the execution
of Πγ−SV

fs using the random source Rγ under the control of the adversary A′ is
identical to the execution of Πbyz using a uniformly random source under the
control of A.

REMARK. Our compiler works only in the full-information model. Namely,
the compiler does not guarantee anything if the input protocol works in, say, the
private channels model.

REMARK. Throughout this thesis, our definition of full-information model gives
the adversary access to the messages sent through the communication channels, as
well as the internal state and the prior coin-tosses of all the honest players (but not
the future coin-tosses). This is stronger than the traditional full-information model
(for example, as in [GGL98]) where the adversary has access to the messages
in the communication channel, but not the internal state and the coin-tosses of
the honest players. This more constrained model has been called the intrusive
full-information model in the literature [CD89]. Working in the intrusive full-
information model makes the results if Chapter 4 stronger.

However, working in the intrusive full-information model does not make the
result in this section stronger (than a hypothetical equivalent result in the standard
full-information model of [GGL98]). The reason is that even though our compiler
produces an output protocol that works in the intrusive full-information model, it
also expects as input a (fail-stop-tolerant) protocol that works in the same model
as well!

We also remark that we do not know how to construct a compiler of this form
for the standard full-information model – we leave this as a (very interesting) open
question.

5.2.1 Informal Description of the Compiler

To understand our compiler, we first focus on the difference between a fail-stop
adversary and a Byzantine one. Informally, a Byzantine fault is more malicious
than a fail-stop fault in two aspects:

1. a Byzantine player can use arbitrary coins as the source of randomness,
whereas a fail-stop player uses the prescribed source of randomness.

5.2. BOOSTING THE FAULT-TOLERANCE OF DISTRIBUTED PROTOCOLS 67

2. a Byzantine player can send arbitrary messages to players in every round,
whereas a fail-stop player follows the prescribed protocol, and can only halt
(possibly in the middle of a round).

Thus, to transform a protocol tolerating fail-stop faults to one tolerating
Byzantine faults, we have to:

1. Force the Byzantine player to use the prescribed random source.

2. Restrict the Byzantine player to follow the prescribed protocol.

The second of these two issues was already addressed in the work of Neiger
and Toueg [NT90], where they construct a compiler that transform a deterministic
protocol that works against fail-stop faults into one that works against Byzantine
faults. Informally, the idea there is to ask each player to prove that they executed
the correct protocol with respect to the incoming messages and the randomness
both of which can be assumed to be public without loss of generality (since we
work in the full-information model). We state their result in Lemma 15.

The main novelty of our result is in solving the first issue, namely forcing an
adversary to use the prescribed random source. We proceed to informally describe
how this is done. One way to do this is to run a collective coin-flipping protocol
and force each player to use the coin generated by the coin-flipping protocol.

We assume that the input protocol is public-coin – that is, the players send
all the coins they use in the computation, along with the messages. We also
assume that the players send their inputs in the first round; since the adversary
is intrusive, we can assume this without loss of generality. Furthermore, all the
random-selection protocols [Fei99, RZ01, ORV94], as well as all the Byzantine
Agreement protocols we know have this property.

Our goal is to force the corrupted players in Πomit to use coins drawn from
a γ-SV source (as opposed to using coins with an arbitrary distribution). To do
this, every time the underlying protocol Πγ−SV

omit asks a player P to sample a coin
from the γ-SV random source, we run a (1, γ) collective coin-flipping protocol
Πcoin among all the players. All the players receive the output of the coin-flipping
protocol with probability 1, and furthermore, the bias of the coin is at most γ. The
player P is then supposed to use b as his coin.

In other words, we force all the players in Πomit to use the outcome of the
common-coin subroutine as the source of randomness. Now, each coin produced
by the (1, γ) collective coin-flipping Πcoin has a bias of at most γ and thus, the set
of coins produced by the many executions of Πcoin form a γ-SV source.3 Since
all the players see the outcome of the coin-flipping protocol, they can then verify
that P indeed used b as his coin in the protocol Πomit.

However, it might be the case that the common-coin protocol Πcoin assumes
reliable broadcast channels. If this is the case, we will instead run an audited
version of Πcoin, where the recipient of the coin P acts as the auditor. The effect

3Note that the coins are not independent and the bias of each coin can adversarially depend on
the previous coins and all the messages sent in the network.

68 AUDITING A DISTRIBUTED PROTOCOL AND AN APPLICATION

of doing this is to limit the worst possible behavior of P to preventing some of the
players from the seeing the outcome of the coin. But this is exactly the behavior
of an omission fault, which the original protocol Πγ−SV

omit tolerates.
Putting together the above intuition together, our compiler proceeds in three

steps.

Step 1. Convert the input protocol Πγ−SV
fs to a protocol Πγ−SV

omit that tolerates
omission faults, where in both Πγ−SV

fs and Πγ−SV
omit , all the players (including

the corrupted ones) use a γ-SV source as the source of randomness.

Omission faults were introduced as an intermediate fault-model between
fail-stop faults and Byzantine faults in the work of Neiger and Toueg. The
difference between omission faults and fail-stop faults is that omission
faults can continue omitting to send/receive messages in every round,
whereas a fail-stop fault stops sending any message after it omits to send
a message in some round.

Step 2. Convert Πγ−SV
omit to a protocol Πomit, where Πomit tolerates omission faults

where the faulty players are not required to use the prescribed random
source. The honest players in Πomit, however, are provided with a truly
random source. In contrast, the input protocol Πγ−SV

omit worked only against
adversaries that used the prescribed source of randomness (which is an γ-
SV source).

Step 3. Convert Πomit to Πbyz that tolerates Byzantine faults.

5.2.2 Construction of the Compiler

We prove the following theorem.

Theorem 5. Let γ = O(t/n). Let Πγ−SV
fs be any protocol that works against a

fail-stop t-adversary and where all the players (including the dishonest ones) use
an arbitrary γ-SV source as the source of randomness. There is a compiler that
converts Πγ−SV

fs into a protocol Πbyz that works against Byzantine adversary and
where all the honest players use a uniformly random source.

If the round-complexity of Πγ−SV
fs is r and the fault-tolerance is t, then the

round-complexity of ΠByz is O(r log∗ n) and the fault-tolerance is min(t, n/3).

Proof. First instantiate the compiler in Lemma 14 as follows: Let the coin-
flipping protocol Πcoin be the protocol of Feige (given in Table 4.1). This protocol
runs inO(log∗ n) rounds, has a fault-tolerance of n/3 and outputs a coin with bias
γ = O(t/n). Using this protocol as Πcoin, and putting together Lemma 14 and
Lemma 15 gives us the statement of the theorem.

Lemma 14. Assume that Πcoin is an rcoin-round (1, γ) collective coin-flipping
protocol tolerating an omission adversary that corrupts at most tcoin players.
Then, there is a compiler that converts any r-round protocol Πγ−SV

omit that works

5.2. BOOSTING THE FAULT-TOLERANCE OF DISTRIBUTED PROTOCOLS 69

against an omission t-adversary to a protocol Πomit that works against an omission
min(t, tcoin)-adversary. In Πomit, the adversary can choose which coins to use in
the protocol.

The round-complexity of Πomit is O(r · rcoin).

Proof. Since the adversary is intrusive, we can without loss of generality assume
that in every round, each player sends its coin-tosses to every other player.

Πomit works exactly like Πγ−SV
omit , except for the following:

Whenever a player Pi in Πγ−SV
omit is instructed to toss a coin, all

the players together execute an audited protocol Audit(Pi,Πcoin),
where Πcoin is an (1, γ) collective coin-flipping protocol and Pi is
the auditor in the protocol. Let the output (the coin) be bi. Pi uses bi
as the coin in the underlying protocol.

This modification has the following effect.

1. When an honest player Pi is instructed to toss a coin in Πγ−SV
omit , all the

players run the collective coin-flipping protocol which results in a bit bi.
Thus, the coin bi has a bias of at most γ, even conditioned on all the previous
coin-tosses (by the randomness property of Πcoin). Furthermore, all the
honest players see the outcome bi, since the auditor Pi is honest.

This simulates the effect of Pi sampling a coin bi from a γ-SV source and
sending the coin to all the players, which is exactly what happens in the
execution of Πγ−SV

omit .

2. When a faulty player Pi is instructed to toss a coin, in Πγ−SV
omit , all the players

run the collective coin-flipping protocol which results in a bit bi, a coin with
bias at most γ. However, since the auditor Pi is corrupted, only a subset S
of the players see the outcome of the coin-toss.

This simulates the effect of Pi sampling a coin bi from a γ-SV source and
sending the coin to the players in S, which is exactly what happens in the
execution of Πγ−SV

omit .

Note that since the adversary in both cases is just an omission adversary, the
corrupted player follows the instructions of the protocol, and in particular,
will use bi as the coin in the remainder of the protocol whenever it is
instructed to do so.

The round-complexity of Πomit is at most O(r · rcoin), since every round
where a player in Πγ−SV

omit is asked to sample a coin, the players execute an
audited collective coin-flipping protocol which runs inO(rcoin) rounds. The fault-
tolerance of Πγ−SV

omit is the minimum of the fault-tolerance of Πγ−SV
fs and the fault-

tolerance of the audited Πcoin protocol, which is min(t, n/3).

70 AUDITING A DISTRIBUTED PROTOCOL AND AN APPLICATION

Lemma 15 ([NT90]). There are compilers that convert:

1. Any r-round protocol Πγ−SV
fs that works against a fail-stop t-adversary to

a protocol Πγ−SV
omit that works against an omission min(t, n2)-adversary. In

both Πγ−SV
fs and Πγ−SV

omit , all the players (including the dishonest ones) use
a γ-SV source.

The round-complexity of Πγ−SV
omit is O(r).

2. Any r-round protocol Πomit that works against an omission t-adversary to a
protocol Πbyz that works against a Byzantine min(t, n3)-adversary and runs
in O(r) rounds.

6
Extensions

In this chapter, we present various extensions to the main result in Chapter 4.
The first result in this vein deals with the trade-off between the fault-

tolerance of the protocol and setup assumptions. The result of Pease, Shostak
and Lamport [PSL80] shows that no Byzantine agreement protocol can achieve
a fault-tolerance better than a third, with no prior setup. The most common
setup assumption is that of a Public-key Infrastructure. In the setup of a PKI,
each player Pi publishes a public-key PKi, for which it holds the corresponding
secret-key SKi. In Section 6.1, we show how to construct a logarithmic-round
BA protocol with a fault-tolerance of t < n

2 when there is a PKI setup is
available. One of the drawbacks of this setting is that one has to assume a
computationally bounded adversary in order to allow for cryptographic digital
signatures. However, digital signatures are typically easier to construct and also
complexity-theoretically simpler than public-key encryption schemes (which are
necessary to implement private channels).

The second result shows a tradeoff between fault-tolerance and the round-
complexity of the BA protocol. In contrast to the result in Chapter 4 which shows
a logarithmic round BA protocol, we show how to achieve an expected round-
complexity of O(1): the price we pay is that the fault-tolerance of this protocol is
only n/ logO(1) n.

The third and final result shows a tradeoff between the fault-tolerance and the
quality of the random source used in the BA protocol. In particular, we show how
to run BA protocol of Chapter 4 with a γ-SV source for some γ = c

logn for some
constant c > 0, given that the number of faults is a small constant fraction of the
total number of players (where the constant depends on c). For details on the exact
tradeoff, see Section 6.3.

72

6.1. A TRADE-OFF BETWEEN FAULT-TOLERANCE AND TRUSTED SETUP 73

6.1 A Trade-off between Fault-Tolerance and Trusted
Setup

There are three factors that contribute to the fault-tolerance of the BA protocol of
Chapter 4.

1. First, the fault-tolerance of the BA protocol can be no more than the fault-
tolerance of the graded broadcast protocol used within.

2. Secondly, the fault-tolerance of the protocol is upper-bounded by (1
2 − ε)n

because of the following. Each honest player computes the verdict of a good
committee as the verdict of the majority of the players within the committee.
If the fraction of faulty players within the committee is more than a half, this
could lead to different honest players computing different verdicts, even for
a “good committee”. Since the committee-selection process itself loses an
ε factor in the fault-tolerance, this restricts the fault-tolerance of the BA
protocol to at most (1

2 − ε)n, for some constant ε > 0.

3. Thirdly, the fault-tolerance of the deterministic Byzantine agreement proto-
col that we run within the committees also upper-bounds the fault-tolerance
of the entire protocol.

We now show how to modify each of the components in the protocol so as
to achieve a fault-tolerance of (1

2 − ε)n. First, we replace the graded broadcast
protocol invocation by an authenticated graded broadcast protocol, such as the
one of Katz and Koo [KK06]. Authenticated graded broadcast achieves the same
guarantees as graded broadcast, but tolerates t < n/2 dishonest players assuming
a PKI setup among the players in the network. That is, each player Pi publishes a
public-key PKi for which he and only he knows the secret-key SKi. In addition,
here, we assume that the adversary is computationally unbounded so that it cannot
forge digital signatures.

Secondly, we replace the reliable broadcast protocol within the committees
by the protocol of Dolev and Strong [DS83] which assumes a PKI setup. This
protocol achieves a fault-tolerance of t < n/2 and runs for t + 1 in a network of
n players with t faults.

Modifying the BA protocols of Chapter 4 by replacing each invocation
of graded broadcast by the authenticated graded broadcast protocol, and each
invocation of Byzantine agreement by the Dolev-Strong protocol, we get the
following theorem.

Theorem 6. For any constant ε > 0, there exists a protocol BAε that achieves
Byzantine Agreement in a synchronous full-information network of n players with
a PKI setup, tolerating t < (1

2 − ε)n faults. The round complexity of BAε is
O(logn

ε2
), and the communication complexity is Õ(n2) bits.

74 EXTENSIONS

6.2 A Trade-off between Fault-Tolerance and Efficiency

We show two BA protocols that run in expected O(1) rounds. First, we present
a simple protocol with fault-tolerance t = O(n/ log2 n). Then, we show how to
achieve a fault-tolerance of t = O(n/ logc n) for a constant c < 1.58 using a
more sophisticated protocol.

A SIMPLE EXPECTED O(1)-ROUND PROTOCOL. The BA protocol is based on
the following result of Ajtai and Linial [AL93], who show the existence of a 1-
round collective coin-flipping protocol (in other words, a Boolean function) whose
output cannot be influenced by any coalition of less than n

log2 n
players. For a

string x ∈ {0, 1}n and B ⊆ [n], let xB denote the |B|-bit string formed by
projecting x onto indices in B. For any B ⊆ [n], we can thus write x as a pair
(xB,x[n]\B).

Theorem 7 (Ajtai-Linial [AL93]). There are constants c, ε > 0 and a family of
Boolean functions {fn}∞n=1 where fn : {0, 1}n → {0, 1} such that, for any set of
variables B ⊆ [n] of size at most cn

log2 n
,

ε ≤ Pr
x[n]\B∈U{0,1}n−|B|

[∃xB ∈ {0, 1}|B| such that f(xB,x[n]\B) = 0] ≤ 1− ε

This theorem directly gives a way to get a common coin with bounded bias,
when t = O(n

log2 n
): each player samples a random bit bi, and sends it to all the

players. The players compute b = f(b1, . . . , bn) as the common coin. Now, with
high regardless of what the dishonest players do, the output of f is guaranteed to
have a constant bias. Using the reduction of Ben-Or and Rabin, this gives us an
expected O(1)-rounds BA.

AN EXPECTED O(1)-ROUND PROTOCOL WITH A BETTER FAULT-TOLERANCE.
We construct an expected O(1)-round BA protocol that tolerates a Byzantine t-
adversary for any t = O(n

log1.58 n
).

Theorem 8. There exists a BA protocol in a synchronous full-information network
of n players tolerating t = O(n

log1.58 n
) Byzantine faults. The protocol runs in

expected O(1) rounds.

Proof. To construct the BA protocol, we will invoke Lemma 14 in Chapter 5. This
lemma shows how to construct a BA protocol that runs in expected O(1) rounds
tolerating t faults given the following two ingredients.

1. a BA protocol that tolerates a fail-stop t-adversary where all the players (in-
cluding the dishonest ones) use a γ-SV source as the source of randomness.

2. a collective coin-flipping protocol that tolerates t faults and generates a coin
of bias at most γ. The protocol could possibly assume built-in reliable
broadcast channels.

6.2. A TRADE-OFF BETWEEN FAULT-TOLERANCE AND EFFICIENCY 75

We now show how to construct these two ingredients.

BYZANTINE AGREEMENT PROTOCOL USING AN SV-SOURCE AGAINST FAIL-
STOP FAULTS. Chor, Merritt and Shmoys [CMS89] constructed a simple one-
round BA protocol against fail-stop faults, which uses a uniformly random source.
Below, we show that the same protocol achieves BA even if the source of
randomness is a 1

2 logn -SV-source.

Lemma 16. There exists a BA protocol in a synchronous full-information network
of n players tolerating a fail-stop t-adversary for t < (1−ε)n (for any ε > 0). The
protocol runs in expected O(1) rounds, even if the randomness for the protocol is
drawn from a γ-SV-source with γ = O(1

logn).

Proof. As usual, we focus on constructing a common-coin protocol. The protocol
proceeds as follows.

1. (Every player Pi) Sample log n random bits, and sends it to every other
player.

2. (Every player Pi) If there is a unique Pj from which Pi received message
0, elect Pj as leader, else output ⊥.

3. The leader flips a coin and sends it to everybody.

Let γ = 1
2 logn . Let sampi denote the log n-bit string sampled by Pi from a γ-

SV-source. Then, 1
en ≤ (1

2 −
1

2 logn)logn ≤ Pr[sampi = 0] ≤ (1
2 + 1

2 logn)logn ≤
e
n .

If exactly one of the good players Pi obtains sampi = 0 and all the bad players
Pj obtain sampj 6= 0, then it is easy to see that all the honest players will choose
an honest player as the leader. The probability that this happens is at least (1− e

n)t ·(
n−t

1

)
1
en(1− e

n)n−t ≥ κ for some constant κ > 0. Thus, the protocol generates a
(κ, γ)-common-coin in one round.

A COIN-FLIPPING PROTOCOL WITH BIAS O(1
logn). Now, it suffices to design

a coin-flipping protocol that generates a coin with bias at most 1
2 logn . The first

thought is to directly use the collective coin-flipping protocols of Feige [Fei99]
or that of Russell-Zuckerman [RZ01]. However, these protocols do not guarantee
that the bias of the coin generated is as small as O(1

logn) (even when the number
of faults is small). Thus, we construct a new collective coin-flipping protocol
(assuming broadcast channels) that generates a coin with bias 1

2 logn , when the
number of faults t = O(n

log1.58 n
). More precisely,

Lemma 17. There is an O(1)-round (1, 1
2 logn) collective coin-flipping protocol

that tolerates t < n/ log1.58 n faulty players.

76 EXTENSIONS

Proof. First suppose that there exists a one-round collective coin-flipping protocol
Πcc such that for any Byzantine t-adversary, Πcc generates a coin with bias t

nα .
Then, we will show a (1, 1

2 logn) collective coin-flipping protocol Πcoin against
t < n

logβ n
faults, for any β > 1

α . The protocol Πcoin assumes reliable broadcast
channels, and it runs in O(1) rounds.

Such a coin-flipping protocol Πcc is guaranteed by the following result of
Ben-Or and Linial.

Fact 1 ([BL85]). There exists a one-round (1, t
n0.63) collective coin-flipping

protocol among n players tolerating a Byzantine t-adversary.

Πcoin elects a committee (much like the Russel-Zuckerman committee se-
lection), but it does so in three rounds. In the first round, elect a committee
C1 of size log1+β n by running the Russell-Zuckerman committee-selection ΠRZ

among n players. The probability that a bad committee is elected is at most 1
n .

In the second round, elect a committee C2 of size logβ n log log n by running
the Russell-Zuckerman committee-selection ΠRZ among the players in C1. The
probability that a bad committee is elected in this round is at most 1

log2+β n
. In the

third round, run the one-round protocol Πcoin among the players in C2.
The probability that C2 is a bad committee is at most 1

n + 1
log2+β n

=

o(1
logn). If C2 is good, then running Πcoin generates a coin with bias at

most log logn

(logβ n log logn)α
≤ 1

3 logn . Thus, the total bias of the coin is at most
1

3 logn + o(1
logn) < 1

2 logn .

Putting together these two components gives us the BA protocol.

6.3 A Trade-off between Fault-Tolerance and the
Quality of Randomness

In this section, we show that the protocols of Chapter 4 work even if the random
sources of the players are γ-SV sources with parameter γ = O(1

logn). The only
place where randomness is used in the protocols in Chapter 4 is in the committee-
election protocols. Thus, it suffices to show that there is a protocol for committee
election even when the players only have access to a γ-SV source. We show below
that the protocol of Feige (see Table 4.1) does the trick.

Lemma 18. Let γ = c
logn , and let the fraction of faults β < 1 − 5

6e
2c for some

constant c > 1. There exists a committee-election protocol Πγ−SV
comm that outputs a

committee S of size at most 2 log n, such that with probability at least 1− 1
n , the

fraction of dishonest players in the elected committee is at most 1/3.
Πγ−SV

comm uses a γ-SV source, tolerates t faulty players and runs in 1 round.

Proof. The protocol is exactly the committee-election protocol of Feige. The
analysis proceeds in a very similar way to the proof of Lemma 2. The additional
difficulties are caused due to the fact that the random variables used in the

6.3. A TRADE-OFF BETWEEN FAULT-TOLERANCE AND THE QUALITY OF

RANDOMNESS 77

analysis are not independent, which prevents us from using tail bounds such as
the Chernoff bound. Fortunately for us, variants of Chernoff bound (such as the
one of Schmidt, Siegel and Srinivasan [SSS95]) apply even in the case where the
random variables are drawn from a distribution with bounded bias. We proceed
formally below.

The main claim is that with probability at least 1 − 1
n , all the bins contain at

least 2/3 log n honest players. Given this claim, we are done, exactly as in the
proof of Lemma 2.

Define the indicator random variables Xi,b for 1 ≤ i ≤ n and 1 ≤ b ≤ n
logn

as follows.

Xi,b =
{

1 if player Pi chooses bin b
0 otherwise

Since the honest players choose their bin using log n− log log n bits sampled
from the γ-SV source, for every honest player Pi and every bin b,

(
1
2
− γ)logn−log logn ≤ E[Xi,b] ≤ (

1
2

+ γ)logn−log logn

That is, substituting the value of γ = c
logn and simplifying, we get

log n
n

e−2c ≤ E[Xi,b] ≤
log n
n

e2.1c

Denote the number of honest players in a particular bin b by Xb. Then, Xb is
simply the sum of all random variables Xi,b for all honest players Pi. By linearity
of expectation, the expected number of honest players in a bin b is bounded as
follows.

(1− β)e−2c log n ≤ E[Xb] ≤ (1− β)e2.1c log n

Even though the random variables Xi,b are not independent, each Xi,b has
bounded bias given all the other Xi′,b. Thus, we can use the result of [SSS95]
to show that the probability that Xb is much smaller than the expectation is
exponentially small in log n. Setting the value of β = 1− 5/6e2c,

Pr[Xb ≤ 2/3 log n] ≤ 2 · e−2 logn

By a union bound, the probability that some bin b contains less than 2/3 log n
honest players is at most 1

n .

A
Combinatorial Tools

A.1 Construction of Committees

In this section, we give a probabilistic proof of the existence of a set of
prospective committees, as required for the protocol of Russell and Zuckerman
(see Chapter 4).

Lemma 19. There is a deterministic algorithm Prospective(1n, ε) which outputs
a collection C of m = O(n2) committees Ci, where each Ci has O(log n/ε2)
players such that: for every ε > 0 and for any set B of at most βn dishonest
players, |Badε(B, C)| ≤ 3n.

Proof. The proof is by probabilistic method. That is, we show that there exists
such a collection of committees without giving an explicit way to find them.

Let n denote the number of players and βn be the number of bad players.
Then, there exists a good collection of m = n2 committees C, where each
committee is of size n′ = O(logn

ε2
).

The collection of m committees is fixed by choosing m sets C1, C2, . . . , Cm,
each of size n′, at random. Fix a “bad set” B of size t. For any committee Ci, the
probability that the committee has more than 3n′ tn players from B is small. First
of all, note that the expected size of |Ci∩B| = n′ tn . By a simple Chernoff bound,

Pr
choiceofCi

[|Ci ∩B| > 3n′
t

n
] < e−

n′t
n

By the choice of n′ = n logn
t ,

Pr
choiceofCi

[|Ci ∩B| > 3n′
t

n
] <

1
n

The expected number of bad committees is therefore at most m
n , which by the

choice of m, is n. The probability that the number of bad committees is larger

78

A.1. CONSTRUCTION OF COMMITTEES 79

than 3n is, again by a Chernoff bound, at most e−n. This analysis was done for a
fixed B. That is, we just showed that,

∀B,Pr[the number of bad committees w.r.t B is more than 3n] < e−n

Now, reverse quantifiers. Use a union bound over the set of all B’s. Since there
exist

(
n
t

)
≤ 2n such B’s,

Pr[∃B the number of bad committees w.r.t B is more than 3n] < e−n2n < 1

Therefore, there exists a choice of n2 committees, each of size n logn
t , such that

no more than 3n of them are bad.

We obtain the following corollaries of this lemma.

Corollary 1. Let the number of players be n and the number of faults t be n
logβ n

.

Then, there exists a set of n2 committees, each of size log1+β n such that at most
3n of these have more than 3 log n bad players.

Corollary 2. Let the number of players be log1+β n and the number of faults
t be 3 log n. Then, there exists a set of log2+2β n committees, each of size
O(logβ n log logn) such that at most 3 log1+β n of the committees have more
than O(log log n) bad players.

HITTING SETS. To define the notion of a hitting set for combinatorial rectangles,
we first need a few definitions.

Fix an a > 0. A combinatorial rectangle R ⊆ [a]n is defined to be R =
R1 × R2 × . . . × Rn where each Ri ⊆ [a], and |Ri| = a − 1. The volume of R
in [a]n is vol(R) = 1

an
∏n
i=1 |Ri| = (1 − 1

a)n. We also let vol(R) be compactly
denoted as δ.

A set D ⊆ [a]n is called an (a, n,m)-hitting set if (1) |D| = m, and (2) for
every combinatorial rectangle R ⊆ [a]n, |D ∩R| > 0. A pertinent question is for
what values of the parameters a and n does there exist an (a, n,m)-discrepancy
set. The following lemma answers this question. The proof is by a simple
application of probabilistic method.

Lemma 20. There exists an (a, n,m)-hitting set D for every n, m = n2 and
a = 2n

logn .

Proof. The proof is by probabilistic method. D = {d1, d2, . . . , dm} is chosen to
be m random points in [a]n. Fix a combinatorial rectangle R. The probability that
d1 ∈ R is

Pr
choiceofD

[d1 ∈ R] = δ

Thus, the expected number of points di that are in R is δm. The probability that
the number of points di in R is less than (1− ε)δm is

Pr[|R ∩D| ≤ (1− ε)δm] < e−ε
2δm

80 COMBINATORIAL TOOLS

This analysis was done for a fixed R. Now, reverse quantifiers.

Pr[∃R such that |R ∩D| ≤ (1− ε)δm] ≤ (number of rectangles) e−ε
2δm

The total number of rectangles is an. Thus

Pr[∃R such that |R ∩D| ≤ (1− ε)δm] < ane−ε
2δm < 1

by the choice of a and m. Thus, in particular, there exists a D such that for every
rectangle R, |D ∩R| ≥ (1− ε)|D| > 2n+ 1.

Bibliography

[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions.
Combinatorica, 13(2):129–145, 1993.

[BB98] Ziv BarJoseph and Michael Ben-Or. A tight lower bound for
randomized synchronous consensus. In PODC, pages 193–199,
1998.

[Ben83] Michael Ben-Or. Another advantage of free choice: Completely
asynchronous agreement protocols (extended abstract). In PODC,
pages 27–30, 1983.

[BG89a] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed
consensus (extended abstract). In ICALP, pages 80–94, 1989.

[BG89b] Piotr Berman and Juan A. Garay. Asymptotically optimal distributed
consensus (extended abstract). In ICALP, pages 80–94, 1989.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal early
stopping in distributed consensus (extended abstract). In WDAG,
pages 221–237, 1992.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In STOC, pages 1–10, 1988.

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust
voting schemes and minima of banzhaf values. In FOCS, pages 408–
416, 1985.

[Blu81] Manuel Blum. Coin flipping by telephone. In CRYPTO, 1981.

[BPV06] Michael Ben-Or, Elan Pavlov, and Vinod Vaikuntanathan. Byzantine
agreement in the full-information model in o(log n) rounds. In STOC,
pages 179–186, 2006.

[Bra84] Gabriel Bracha. An asynchronous d(n − 1)/3e-resilient consensus
protocol. In PODC, pages 154–162, 1984.

[Bra87] Gabriel Bracha. An O(log n) expected rounds randomized byzantine
generals protocol. J. ACM, 34(4):910–920, 1987.

82

BIBLIOGRAPHY 83

[CC85] Benny Chor and Brian A. Coan. A simple and efficient random-
ized byzantine agreement algorithm. IEEE Trans. Software Eng.,
11(6):531–539, 1985.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty
unconditionally secure protocols (extended abstract). In STOC,
pages 11–19, 1988.

[CD89] Benny Chor and Cynthia Dwork. Randomization in byzantine
agreement. 5:443–497, 1989.

[CMS89] Benny Chor, Michael Merritt, and David B. Shmoys. Simple
constant-time consensus protocols in realistic failure models. J.
ACM, 36(3):591–614, 1989.

[CR87] Benny Chor and Michael O. Rabin. Achieving independence in
logarithmic number of rounds. In PODC, pages 260–268, 1987.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement
with optimal resilience. In STOC, pages 42–51, 1993.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM J. Comput., 12(4):656–666, 1983.

[DSS90] Cynthia Dwork, David B. Shmoys, and Larry J. Stockmeyer. Flip-
ping persuasively in constant time. SIAM J. Comput., 19(3):472–499,
1990.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In FOCS, pages
142–153, 1999.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. Inf. Process. Lett., 14(4):183–186,
1982.

[FLP83] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibil-
ity of distributed consensus with one faulty process. In PODS, pages
1–7, 1983.

[FM88] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine
agreement. Symposium on the Theory of Computing, pages 148–161,
1988.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol
for synchronous byzantine agreement. SIAM J. Comput., 26(4):873–
933, 1997.

[GGL98] Oded Goldreich, Shafi Goldwasser, and Nathan Linial. Fault-tolerant
computation in the full information model. SIAM J. Comput.,
27(2):506–544, 1998.

84 BIBLIOGRAPHY

[GM98] Juan A. Garay and Yoram Moses. Fully polynomial byzantine
agreement for n > 3t processors in t + 1 rounds. SIAM J. Comput.,
27(1):247–290, 1998.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest
majority. In STOC, pages 218–229, 1987.

[GPV06] Shafi Goldwasser, Elan Pavlov, and Vinod Vaikuntanathan. Fault-
tolerant distributed computing in full-information networks. In
FOCS, pages 15–26, 2006.

[GSV05] Shafi Goldwasser, Madhu Sudan, and Vinod Vaikuntanathan. Dis-
tributed computing with imperfect randomness. In DISC, pages 288–
302, 2005.

[GVZ06] Ronen Gradwohl, Salil Vadhan, and David Zuckerman. Random
selection with an adversarial majority. ECCC Report TR06-026,
2006.

[Had83] Vassos Hadzilacos. Byzantine agreement under restricted types of
failures. Technical Report 18-83, Department of Computer Science,
Harvard University, 1983.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round
protocols for byzantine agreement. ECCC Report TR06-028, 2006.

[KLRZ08] Yael Tauman Kalai, Xin Li, Anup Rao, and David Zuckerman.
Network extractor protocols. In FOCS, pages 654–663, 2008.

[KSSV06a] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable
leader election. In SODA, pages 990–999, 2006.

[KSSV06b] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards
secure and scalable computation in peer-to-peer networks. In FOCS,
pages 87–98, 2006.

[KY86] Anna Karlin and Andrew Chi-Chih Yao. Probabilistic lower bounds
for byzantine agreement. Manuscript, 1986.

[LLSZ97] Nathan Linial, Michael Luby, Michael E. Saks, and David Zucker-
man. Efficient construction of a small hitting set for combinatorial
rectangles in high dimension. Combinatorica, 17(2):215–234, 1997.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[Nis96] Noam Nisan. Extracting randomness: How and why a survey. In
IEEE Conference on Computational Complexity, pages 44–58, 1996.

BIBLIOGRAPHY 85

[NT90] Gil Neiger and Sam Toueg. Automatically increasing the fault-
tolerance of distributed algorithms. J. Algorithms, 11(3):374–419,
1990.

[ORV94] Rafail Ostrovsky, Sridhar Rajagopalan, and Umesh V. Vazirani.
Simple and efficient leader election in the full information model.
In STOC, pages 234–242, 1994.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM., 27:228–234, 1980.

[Rab83] Michael O. Rabin. Randomized byzantine generals. FOCS, pages
403–409, 1983.

[RZ01] Alexander Russell and David Zuckerman. Perfect information leader
election in log∗ n+O(1) rounds. JCSS, 63(4):612–626, 2001.

[Sak89] Michael E. Saks. A robust noncryptographic protocol for collective
coin flipping. SIAM J. Discrete Math., 2(2):240–244, 1989.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-
hoeffding bounds for applications with limited independence. SIAM
J. Discrete Math, 8:331–340, 1995.

[SV84] M. Santha and U. V. Vazirani. Generating quasi-random sequences
from slightly-random sources. In FOCS, pages 434–440, Singer
Island, 1984.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Ran-
dom Struct. Algorithms, 11(4):345–367, 1997.

	List of Tables
	Introduction
	Byzantine Agreement in the Full Information Model
	Trading off Fault-Tolerance with Other Parameters
	Auditing Distributed Protocols and Applications
	An Application of Auditing: ``Boosting'' Fault-Tolerance of Protocols

	Overview of the Thesis

	Preliminaries
	Modeling a Synchronous Distributed System
	Remarks on the Model and Extensions

	Reliable Broadcast and Byzantine Agreement
	Probabilistic Lemmas

	Classical Work on Reliable Broadcast
	A Weaker Variant of Reliable Broadcast
	Graded Broadcast

	Byzantine Agreement and Random Selection

	New Byzantine Agreement Protocols
	Committee Election Protocols
	Feige's Committee Election Protocol
	Russell and Zuckerman's Committee Election Protocol

	Byzantine Agreement Protocols
	Byzantine Agreement Protocol I
	Byzantine Agreement Protocol II

	Can the Round-Complexity be Improved?

	Auditing a Distributed Protocol and an Application
	The Guarantees of an Audited Protocol
	The Audit Transformation

	Boosting the Fault-Tolerance of Distributed Protocols
	Informal Description of the Compiler
	Construction of the Compiler

	Extensions
	A Trade-off between Fault-Tolerance and Trusted Setup
	A Trade-off between Fault-Tolerance and Efficiency
	A Trade-off between Fault-Tolerance and the Quality of Randomness

	Combinatorial Tools
	Construction of Committees

	Bibliography

