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Lecture 4
Lecturer: Vinod Vaikuntanathan Scribe: Wesley George

Topics covered this lecture:

• SV P ≤ CV P

• Approximating CVP: Babai’s Nearest Plane Algorithm

• An Efficient Algorithm for Integer Programming in constant dimensions

1 SVP is no harder than CVP

Definition 1. (The Closest Vector Problem) Let CV P be the problem of on input B ∈ Zm×n and t ∈ Zm
returning an x ∈ L(B) such that

∀y ∈ L(B)‖x− t‖ ≤ ‖y − t‖

Note that if t ∈ L(B), the correct answer to the CV P instance (B, t) is t. There is a natural approximation
version of CVP:

Definition 2. Let CV Pγ be the problem of on input B, t returning an x ∈ L(B) such that

∀y ∈ L(B)‖x− t‖ ≤ γ‖y − t‖

This is related to (but different from) the shortest vector problem. SVP asks, given a lattice B, return
x ∈ L(B) such that ‖x = Bz‖ is minimized. CVP is the problem of given B and t, return x ∈ L(B) that
minimizes ‖x − t‖. Both languages are Turing reducible to each other (though the known reductions have
different properties). We give the easier reduction:

Theorem 3 ([GMSS99]). ∀γ SV Pγ ≤T CV Pγ

We write A ≤T B to denote that A is Turing-reducible to B; A is Turing-reducible to a problem B if
given an oracle for B, one can compute answers to A. In this case we will show taht if we can compute
correct answers for CV Pγ , we can use this to compute the γ-shortest vector of some fixed lattice.

Note that the decision formulation of CV P is NP-hard while (the natural decision version of) SV P is
in NP; thus we have a generic reduction of SV P to CV P (through, say, 3-SAT). However this reduction
is inefficient in that it requires solutions to large instances of CV P in order to compute the corresponding
SV P instance. In particular, this reduction gives no sense of the relationship between approximating CV P
and approximating SV P . When we prove Threorem 3, we give a reduction that is dimension-preserving,
approximation-preserving and deterministic. The known converse to Theorem 3 has none of these three
(desirable) properties.

First we give a sense of the reduction: The shortest vector of a lattice B is the closest non-zero vector to
the origin. As CV P (B, 0) = 0, the trivial reduction won’t work. Instead, we will generate sublattices of B
by “knocking out” certain vectors and ask for the closest vector in this sublattice to the “hole” in the lattice
we’ve created. Let B be a lattice basis; consider sublattices spanned by bases B(1), . . . , B(n) where the ith
basis B(i) is {b1, . . . , bi−1, 2bi, bi+1, . . . , bn}.

Claim 4. bi 6∈ L(B(i))
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Proof. Were this the case, we would have {αi}ni=1 such that

α1(2b1) + α2b2 + . . . αnbn = b1

i.e. that
(2α1 − 1)b1 + α2b2 + . . . αnbn = 0

contradicting the linear independence of {b1, . . . ,bn}.

Having noted this fact, consider the following correspondence between short vectors in L(B), and vectors
close to bi in L(B(i)):

Lemma 5. 1. Let u ∈ L(B(i)), then v = u− bi ∈ L(B).

2. Let v =
∑n
i=1 αi · bi such that αj is odd for some fixed j. Then u = v − bj ∈ L(B(j)).

This lemma follows easily the definition of L(B(i)).
Note that identification of v and u− bi means ‖v‖ = ‖u− bi‖, i.e. that the length of v is equal to the

distance between u and bi. Now we are prepared to prove 3:

Theorem 3. Consider the following algorithm for that on input a lattice basis B = {b1, . . . , bn} and given an
oracle for CV Pγ does the following:

• Compute n bases B(1), . . . , B(n) where the ith basis B(i) is {b1, . . . , bi−1, 2bi, bi+1, . . . , bn}

• For each i ∈ [n], let vi = CV Pγ(B(i), bi)

• outputs arg minvi{‖vi + bi‖}

It is clear, by Lemma 5.1 that each of vi−bi ∈ L(B). It remains to show that one of them is the shortest
vector.

Now suppose v is the shortest vector of L(B). Note that if v =
∑
αibi, one of the αi’s must be odd

(otherwise v′ = v/2 ∈ L(B), and ‖v′‖ = 1/2n‖v‖, contradicting that v is the shortest vector of L(B).)
Now assume, without loss of generality, that α1 is odd. By Lemma 2, v + b1 is the closest vector to b1

in L(B(1). So this is recovered in the oracle call CV P (B(1),b1), and output by our algorithm above.

2 Approximating CVP: Babai’s Nearest Plane Algorithm

Consider the following algorithm for CV Pγ=2n/2(B, t):
Begin by replacing B with a δ = 3/4-L3 reduced basis (obtained by running LLL on B).

• Project t to Hn = Span(b1, . . . ,bn); call this projection s

• Find c ∈ Z such that the hyperplane c · b̃n + Span(b1, . . . ,bn−1) is closest to s1 2.

• Let s′ = s− c · bn; call NearestPlane on (L(b1, . . . ,bn−1), s′) to get x′.

• return x = x′ + cbn.

There is a natural intuition to what the algorithm is doing. At the first level, the space is divided into
(countably) infinite hyperplanes, each integer-valued translations of Hn1 = Span{b1, ...,bn−1}. We locate
the closest hyperplane to s to determine the bnth coordinate of s, then recurse on the projection of s onto
Hn−1.

1i.e. c is the closest integer to 〈s, b̃n〉/〈b̃n, b̃n〉
2As usual, we use b̃n to denote the nth vector in the gram-schmidt orthogonalization of {bi}ni=1
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Theorem 6 ((Babai)). The algorithm NearestPlane(B, t) is a 2n/2-approximation algorithm for CV P (i.e.
a polytime algorithm for CV P2n/2 .

Proof. Let x be the result of running the nearest-plane algorithm on a fixed lattice with basis B and target
vector t. Let y ∈ L(B) such that ‖t− y‖ = dist(L(B), t). To prove the theorem, we need to show that

‖x− t‖ ≤ 2n/2‖y − t‖ (1)

We will show that
‖x− s‖2 ≤ 2n‖y − s‖2 (2)

From here, we have (1) as

‖x− t‖2 = ‖x− s‖2 + ‖s− t‖2 (s− t ∈ H⊥n )

≤ 2n‖y − s‖+ ‖s− t‖2 by (2)

≤ 2n(‖y − s‖+ ‖s− t‖2)

= 2n‖y − t‖2 (s− t ∈ H⊥n )

We will prove (2) by induction on n, but we will need the following key lemma:

Lemma 7. Let s ∈ Hn. Then
‖x− s‖ ≤ 2n/2 · (1/2‖b̃n‖)

Proof. First observe that:

‖x− s‖2 ≤ 1/4

n∑
i=1

‖b̃i‖2

This follows immediately from the fact that the translations of s at each step are along an orthogonal basis:
At each rounding step, s moves at most 1/2‖b̃i‖ in direction b̃i; since the set {b̃i} is orthogonal, the square
of the total distance translated is bounded by

n∑
i=1

(1/2‖b̃i‖)2 = 1/4

n∑
i=1

‖b̃i‖2

Now since {bi}ni=1 is a δ − L3 reduced basis, we have that∑
i

‖b̃i‖2 ≤ 2(n−i)‖b̃n‖2

≤ 2n‖b̃n‖2

combining this with the previous claim, gives us a bound on ‖x− s‖ in nicer terms:

‖b̃i‖ ≤ 2n/2 · (1/2‖b̃n‖)

Finally we will show (2) by induction on n. For the base case, (2) holds for n = 1: it is easily seen that
as NearestPlane computes CV P exactly for n = 1.

For the inductive step, consider whether ‖s−y‖ ≤ ‖b̃n‖/2. If this is not the case, we have (2) immediately
thanks to Lemma 7.

But if ‖s − y‖ ≤ ‖b̃n‖/2, then y ∈ cbn + Hn−1. Specifically, if y′ is the closest vector to s′ in
L(b1, . . . ,bn−1), we have that

y′ + cbn = y
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Since we build s from s′ by adding the same cbn term, we have that

‖y′ − s′‖ = ‖y − s‖

This means that we don’t introduce any errors in this step of the algorithm. Specifically:

‖x− s‖ = ‖x′ − s′‖
≤ 2(n−1)/2‖y′ − s′‖ (inductive hypothesis)

≤ 2(n−1)/2‖y − s‖ (choice of c)

≤ 2n/2‖y − s‖

i.e. the (2) holds for this step.
This concludes the proof of Theorem 6.

The lecture notes [KR04] were consulted in the preparation of this section.

3 Integer Programming in Constant Dimensions

We are concerned with the following variant of Integer Programming(IP):

Given A ∈ Qm×n, determine if there are any integer points in the set X = {x ∈ Rn | Ax ≥ 0}

i.e. compute whether
{x ∈ Rn | Ax ≥ 0} ∩ Zn = ∅

Note that Ax ≥ 0 is taken to be true if every entry of the vector Ax is greater than 0.
IP is NP -complete, though this fact is not obvious (it is not obvious to see that it is even in NP ). In

this section we will prove the following theorem:

Theorem 8. There is an 2O(n2)poly(m, ‖A‖, ‖b‖) time algorithm for the Integer Programming problem.

We take ‖A‖,‖b‖ to be the number of bits needed to describe A and b respectively. The obvious corollary
of this theorem is a polytime algorithm for IP when n is constant.

What has this problem to do with lattices? We view this (feasibility version of IP) as a generalization of
the CVP problem: in the case of CVP, you are given an arbitrary vector t ∈ Rn, and asked for the closest
lattice point; here, we are given a convex set X and asked for the closest lattice point. Just as in CVP where
the target vector may be a lattice point, it may be the case that the convex set in question contains a lattice
point (and any such lattice points are treated as having the same distance - i.e. zero - from X ).

Our starting point is a Theorem (of Loëner and John) which gives tight inner and outer approximations
of a convex set (i.e. X ) by similar ellipsoids (i.e. each of their axises are in the same proportion; the outer
ellipsoid can be obtained by dilating the inner ellipsoid by a factor of n3/2 in all dimensions). By applying
the right linear transformation, we can map these ellipsoids (and X ) to a pair of spheres B(p; r) and B(p;R)
such that

B(p; r) ⊆ TX ⊆ B(p;R)

Note that T preserves the relative proportions of B(p; r) and B(p;R), so we have the bound on R/r is
preserved (i.e. n3/2). We will, at each step, compute the exact closest vector v ∈ TZn to p, the center
of the spheres (for which we use an algorithm for exact CVP); if v ∈ TX , we are done; otherwise if we
take the longest vector of L, bk and partition L into a sequence of parallel hyperplanes spanned by {bi}i 6=k.
We recurse for each hyperplane (i.e. asking of the lattice of integer points on this hyperplane intersects X
anywhere). Note that hyperplanes in question have dimension 1 less than L, so we are reducing the size of
the problem with each recursive call, to a depth of at most n. One of the recursive calls will return a point
if and only if X ∩ Zn 6= ∅.

4-4



The point is that if v is not in X , then it is also not in the inner approximating sphere B(p; r) giving us
a lower bound on ‖v− p‖ (i.e. r); this will turn into a certain lower bound on h the distance between our L-
partitioning parallel hyperplanes. Since at most 2R/h of these hyperplanes intersect our outer approximating
sphere (and thus X ), we get an O(R/r) bound on the number of recursive calls we need to make. Since we
chose B(p; r) and B(p;R) such that R/r is not too large, this gives us an acceptable bound on the number
of recursive calls we make (the key factor in the running time of our algorithm).

This is the spirit of the theorem; now let us be more precise. The main subroutine of our algorithm,
which takes a input a convex body K defined by a matrix A and vector b (i.e. K = {x | Ax ≥ b}), is the
following:

• Compute T, p, r, R such that B(p; r) ⊆ TK ⊆ B(p;R)

• Compute the closest vector in TZn to p; call this vector y. If y ∈ TK, return T−1(y); else

– Let tk be the column of T with the longest `2 norm. Let T ′ be the matrix obtained from removing
tk from T . Let L′ = L(T ).

– For i ∈ {d−R/he, . . . , bR/hc}
∗ Recurse on TK ∩ (L′ + itk); if a y in this set is found, return T−1(y).

• report that K = ∅

The algorithm for IP is this subroutine invoked on A, 0n (where A is the set of constraints defining
the integer program). We can represent, at each stage of our algorithm, the convex body in question as a
(matrix,vector) pair (A, b). Note that it is easy to take intersections of such sets with hyperplanes (if z, c are
the normal and offset of the hyperplane in question, just add the rows z,−z to A, and entries c,−c to b).

We will prove this algorithm runs in the stated time bound. We are granted that we can efficiently
compute T ,p,r and R. Let L be the lattice spanned by the columns of T . If the CVP call on p,L returns
y ∈ TX , we’re done. We want to argue that if y 6∈ TX , then {bi}, the basis for T , contains a long vector bk.
To this end, we start with the following easy claim:

Claim 9. Let B be a lattice. supx∈Rn infy∈L(B) ‖x− y‖ ≤ 1/2
∑
‖bi‖.

Proof. Consider all the points that are closer to the origin than any other y ∈ L(B). We claim this is the
set

S = {Bx‖x ∈ (−1/2, 1/2)n}

i.e. a translation of the fundamental parallelopiped. So it suffices to consider the maximum length of a
vector in S. The result follows immediately by the triangle inequality.

If the closest vector to p in T is not in K, we know it is not in B(p; r), i.e. the inner approximation of
X . And so we have

r ≤ inf
y∈L(B)

‖p− y‖ ≤ 1/2
∑
‖bi‖ ≤ n/2 max ‖bi‖

If bk is the vector of maximum length, we have that

‖bk‖ > 2r/n (3)

Recall the following claim (question 1 of assignment 2 question 1)

Claim 10. Suppose {b1, . . . , bn} is L3 reduced. Fix k and partition L = Span(b1, . . . , bn) into the parallel
hyperplanes

L′ + ibk

For i ∈ N, L′ = Span(b1, . . . , bk−1, bk+1, . . . , bn). Let h be the distane between any pair of adjacent hyper-
planes. Then

h ≥ 2−n(n−1)/4‖bk‖
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Combining this with (3) gives
h ≥ 2−n(n−1)4+1r/n (4)

Since there are clearly 2R/h hyperplanes intersecting B(p;R). We want to show that this number is not too
large.

Claim 11.
2R/h = 2O(n2)

This is immediate from (4) and our starting guarantee that R/r = O(n3/2). So if n is constant, so is
2R/h, and so is the number of recursive calls we make at any stage. This bounds the total number of nodes

in the tree of recursive calls at 2O(n3). What remains is to show that we do no more than polynomial work
at each stage. The only thing to really account for is the CVP call we make: there are algorithms that run
in nO(n) time, which is constant for our purposes here. This concludes the proof of Theorem 8.
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