
Encodings of meet-semilattices using bit-vectors

1 Introduction

We have a meet-semilattice X, with a partial order operation v and a least upper bound

operation t. Our task is to encode the nodes of the lattice using bit-vectors while preserving

the partial order, success or failure of nodes to join, and joins of nodes, as well as keeping the

dimension of the bit-vectors as small as possible. We can rephrase the problem as follows.

Let Y be the power set of some finite set Z = {a1, . . . , am}. Then each element y of Y

corresponds to a bit-vector, with the i-th entry being 1 if ai ∈ y and 0 otherwise. Thus a

map f : X → Y gives a bit-vector encoding of X, and we would like to make |Z| = m small.

We are considering only encodings satisfying the following (for some nonnegative integer λ):

1. (partial order preservation) for u, v ∈ X, u v v iff f(u) ⊇ f(v);

2. (success and failure preservation) for u, v ∈ X, u t v exists iff |f(u) ∩ f(v)| > λ (f(u)

and f(v) overlap in more than λ elements);

3. (join preservation) for u, v, w ∈ X, u t v = w iff f(u) ∩ f(v) = f(w).

2 Is an optimum encoding possible?

2.1 A useful tool: loose block designs

Definition 1. A loose block design (LBD) with parameters n, b, λ; r1, . . . , rn (denoted

as LBD(n, b, λ; r1, . . . , rn)) is a collection of n sets w1, . . . , wn, where

• each wi is a subset of some set C = {c1, . . . , cb}

1

• |wi| = ri ∀i,

• |wl ∩ wm| ≤ λ ∀l 6= m,

If each set is viewed as a bit-vector, the LBD can be considered as a 0-1 matrix, with n

rows and b columns. For each j, we denote kj = |{wi|cj ∈ wi}|, so kj is the number of 1’s

in the j-th column of the matrix. Thus, constructing such an LBD requires finding sets of

required sizes and with pairwise overlap of no more than λ elements.

This is motivated by the well-known concept of a balanced incomplete block design

(BIBD). A BIBD with parameters n, b, r, k, λ (denoted as BIBD(n, b, r, k, λ)) can be viewed

as a collection of sets w1, . . . , wn, where |wi| = r ∀i, |{i|a ∈ wi}| = k ∀a, and |wl ∩ wm| = λ

∀l 6= m (so the overlap between any two sets has size exactly λ). A BIBD is thus a special

case of the LBD.

What makes LBD’s very useful for our problem is that any subset of X whose elements

are pairwise nonjoinable has an image under f that forms an LBD, since by the failure

preservation condition the elements of the image have pairwise overlap of size at most λ. We

will prove some lower bounds on b for an LBD, which will allow us to find a bound for |Z|.

Theorem 1. An LBD(n, b, λ; r1, r2, . . . , rn) with column sizes k1, . . . , kb and s =
∑

i ri sat-

isfies the following inequalities:

λ

(
n

2

)
≥

∑
j

(
kj

2

)
≥ 1

2
b s

b
c[(s mod b) + s − b] (1)

(
b

λ + 1

)
≥

∑
i

(
ri

λ + 1

)
(2)

Proof. 1. Since the total overlap between all pairs (wl, wm) is at most λ
(

n
2

)
, we have

λ

(
n

2

)
≥

∑
l<m

|wl ∩ wm|

=
∑

j

|{(wl, wm)|cj ∈ wl ∩ wm}|

=
∑

j

(
kj

2

)
.

2

Now consider column sizes k′
1, . . . , k

′
b that are as close to equal as possible and in

decreasing order, with
∑

j k′
j =

∑
j kj = s. This is achieved when k′

j = d s
b
e for j ≤

(s mod b) and k′
j = b s

b
c for j > (s mod b). Then (k1, . . . , kb) majorizes (k′

1, . . . , k
′
b).

Since h(x) =
(

x
2

)
is a convex function, by Karamata’s inequality we have

∑
j

(
kj

2

)
=

∑
j

h(kj) ≥
∑

j

h(k′
j)

=
∑

j≤(s mod b)

(
d s

b
e

2

)
+

∑
j>(s mod b)

(
b s

b
c

2

)

= (s mod b)

(
d s

b
e

2

)
+ (b − s mod b)

(
b s

b
c

2

)
= (s mod b)

(
b s

b
c + 1

2

)
+ (b − s mod b)

(
b s

b
c

2

)
[since either s mod b = 0 or d s

b
e = b s

b
c + 1]

= (s mod b)

[(
b s

b
c

2

)
+ b s

b
c
]

+ (b − s mod b)

(
b s

b
c

2

)
= (s mod b)b s

b
c + b

(
b s

b
c

2

)
=

1

2
b s

b
c[2(s mod b) + bb s

b
c − b]

=
1

2
b s

b
c[2(s mod b) + s − (s mod b) − b]

=
1

2
b s

b
c[(s mod b) + s − b]

Thus,

λ

(
n

2

)
≥ 1

2
b s

b
c[(s mod b) + s − b]

There is in fact a simpler result given by Jensen’s inequality, which simplifies to b ≥
s2/(λn(n − 1) + s). However, in practice it turns out to be significantly weaker than

the one given by Karamata’s inequality.

2. Since w1, . . . , wb have pairwise intersections of size at most λ, a set S ⊆ C of size λ + 1

3

will be a subset of at most one of the wi. Thus, the number of sets of size λ + 1 which

are contained in at least one of the wi is

∑
i

(
ri

λ + 1

)
≤ |{S|S ⊂ C, |S| = λ + 1}| =

(
b

λ + 1

)

since the total number of sets of size λ + 1 is
(

b
λ+1

)
.

Theorem 2. Some useful properties of the LBD inequalities are:

1. If (1) is satisfied by (n, b, λ; r1, r2, . . . , rn), then it is satisfied by (n, b+1, λ; r1, r2, . . . , rn),

in other words (1) is a lower bound on b.

2. If (1) is satisfied by (n, b, λ; r1, r2, . . . , rn) with
∑

i ri = s > 0, then it is satisfied by

(n, b, λ; r′1, r
′
2, . . . , r

′
n) with

∑
i r

′
i = s − 1.

3. (2) is also a lower bound on b. If (2) is satisfied by (n, b, λ; r1, r2, . . . , rn), then it is

satisfied by (n′, b, λ; r1, r2, . . . , rn′) for any n′ < n.

We will refer to (1) as the column bound, and (2) as the row bound.

Proof. Let h(x) =
(

x
2

)
as usual.

1. For each b, let k′
1(b), . . . , k

′
b(b) be the column sizes that are as equal as possible and in

decreasing order, and sum to s. Suppose (1) holds for b = B. Then,

λ

(
n

2

)
≥

B∑
j=1

h(k′
j(B)) = h(k′

1(B)) + · · · + h(k′
B(B)) + 0 ≥

B+1∑
j=1

h(k′
j(B + 1))

by Karamata’s inequality, since (k′
1(B), . . . , k′

B(B), 0) majorizes (k′
1(B+1), . . . , k′

B+1(B+

1)). Thus, (1) holds for b = B + 1. (In other words, if we add an empty column, the

inequality continues to hold.)

2. For each s, let k′
1(s), . . . , k

′
b(s) be the column sizes that are as equal as possible and in

decreasing order, and sum to s. Suppose (1) holds for s = S. Then,

(k′
1(S − 1), . . . , k′

b(S − 1)) = (k′
1(S), . . . , k′

p−1(S), k′
p(S) − 1, k′

p+1(S), . . . , k′
b(S))

4

for some p. In other words, all the column sizes for S and S − 1 are the same except

that k′
p(S) = k′

p(S − 1) + 1 for some p. Then,

λ

(
n

2

)
≥

b∑
j=1

h(k′
j(S)) ≥

b∑
j=1

h(k′
j(S − 1))

since h(x) is an increasing function. Thus, (1) holds for s = S − 1.

3. It is obvious that (2) is a lower bound on b, since the left side is an increasing function

of b, and the right side is constant with respect to b. If (2) is satisfied by (n, b, λ;

r1, r2, . . . , rn), then removing rows will decrease the right side while keeping the left

side constant, so the inequality will still hold. (Note that for (1) this is not necessarily

the case, since removing rows decreases both n and s, so both sides of the inequality

decrease.)

The above results will be useful in showing the difficulty of finding an optimal encoding

for X, and obtaining lower bounds on the encoding size.

2.2 Finding an optimal encoding is difficult

Since the image of any pairwise non-joinable subset of X forms an LBD, finding an optimal

encoding for X (one with the smallest possible value of |Z|) is at least as hard as solving an

LBD. Finding an LBD is in turn at least as difficult as solving a BIBD, which is a well-known

hard problem.

Definition 2. BIBD decision problem: For given parameters n, b, r, k, λ, does there exist

a BIBD(n, b, r, k, λ)?

LBD decision problem: For given parameters n, b, λ; r1, . . . , rn, does there exist an

LBD(n, b′, λ; r1, . . . , rn), with b′ ≤ b?

Theorem 3. The BIBD decision problem reduces to the LBD decision problem.

Proof. It is well-known that the following are necessary conditions for a BIBD(n, b, r, k, λ)

to exist: b
(

k
2

)
= λ

(
n
2

)
and nr = bk.

5

Suppose there is no LBD(n, b′, λ; r1 = r2 = · · · = rn = r), where b′ ≤ b. Since a

BIBD(n, b, r, k, λ) would satisfy these constraints, it follows that there is no such BIBD.

Suppose there exists an LBD(n, b′, λ; r1 = r2 = . . . = rn = r) where b′ ≤ b. Let the

column sizes be k1, . . . , kb′ as usual. Then, by (1):

λ

(
n

2

)
≥

∑
j

(
kj

2

)

Define kb′+1 = . . . = kb = 0. Then, since the function h(x) =
(

x
2

)
is convex, Jensen’s

Inequality gives ∑b
j=1 h(kj)

b
≥ h

(∑b
j=1 kj

b

)
= h

(nr

b

)
= h(k), so

∑
j

(
kj

2

)
≥ b

(
k

2

)
with equality iff k1 = · · · = kb = k.

Putting the inequalities together,

λ

(
n

2

)
≥

∑
j

(
kj

2

)
≥ b

(
k

2

)
.

However, since from the BIBD conditions b
(

k
2

)
= λ

(
n
2

)
, we must have equality everywhere.

Thus,

k1 = . . . = kb = k, b′ = b,

λ

(
n

2

)
=

∑
j

(
kj

2

)
(so every pair of rows has overlap exactly λ). Thus the given LBD is the required BIBD.

We do not have a proof that the BIBD decision problem is NP-complete, but it is widely

considered difficult. In particular, there is an important open problem in combinatorics that

reduces to it, namely the existence of a finite projective plane of order 12, which is equivalent

to the existence of a BIBD(157, 157, 13, 13, 1)1. The existence of a finite projective plane of

order 10 (a BIBD(111, 111, 11, 11, 1)) was disproven after 2000 hours of computation on a

1Lindner, C. C. and Rodger, C. A. “Design Theory”. Boca Raton, FL: CRC Press, 1997.

6

Cray computer2. A question related to the BIBD decision problem - whether it is possible to

construct a BIBD from a given partial BIBD (with several rows, or several columns, already

filled in) - has been proven NP-complete3. This shows that we cannot hope to find a fast

optimal algorithm for assigning the bit-vectors, although there is still the possibility of finding

one that performs near optimal. We see that it is permissible to use something that doesn’t

always come up with an optimal solution, e.g. a general constraint solver.

3 Lower bounds

3.1 An algorithm for computing a lower bound for |Z|

We perform a topological sort of the semilattice X, and go through it in reverse order (from

maximal nodes to bottom), recursively computing, for each node u, a lower bound l(u) on

the size of f(u). If u has no successors, we set the lower bound to be l(u) = λ + 1, since

u = u t u and so |f(u)| > λ. Otherwise, we consider the set D = {v|v w u}. All of these

nodes are after u in the topological sort, so by the time we consider u, l(v) has already been

computed for every v ∈ D.

Consider a pairwise non-joinable subset T = {t1, . . . , tn} of D. Then ∀l,m |f(tl) ∩
f(tm)| ≤ λ, so f(t1), . . . , f(tn) form an LBD(n, b, λ; r1, . . . , rn), with ri ≥ |l(ti)| ∀i. The

LBD inequalities give lower bounds on b given row sizes l(t1), . . . , l(tn): let c(T) and r(T) be

the smallest values of b that satisfy the column bound and row bound respectively, and let

l(T) = max(c(T), r(T)). Since ∀v ∈ D f(v) ⊆ f(u),
⋃

i f(ti) ⊆ f(u), so |f(u)| ≥ l(T). Thus,

we can set

l(u) = max
T⊆D

l(T),

and compute lower bounds for all nodes in X in this way.

In practice, it is usually not possible to go through all non-joinable subsets T of D, since

there are tremendously many of them. We instead look at a smaller number of subsets that

give relatively strong lower bounds.

Call a non-joinable subset maximal if it is not contained in any larger non-joinable subset.

2Lam, C. W. H. “The Search for a Finite Projective Plane of Order 10.” American Mathematical Monthly
98, 305-318, 1991.

3Kaski, P. and Ostergard, P. R. J. “Classification Algorithms for Codes and Designs”. Springer, 2006.

7

Then any non-joinable subset of D is contained in a maximal subset M . We define the n-th

suffix of M as the n-element subset S = {s1, . . . , sn} of M that maximizes
∑

i l(si). The

n-th suffix is obtained by dropping the element of M with the smallest lower bound value

until n elements are left. In our algorithm, we will only compute lower bounds for maximal

subsets of D and their suffixes.

Let T be any non-joinable subset of D, |T | = n. Let M be the maximal subset T is

contained in, and let S be the n-th suffix of M . By Theorem 2, the r(T) ≤ r(M) (by part

3), and c(T) ≤ c(S) (by part 2). Then,

l(T) = max(c(T), r(T))

≤ max(c(S), r(M))

≤ max(c(S), r(S), c(M), r(M))

= max(l(S), l(M))

Thus, considering only maximal subsets and their suffixes is enough to compute the best lower

bound. Unfortunately, this optimization is not sufficient to make the algorithm feasible - the

number of relevant subsets is usually still too large. Thus, we decided to only consider subsets

of the set of joins of successors of a, instead of using all of D. This gives a reasonable number

of subsets to consider. Below we show the resulting lower bounds for the English Resource

Grammar (ERG).

3.2 Lower bound results for the English Resource Grammar (ERG)

λ 0 1 2 3 4 5 6 7

bound 2039 540 429 388 366 353 342 337

λ 8 9 10 11 12 13 14 15-20

bound 333 329 326 323 319 315 313 311

λ 21-26 27-29 30-79 80 81 82 83 84

bound 310 309 308 309 310 311 312 313

8

4 Encoding techniques

4.1 Componentization of the lattice

Definition 3. A vertex is a choke-vertex if there are no paths in the Hasse diagram from

any of its successors to any of its predecessors that don’t pass through the vertex. (Note that

by this definition, ⊥, as well as the maximal nodes of X, are choke-vertices.) Equivalently, a

vertex is a choke-vertex if there’s no node with which it’s joinable but not comparable.

We can use these choke-vertices to break the semilattice into edge-disjoint components

such that:

• each component is a meet-semilattice, just like our semilattice X itself;

• within each component, any choke-vertex must be either the bottom node or a maximal

node of the component;

• the components form a tree;

• each vertex is in exactly one component if it’s not a choke-vertex, and two components

(one above, whose bottom it is, and one below) if it is a choke-vertex (unless the node

is ⊥, which only has a component above);

• given λ, optimally encoding X is equivalent to optimally encoding each component,

going down the tree, in such a way that for each choke-vertex, the encoding size below

is at least the encoding size above.

The way to construct this is as follows: for each node, let the bottom of its component (the

component below, if it’s a choke-vertex) be the largest choke-vertex below it that occurs on

every path from the root to this node. For each edge, then, the component is the unique one

that the endpoints of the edge are both contained in. This is quite useful because now the

semilattice can be encoded one component at a time. For some special types of components

we have techniques that help encode them efficiently, and sometimes optimally.

9

4.2 Special cases

4.2.1 Component with a top element

If the component C has a top, i.e. a unique maximal node, we can use the classical Ait-Kaci

encoding for λ = 0 to achieve an optimal encoding for the component.

Definition 4. Consider the set {x1, . . . , xm} of meet-irreducible nodes in C, i.e. the nodes

that have at most one successor. Then g(x) = {i|xi w x} is an m-dimensional encoding of

C, called the Ait-Kaci encoding.

We generalize this encoding to the case λ ≥ 0 by creating λ new bits and adding them

to each node in the encoding. Letting S be the set of those new bits, we now have g(x) =

{i|xi w x} ∪ S.

Theorem 4. The generalized Ait-Kaci encoding satisfies the encoding rules.

Proof. 1. (partial order preservation) If u v v, then xi w v ⇒ xi w u, so

g(v) = {i|xi w v} ∪ S ⊆ {i|xi w u} ∪ S = g(u).

2. (success and failure preservation) If ut v = w exists, then there exists a maximal node

xj w w, so

|g(u) ∩ g(v)| = |S ∪ ({i|xi w u} ∩ {i|xi w v})| ≥ |S ∪ {j}| = λ + 1.

If u t v does not exist, then there is no xj such that xj w u and xj w v, so

|g(u) ∩ g(v)| = |S ∪ ({i|xi w u} ∩ {i|xi w v})| = |S ∪ ∅| = |S| = λ.

In particular, since u = u t u, |g(u)| = |g(u) ∩ g(u)| > λ.

3. (join preservation) If u t v = w, then

g(u) ∩ g(v) = S ∪ ({i|xi w u} ∩ {i|xi w v}) = S ∪ {i|xi w w} = g(w).

10

If g(u) ∩ g(v) = g(w), then u t v = w′ exists, since otherwise we would have |g(w)| =

|g(u) ∩ g(v)| ≤ λ. Then {i|xi w u} ∩ {i|xi w v} = {i|xi w w′}, so g(w) = g(w′). We

will prove that the Ait-Kaci encoding is injective, and thus w = w′.

Suppose that {x|x w w} 6⊆ {x|x w w′}. Let z be a maximal element of {x|x w w} \
{x|x w w′}, in other words all successors of z are in {x|x w w′}. If z is meet-irreducible,

then z = xj with j ∈ g(w) and j 6∈ g(w′), so g(w) 6= g(w′), contradiction. Thus, z has

at least two successors z1 and z2. Since z1 w w′ and z2 w w′, we have z = z1 ∩ z2 w w′

by meet-semilattice properties. However, by assumption z 6∈ {x|x w w′}, contradiction.

Similarly, {x|x w w′} ⊆ {x|x w w}. Thus, {x|x w w} = {x|x w w′}, so w = w′ = utv.

Theorem 5. The Ait-Kaci encoding is optimal for λ = 0, and the generalized Ait-Kaci

encoding is optimal if C has a top element.

Proof. Consider an arbitrary encoding h of C for λ = 0 that satisfies the encoding rules.

For each meet-irreducible node u, we choose a bit βu in its encoding that is not present in

the encodings of its successors. If u is maximal, then it has no successors, so any bit of u

satisfies this. If u has a successor u′, then h(u) = h(u′) violates join preservation, so there

is a bit contained in h(u) but not in h(u′). Suppose that for two distinct meet-irreducible

nodes u and v, we have βu = βv. Then |h(u)∩ h(v)| > 0, so by the encoding rules ut v = w

exists, and βu ∈ h(w). Since u and v are joinable, one of them has a successor, and this

successor contains βu, contradiction. Therefore, the encoding h has at least m bits, where m

is the number of meet-irreducible nodes in C. Since the Ait-Kaci encoding has m bits, it is

optimal.

If C has a top node, the encodings of all the nodes in C must contain the bits of the

top node. Removing λ of these bits from all the nodes in C yields an encoding for λ = 0.

Thus, if an encoding of C for λ > 0 has less than m + λ bits, then the encoding obtained

by removing λ common bits from it will have less than m bits, and thus better than the

optimum for λ = 0. Therefore, the optimal encoding for λ > 0 has m + λ bits, and so the

generalized Ait-Kaci encoding is optimal.

When the component doesn’t have a top, the Ait-Kaci encoding is not optimal, but can

be used as a fallback if the constraint solver fails.

11

4.2.2 Component consisting of a node and its successor set A∪B where no node

in A is joinable with any node in B

Suppose the optimal encoding for this component has b bits. A valid encoding of the com-

ponent is given by optimally encoding A using bA bits, and then optimally encoding B using

bB bits where λ of them have been used for A and the rest are new. This preserves the

non-joinability of nodes in A and nodes in B, since only λ bits are shared. This encoding

uses bA +bB −λ bits, and the number of extra bits is bA +bB −λ−b ≤ bB −λ, since obviously

bA ≤ b.

This bound is fairly tight if we choose B that has a compact encoding, i.e. with bB small.

The number of nodes in B can still be large, however. This means that even if the component

is intractable, it might be possible to split it into A and B that are both encodable by a

constraint solver, and still lose only a few bits.

4.3 Unary leaf removal

4.3.1 Algorithm

Definition 5. A unary leaf (UL) is a node with no successors and only one predecessor, i.e.

a join-irreducible maximal node. The encoding of a leaf always has size λ + 1.

For any component, we can remove the ULs, encode the component without them, and

then augment the encoding to fit them. This is very useful, since it is often the case that an

originally intractable component can be encoded using a constraint solver once the ULs are

removed. Then, we can easily add the ULs to the encoding, because a UL can be assigned

any (λ + 1)-tuple of its predecessor’s bits that has not yet been used for another successor of

its predecessor, while satisfying the encoding rules.

The algorithm goes through the component from top to bottom, and for each node it

adds in the UL successors of that node, assigning a free (λ + 1)-tuple of bits to each UL.

Whenever all the possible (λ + 1)-tuples are taken, it increments the node’s encoding size

(by adding a bit to the encodings of all its ancestors). Once a new bit is added, any (λ + 1)-

tuple containing this bit is free, so all these tuples can be used to encode ULs. We continue

incrementing the encoding size of the node until all its UL successors are encoded.

12

4.3.2 Distance from the optimum

While we do not have bounds of the number of extra bits for an entire component, we have

bounds for the number of extra bits for a single node, given the encodings of its non-UL

successors (some of which might be joinable). Let u be the number of UL successors to be

added to this node, and let b̃ be the size of the optimal encoding for the ULs only, so b̃ is the

smallest number such that
(

b̃
λ+1

)
≥ u.

Let the encoding of the non-ULs have b′ bits, and the optimal encoding of the non-ULs

have b′∗ bits, where b′ ≤ b′∗ + x, so the non-UL encoding is at most x bits away from the

optimum. Let the encoding given by our method have b bits, and the optimal encoding of

all the successors have b∗ bits. We are interested in the distance of our encoding from the

optimal encoding for all the successors, i.e. b − b∗.

Theorem 6. The number of extra bits in our encoding satisfies

b − b∗ ≤ min(

⌈
u/

(
b′

λ

)⌉
+ x, b̃ − λ + x)

Proof. 1. Let r be the number of free (λ+1)-tuples in the encoding of the non-ULs. Then,

r +

(
b′

λ

)
+

(
b′ + 1

λ

)
+ · · · +

(
b − 1

λ

)
≥ u (3)

If b > b′, then since b is the smallest number such that (3) holds, we have

u > r +

(
b′

λ

)
+

(
b′ + 1

λ

)
+ · · · +

(
b − 2

λ

)
≥ 0 +

b−2∑
l=b′

(
l

λ

)

≥
b−2∑
l=b′

(
b′

λ

)
= (b − b′ − 1)

(
b′

λ

)
.

Thus, b− b′ < u/
(

b′

λ

)
+1. Since b− b′ is an integer, b− b′ ≤

⌈
u/

(
b′

λ

)⌉
. This also trivially

13

holds when b = b′. Thus, b − b∗ ≤ b − b′∗ ≤ b − b′ + x ≤
⌈
u/

(
b′

λ

)⌉
+ x.

2. Consider the optimal encoding for the u ULs by themselves, with b̃ bits. We combine

this encoding with the b′-bit encoding of the non-ULs, with an overlap of λ bits between

the two encodings. The resulting encoding of all the successors has b′+ b̃−λ bits. Since

the b-bit encoding given by our method actually does no worse than this one, fitting

the ULs at least as well into the non-UL encoding, b ≤ b′ + b̃− λ. Since b′ ≤ b∗ + x, we

have b − b∗ ≤ b̃ − λ + x.

A special case occurs when all the non-UL successors are pairwise non-joinable, so their

encodings have overlap at most λ. Let the encoding sizes be r1, . . . , rn. Then a (λ + 1)-tuple

can be contained in at most one of them, so the number of free (λ + 1)-tuples is

r =

(
b′

λ + 1

)
−

∑
i

(
ri

λ + 1

)
Thus, r depends only on the encoding sizes of the non-ULs, not on the encodings them-

selves, so r is fixed. Let bu be the smallest value of b that satisfies (3). Then b = max(b′, bu),

while b∗ ≥ max(b′∗, bu). Since taking the optimal non-UL encoding with b′∗ bits and adding

the u ULs gives a valid encoding for all the successors with max(b′∗, bu) bits, we must have

b∗ = max(b′∗, bu). Then, b − b∗ ≤ b′ − b′∗ = x. Usually the distance will be much less, for

example if b′ ≤ bu and b′∗ ≤ bu then b = b∗ = bu, so the distance is 0. Thus our method in

fact improves on the original distance from the optimum.

4.3.3 Analysis

Unfortunately, it is not clear how to obtain a bound for the distance of a whole component’s

encoding from the optimum by using these bounds for each node in the component. This is

because these bounds measure the distance of the encoding of this node’s successors from the

optimal encoding of this node’s successors, given a particular set of encoding sizes. However,

in the optimal encoding of the component, the encoding sizes of these successors might be

different than those given by our method. In other words, the number of extra bits per node

14

depends on how well its successors have been encoded, so it is not possible to consider each

node independently and simply add up the bounds to obtain the component bound.

The good news is that these bounds are quite weak, so in practice the algorithm usually

does much better. Observe that neither of the bounds takes into account the free (λ + 1)-

tuples available before adding more bits, and there is usually quite a substantial number of

those. This is especially true if some of the node’s successors have already been augmented

with extra bits by the algorithm, because then there are some bits used by only one of the

successors, thus generating a lot of free (λ + 1)-tuples. In practice, the algorithm loses at

most 0-1 bits per component, and in fact usually decreases the original distance from the

optimum.

4.4 Splitting a component

It is sometimes the case that removing the ULs is not enough to make a component encodable

by a constraint solver. The following is an idea for splitting the component into two pieces,

encoding them separately, and then combining the encodings. We don’t have bounds on the

distance of the resulting encoding from the optimum, but if this technique makes some large

intractable components encodable, this will already be good progress. The technique has not

yet been tested on the ERG, so its effectiveness is unknown.

Let C be our component, and let Dx = {z ∈ C|z w x}. Let u be the bottom node

of C, and let v ∈ C. Let S be the set of nodes in Dv that are successors of nodes in

Du \ Dv. Consider the case when S is part of a chain starting at v, of the following form:

(v = w0) → w1 → · · · → wk. Then it is possible to construct an encoding for Dv and an

encoding for T = {Du \ Dv} ∪ S, and combine them to obtain an encoding for Du = C.

4.4.1 Constructing the encoding

Suppose we have an encoding g for Dv that imposes a size ci on each node wi ∈ S (observe

that i < j ⇒ ci > cj). We now need an encoding h for T that satisfies h(wi) = c′i ≥ ci. Since

only wk is a maximal node in T whose size can be specified, for w0, . . . , wk−1 we create a set

Q = {q1, . . . , qk} of virtual nodes such that qi+1 is a successor of wi. We specify the size of

qi+1 as di+1 = ci − ci+1 + λ, which ensures that c′i ≥ ci, as follows by induction. Since we

15

have enforced that c′k ≥ ck, and assuming c′i+1 ≥ ci+1, we have that

c′i ≥ c′i+1 + di+1 − λ = c′i+1 + (ci − ci+1 + λ) − λ = c′i+1 − ci+1 + ci ≥ ci.

In fact, we have something stronger, namely

c′i − ci ≥ (c′i+1 − ci+1 + ci) − ci = c′i+1 − ci+1.

Now we combine the encodings g and h to obtain an encoding f . Suppose that g(wi) =

{β1, . . . , βci
}. This is valid, since it satisfies g(wi) ⊇ g(wi+1) and |g(wi)| = ci. To make each

wi have size c′i, we consider new bits β′
1, . . . , β

′
c′0−c0

, and add β′
1, . . . , β

′
c′i−ci

to g(wi). Since, for

i < k, c′i − ci ≥ c′i+1 − ci+1, we still have g(wi) ⊇ g(wi+1). Now we propagate the extra bits

into Dv, adding all the extra bits of wi to every node x ∈ Dv, x v wi. The result is clearly

a working encoding of Dv where wi has c′i bits, so these bits can be matched up to the bits

used for the wi in the encoding of T . In the end, the bits of Dv are a subset of the bits of T ,

since all the bits of v were matched to bits of T .

4.4.2 Why the encoding is valid

Theorem 7. The encoding f of C satisfies the encoding rules.

Proof. 1. Partial order is preserved within T because the encoding of T has not changed,

and within Dv because the bits added to each wi were propagated to its ancestors. Now

let x ∈ T \ S, y ∈ Dv \ S. Since x 6∈ Dv, we cannot have y v x, so assume x v y.

Then any path from x to y in the Hasse diagram must pass through an element wi of

S. Then, since the encoding is valid within T and Dv, f(x) ⊇ f(wi) ⊇ f(y).

2. Similarly to the above, success and failure are preserved within T and within Dv. Let

x ∈ T \ S, y ∈ Dv \ S. Suppose z = x t y exists. Clearly, since y ∈ Dv, we have

z ∈ Dv. Thus a path from x to z must pass through some wi ∈ S, so wi t y exists.

Then, since the encoding is valid within Dv, |f(wi) ∩ f(y)| ≥ λ. Since f(x) ⊇ f(wi),

|f(x) ∩ f(y)| ≥ λ.

Now suppose |f(x)∩f(y)| ≥ λ. Since y w v, f(v) ⊇ f(x)∩f(y). Thus |f(x)∩f(v)| ≥ λ,

and since the encoding is valid within T , it must be that x t v exists. Then clearly

16

x t v = wi for some i, and f(wi) = f(x) ∩ f(v) ⊇ f(x) ∩ f(y), so |f(wi) ∩ f(y)| ⊇
|f(x) ∩ f(y)| ≥ λ. Thus, wi t y exists, so since x v wi, x t y exists.

3. Similarly to the above, joins are preserved within T and within Dv. Let x ∈ T \ S, y ∈
Dv\S. Suppose z = xty, so z ∈ Dv\S (if z ∈ S, then y ∈ S). Consider a path from x to

z passing through a node wi ∈ S, and let xtv = wj ∈ S. Since wj v wi v z, wjty v z.

However, since wj t y w xt y = z, we must have wj t y = z. Then, since the encoding

is valid within T and Dv, f(x) ∩ f(y) = f(x) ∩ f(v) ∩ f(y) = f(wj) ∩ f(y) = f(z).

Now suppose f(x) ∩ f(y) = f(z). Then x t y exists, otherwise we would have |f(z)| =

|f(x) ∩ f(y)| ≤ λ. Thus x t v exists, and clearly x t v = wi for some i. Then

f(z) = f(x) ∩ f(y) = f(x) ∩ f(v) ∩ f(y) = f(wi) ∩ f(y). If wi t y = z′, then

f(z) = f(wi) ∩ f(y) = f(z′) ⊆ f(v), so z w v, and thus z ∈ Dv. Then since the

encoding is valid within Dv, f(z) = f(wi)∩f(y) implies wity = z. Thus, xty v z. A

path from x to xt y pases through wj ∈ S. Since wi v wj v xt y, z = wi t y v xt y.

Thus we must have z = x t y.

17

