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One of the key features that facilitates learning a seemingly complex new task in humans is their

ability to recognize the task as being composed out of simpler tasks, often ones that they might be

already familiar with. It appears that this knack of identifying known constituent tasks and visual-

izing how they can be put together to perform the new task greatly speeds up learning. Recognizing

familiar parts and how they seem to have been put together plays a crucial role in our appreciation

and understanding of activities and things we run into in our everyday life. Identifying the folds

towards an origami, recognizing geometric forms that come to shape a building1, planning travel

from point A to point B in a city you are only getting to know the locales of, even learning to cook a

new dish you just happen to take a liking to, learning to hit a stroke in tennis or move according to

a choreographed dance move or deconstructing music so as to play it yourself- inspite of their differ-

ences all involve recognizing constituent parts(the folds, shapes, blocks, routes connecting junctions,

recipes within, body movements and notes[1] respectively) and figuring out how to compose them

to learn to perform the task or create the desired object. May be on a more interesting note, any

form of abstract reasoning or envisioning why a certain theorem or statement has to hold involves

being able to see parts of it and how they can cause or interact to make the claim hold. It appears,

greater our ability to deconstruct a new concept interms of the ones we know- the easier it is for us

to learn it.

In concurrence with above observations we recognize following characteristics as necessary aspects

of human intelligence. The ability to

• learn new concepts and tasks.

• compose efficiently what one has learnt already to reason or create something of greater

value thus exploiting the expressive power of a finite skill set.

• actively seek what to learn and recognize useful subgoals towards building cognitive plans

for achieving a goal.

One can argue intelligence manifests as proclivity for concise yet accurate composed explanations

and executions in understanding and interacting with the environment. Arguably, this also resonates

with one of the principles of neural design which is that new synaptic connections and neurons come

at a material expense [2].

The advent of deep-learning has provided us with a great means of learning function approximators

wherever we have a good amount of data and some clever means to take advantage of symmetries
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1or how individual blocks have been put together for a Lego work.
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and invariances within the tasks, to the point that machines are now better2 than us at some of

them. Lets think of these as individual functions that we know or have already perfected under

supervision. The ability to learn composed tasks over such individual tasks can be very useful. We

wish to abstract out this problem in the following manner so as to capture the main challenges of

recognizing and learning compositions in the context of a machine learning to perform a new task.

Assume a machineM(henceforth referred to as we) has knowledge of a collection of functions A,

these are synonymous with tasks that we have mastery over and can bring to recall or reproduce

them at will. Suppose M is presented with examples of input output instances (x, y = h(x)) of a

composed function h, constructed from constituents of A. Some questions of interest that we seek

to explore are the following. When presented with instances (x, y) of h, and we seek to learn h,

• Can we recognize underlying functions involved and how they have been put together, the

structure of the composition h ? For example h could be f ◦ g ◦ q for some f, g, q ∈ A
• Can we learn h in a much fewer number of samples as opposed to the case when we have

not seen the underlying functions before ? The innate bias we as a learner can exploit here

comes from the collection of functions we already happen to know and also knowledge of

the underlying structure. It is easy to give a counting argument for why this is indeed the

case in the PAC-learning framework. If the composition structure is fixed and has s nodes,

the number of possible functions is at most |A|s giving an upper bound of O(s log |A|) on

the VC-dimension of the concept class of composed functions associated with the structure.

This already gives an indication towards sample complexity savings arising from limited

possibilities as compared to a general function on l nodes where l is the number of leaf nodes

in the composition structure(which is θ(s) for a tree like composition).3 In contrast the

expected number of samples required for arbitrary functions on l inputs is exponential.

While this observation in the worst case sense is somewhat pleasing it appears theres a

lot more one can try. It would be nice to have a learning algorithm that consciously takes

advantage of the compositional structure as is apparently the case with human learning.

While the above reasoning already upper bounds the sample complexity of learning a

composed concept, another interesting aspect to consider is the computational complexity

of learning a composed concept. Given a concept class A and the supposed structure s what

is the computational complexity of learning a function from the concept class As ? If the

class A say constitutes OR, AND, NOT and composition structure is a fixed complete4 tree

one can show that learning the concept is NP-hard in the sense that we can’t expect to

recognize the composition or learn the concept in time polynomial in s ≈ 2h ≈ n, the size

of the structure and |A|, unless P = NP. This leads to a very interesting question, is there

2albeit in different ways and with their own frailties.
3such savings for a path-like composition of functions that are permutations on a single input do not follow

from this argument, since for example one can compose a polynomial number of transpositions as in bubble sort to

construct arbitrary permutations, this is primarily since polysize composition of transpositions is universal in the

space of permutations unlike say polysize tree like composition of AND, OR in the space of all boolean functions.
4or nearly so to allow for NOTs at leaves
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Figure 1. A figure easier described as one formed by 3 overlapping circles than

perhaps in any other way- a simple representation interms of useful primitive ob-

jects.

a concept class A and a composition structure s such that the composed concepts possible

are significantly expressive enough in some sense but at the same time can be learn’t in a

computationally efficient manner ?

• On a more involved note, in doing so, can we learn to compose in an efficient way ? By this

I mean having come to know the structure, amongst the multitude ways one can choose to

compute h can the machine M come up with an algorithm that does it in a sensible way

(for example using its internal memory efficiently)?

The primary motivation of capturing how humans seem to generalize easily from very few examples

but machines seem to require a lot of data has inspired very interesting works from researchers

with focus on compositional learning[3, 4, 5]. Lake[6] recognizes that human level concept learning

might require developing- an ability to compose, recognize underlying causality and the ability of

learning to learn while leveraging on these to develop rich representations of new concepts. In [4]

Lake et al. propose a model that classifies, parses, and recreates handwritten characters after having

observed them as being built by bringing together simpler curves5. In [5] Lake and Baroni investigate

the ability of models to generalize to compositional skills and propose the SCAN domain wherein

compositional navigation commands are to be comprehended having learnt some basic commands

and some combinations of them. Very recently there has been significant progress [8] reported on

this language task by means of separating syntax and semantics and using the syntactic attention as

a means for providing weighted representations in the semantics. A line of thought close to what we

are curious about in the problems we mention appears in the work of Liska et al. [9]. They introduce

the lookup table composition domain as a setup to test compositional behaviour and investigate how

RNN like models perform. Other works like [10] appear to motivate a similar problem but what

they actually do seems geared more towards problems like capturing evolving dynamics of a physical

system or replicating human ability to estimate immediate future state of physical surroundings

from our ingrained understanding of physics.

Before we proceed further we mention upfront what appear to be the main challenges. Dis-

covering a useful collection of primitives that constitute A which are suitable and advantageous for

5please refer [7] for the latest on Omniglot
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the domain is actually one of the first challenges (see fig.1)6. Identifying the structure of composi-

tion or how these primitives are composed to perform the task at hand or construct the concept at

hand is another important challenge. These challenges correspond to identifying base policies and

hierarchical composition structure in the parlance of reinforcement learning. Both of these appear

to be hard problems where domain knowledge might be of special help. In the next few sections we

assume that both- A and hints to an underlying (task graph)structure are given to us and discuss

what can potentially be done. Towards the end we touch upon some early thoughts on tackling the

structure problem.

1. Problem Definition

Let A be a collection of functions. Let h be an unknown function composed using some of the

constituent functions picked from A. We are given a set of input ouput instances (x, y) of the

function h so as to learn it.

Let G be a rooted directed acyclic graph representing the function composition structure of h in

the following natural sense. Each node u ∈ G is labeled by some function fu ∈ A. The in-degree of

a node is the same as the arity of the function corresponding to it. A given input x assigns values to

every leaf in the dag G, the outgoing edges from a node take the value of the node, an internal node

in G evaluates to the value of the function at that node at inputs given by its incoming edges. The

value of G, i.e the value of the composition at input x is the value of its root. A graph G represents

the composition structure for a function h if the root evaluates to h(x) at every input x. Given a

set of examples (x, y) for h, our goal is to find the composition structure of h.

To make things more precise one can imagine A to be some concept class, for example one that

summarizes our knowledge of different transformations that can act on an object of interest. In

order to get a handle, for the time being lets think of it as represented by some subset of the set of

multi-variate permutations, f : [k]t → [k] so that the output is a bijection in every individual input

coordinate when the rest of the coordinates are fixed. We hope the choice of these functions would

let us capture certain canonical ways of computing a composed function leveraging the compositional

structure.7 Note that in real life the collection A which represents our custom prior knowledge may

contain multitude of very special functions representative of the task domain unlike permutations.

As an example consider the kind of tasks that we see in aptitude tests, involving a class of functions

6Valiant [11, 12] posits a collection of such basic primitives for cortical computation. As a computational device

learns more composed tasks it might be easier to express a new task in terms of such newly learnt ones, funnily while

this might be efficient in the sense of Kolmogorov complexity, not necessarily so in the computational complexity

sense
7The intention here is that, since the value of the function depends in an equally significant manner on each of its

inputs one has to evaluate the individual sub-functions corresponding to the arguments on the way towards computing

the function composition, avoiding devious short-cuts for computing h. A word of caution is due here since there are

issues of ambiguity associated with availability of multiple representations as a result of having alternate complete

basis functions as a subset of A, like in the case of (and, or, not) gates vs nand gate for boolean functions, we really

want to get around such considerations since we are aiming to capture something else here.
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Figure 2. This figure illustrates an instance of function composition that uses the

same binary funcion f(p1, p2) everywhere: rotate the first figure p1 90◦ clockwise

and superimpose the second input figure p2 on it.

that act on geometric figures by applying transformations like rotations and superpositions and we

are expected to predict the underlying patterns. See figure:2 for one such composition.

1.1. Pebbling procedures. Consider the following example of a composition structure, a complete

binary tree where internal nodes are binary functions that receive the value of their children as

arguments and the composition evaluates to the value of the root as shown in figure:3 . Pebbling

procedures [13] capture various ways of solving a function composition problem h and serve as a

good proxy for understanding memory in a class of algorithms solving a problem. The simplest of

these is black pebbling which proceeds according to the following rules.

• We can place a pebble on any leaf.

• If both children of a node u are pebbled, we can slide one of these pebbles to node u.

• Can remove a pebble at any time.

An optimal pebbling scheme is one which uses the least number of pebbles on the way towards

computing the root. Figure:3 shows such an example. For a given composition structure an optimal

black pebbling scheme can be seen to resemble or identified with the canonical fashion in which one

would compute h. Such an optimal pebbling scheme is exactly what we wish to build an attention

mechanism around so that our machine M learns to compute the composition h.

1.2. A framework for learning to recognize compositions. Now we present a tentative frame-

work for a learning scheme that learns a composition built from functions coming from a collection

A. At this point we do not yet have a good understanding of how to approach this problem when the

underlying structure itself is not available for someone teaching the machine M and if the machine

were to infer this on its own8. We wish to think of this as a setting where someone pro-actively hints

at the underlying structure. In the example in figure:2, this might be taken to be synonymous to

8this appears to be a hard problem in the sense that in general one cannot in any obviously efficient way infer even

if there exists(purely from complexity theoretic considerations) a composition structure of certain size s that computes

h using functions from A unless the collection A is very special and by some means we know how to capture this

special-ness via let’s say a promise of unambiguous representation. Nevertheless, there are some initial ideas worth

exploring discussed in section.1.3
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Figure 3. This figure illustrates a black pebbling of h = f ◦g where f, g : [k]2 → [k]

using 3 pebbles(we skip some obvious intermediate steps). Configurations move

from left to right in the first row and then left to right in the second respectively.

suggesting at a step in the computation- which two particular pictures(potentially composite them-

selves) should one look at and the machine figures out what to do with them i.e how to put them

together. This places this method in between the two extremes of a complete hands-off approach as

is the case with many supervised learning methods which seem to do well when there is a lot of data

available and a completely hands-on approach where minute details are coded into the method.

In this framework it appears that we need individual parts which can perform the following in

the order mentioned. Throughout - the machine has to have some kind of running memory vector,

think of this as the amount of active working memory coming form its past computation history

which we desire to be not too large. The machine needs to be able to

• At the beginning of each step compute which parts(pebbles) of the history vector of previous

computations to emphasize or pay attention to in the next step along with the input, which

is the value of next leaf in the dag. (An example of nodes to pay attention to at a particular

step is illustrated by nodes circled in blue in fig:3)

• Suggest which function f ∈ A is to be used at the current step.

• Compute which part of our history of computations in memory can be summarized to be

remembered succinctly and which part of it can be forgotten from now on after having used

the sub-function f in the previous step.

We would like our framework to achieve the 3 goals presented at the beginning- learn the compo-

sition, to manage to do so having seen relatively much smaller number of examples(as compared to

what we expect from a function of that arity) and ideally also learn to compose memories efficiently

along the way.

Before we proceed lets briefly view the problem of learning to perform tasks in the light of what

we know about how humans actually manage to perform tasks. Motivation for coming up with a

framework like the one we suggest also derives from the well known role of Hippocampus as memory

for holding cognitive maps while performing tasks like navigation [14](but not limited to navigation
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alone[15]). The hippocampus is known to be essential for forming cohesive memories of individ-

ual events using information from different input streams(visual, hearing, olfaction and information

about position) coming from the cortex [16, 17, 18]. Then a sort of associative augmentation is

achieved by connections from hippocampus back to pre-frontal cortex[16] after having built a tenta-

tive summary from individual streams and this seems crucial in how we perceive and respond to a

situation. It has also been posited[19] that the Hippocampus serves as a predictive map where the

activation of place cells correspond to prediction of future positions or a weighted representation of

current state in terms of expected future states. When performing a certain task these three aspects

seem to provide a fruitful way to think of 1) setting out to plan, 2) perceive and summarize in real-

time and 3) anticipate /predict for the future. A partially resolved composition structure on the

way towards performing a task in a framework like the one we described can be seen to correspond

to a form of cognitive map of the task at hand while the immediate entities that deserve attention

correspond to predictions of future entities to lay emphasis on. I am not aware of how much we

know in terms of how we organize things in our memory (in so far as neuroscience literature goes)

when we execute composed tasks requiring us to summon different individual skills to be performed

over a larger window of time versus at a swift pace, for example when we plan for a rally pattern

while playing squash or tennis, or at an even smaller granularity when we make a complex dance

move9. Although we may not seek a complete parallel to the schematics in the brain it helps to have

a guiding example and know more about how we learn and perform complex composed tasks and

what happens in important areas like the hippocampus as we perceive the reality and organize it as

we go on to execute them.

A few remarks are due for the astute reader. If the composition structure is known the attention

mechanism or pebbling procedure can be first taught to the machine in isolation in a manner oblivious

of what the underlying functions are and then the machine can proceed to learn them. Also, the way

we defined our problem doesn’t appear to immediately lend to some real life examples mentioned

in the beginning since each new instance of an example can potentially come with its own structure

unlike in our case where we assume new examples are generated via the same structure acting on

an input as in the case of the problem in fig:2. If we think about it, it appears one of the common

ways we observe composition in real-life examples is in the sense of object composition i.e there is

some way of assembling individual things together(like in Lego or hand-written omniglot characters

of [4]) and the manner we seem to be able to grasp it is when we first observe the object we seem to

sort of work our way back from it to see what the constituent parts are and then imagine how these

individual parts came to be from things we know. Whenever we are able to recognize and vizualize

these pieces going backwards we seem to get an idea of how it was assembled10. Moreover in these

scenarios involving concepts, recognizing the assembly structure from the constituents appears to be

a somewhat different problem compared to the problem of inferring the underlying structure in the

9 for certain continuous tasks it seems it would be very nutty to have anything like a discrete model to summarize

current state and have cognitive map of the task, if they do in fact follow the schematics of information flow we just

discussed
10some very recent works propose theories for how this happens[20]
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form of recursive/ hierarchical composition that we consider, albeit both seem crucial in being able

to understand or comprehend numerous new things we encounter leveraging on previous knowledge.

1.3. Learning Structure: Concise Compositions via penalizing Complexity. In this section

we briefly discuss how we may attempt learning structure. Since learning can be computationally

hard for general primitive classes A and composed targets h even when underlying structure is

known, the challenge for us is to implicitly bias the system towards intelligent representations so

that it works for well chosen targets of our/human interest and appropriate primitive classes. This

begs the question what should this implicit bias be? A necessary aspect of human intelligence is

a proclivity for concise yet accurate composed explanations and executions in understanding and

interacting with the environment. Conciseness can help to reduce ambiguity and round about

solutions. Using this as the guide, we can take the length of representation or number of function

calls made to primitives in A as the cost to be minimized along with empirical loss. The length of

attention vector can be added to cost but these are only quadratically apart for a structure that the

machine comes up with.

For learning over a longer time the primitive function set A of the learner may be selectively

expanded synonymous to acquiring more skills and understanding the world in terms of these skills.

Depending on the domain of interest our intention should be to expose the agent to new tasks.

1.4. Hierarchical Reinforcement Learning. What we seek to do here appears to have strong

precedent and parallels in the motivation that led researchers to think about hierarchical reinforce-

ment learning. The main challenges and open problems in hierarchical reinforcement learning are

• subgoal or option discovery

• learning the hierarchy or subtask composition structure and

• organizing a long term memory efficiently in the presence of delayed and sparse rewards.

The frameworks that have been proposed in the context of hierarchical reinforcement learning include

Options [21], Hierarchical abstract machines [22], Feudal networks [23] and the MaxQ [24] framework.

These stand to leverage the same power of composition and re-use that we seek to gain in our way

of formulating the problem.

It is apparent that in the problem we describe considering each new leaf input observation as

being synonymous to a state observation both situations aim to tackle very similar problems. Sub-

task/option discovery corresponds to learning new useful primitives for summarization, learning the

task structure or hierarchy of options/policies corresponds to the problem of learning the compo-

sition structure. The RL setting however differs in terms of the way it allows for interaction with

environment- the presence of rewards and how agents actions influence future observations. The

latter however can be assimilated into an appropriate distribution for the input x that captures the

randomness involved with state transitions(would be a product distribution on input coordinates if

state dynamics are Markovian). While once again the relevant domain where the task is to be learnt

might hold advantageous clues to approaching these problems, it would be nice if one can come up

with approaches that apply more broadly.
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