# A Multi-World Approach to Question Answering about Real-World Scenes

Mateusz Malinowski, Mario Fritz

## Outline

Goal
 Dataset
 Performance Measure

4. Technical Approach

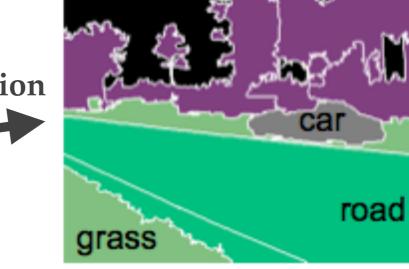
## Motivation

- "full scene understanding"
  - semantic segmentation
  - image captioning
- Q & A is the most complete

# Full Scene Understanding?



#### **Semantic Segmentation**



tree

#### **Image Captioning**



a car parked outside of a grassy field

## Goal

#### To answer **natural-language** queries about images

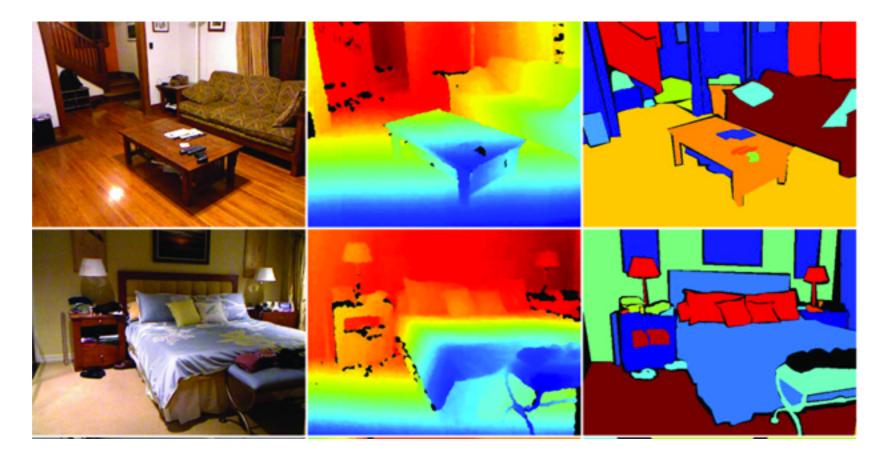


**Question:** what is on the desk and behind the black cup? **Answer:** bottle

## Dataset

# Dataset: Images

- 1449 RGB-D Images and pixel labels from NYU-Depth v2
- 894 object categories (!)
  - restricted to 37 for most evaluations



*Figure from Silberman et al, 2012* 

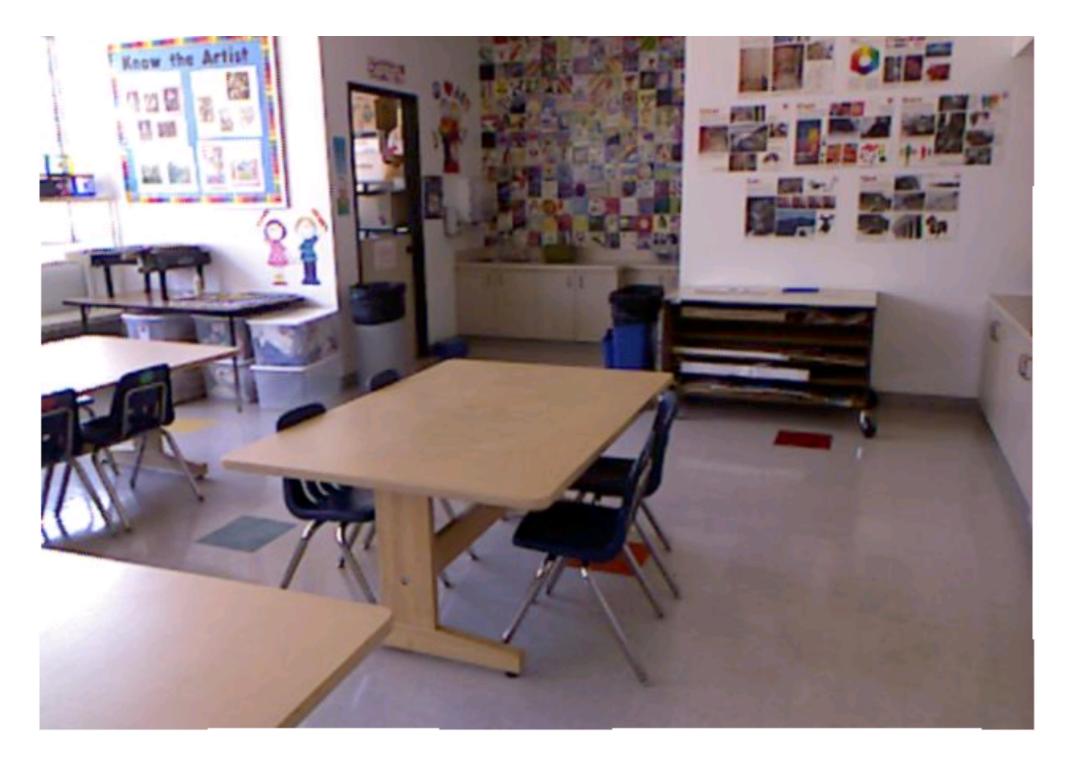
# Dataset: Q & A

#### Human Dataset:

- 12,000 Q&A pairs (~9 per image)
- questions unconstrained
- Each answer must be one of
  - a color
  - a number
  - a set of object categories e.g. {bed, couch}

#### **Synthetic Dataset:**

- 420 Q&A pairs
- generated from templates
- answers can also be
  - scene types e.g. *bedroom*
  - sets of images



**Question:** how many plastic toy containers are below the table in front of the wall?

**Answer:** 6



**Question:** what is on the desk?

**Answer:** {desk\_mat, paper, book, napkin\_dispenser}



**Question:** what color are the paper trays in the bookshelf on the left side of the wall divider not on the desk in front of the computer chair?

Answer: black

#### **Difficulties:**

- near-synonyms, e.g. *couch* vs *futon*
- hypernyms, e.g. *person* vs *woman* vs *skateboarder*
- comparing sets, e.g. {*pillow*, *book*} vs {*pillow*}



# Difficulties: near-synonyms hypernyms comparing sets Fuzzy

# What's wrong with WUP?

$$WUP(a,b) = \frac{2*depth(lca(a,b))}{depth(a) + depth(b)} \in [0,1]$$

$$WUP(lamp, table) = \frac{2 * depth(furniture)}{depth(lamp) + depth(table)} = 0.88$$

WUP(couch, futon) = 0.52

## What about distributed representations?

- generalize to multi-word answers like "red jacket" and "female tennis player"
- usually trained on huge text corpora, with no visual information

# Asymmetry

Question: Who is holding the racquet? GT Answer: female tennis player Answer: person

 $d(person, female\ tennis\ player) \sim 0$ 





Question: Who is speaking? GT Answer: person Answer: female tennis player

 $d(female\ tennis\ player, person) \sim \infty$ 

Needs to:

- include visual similarity
- be asymmetric

# Technical Approach

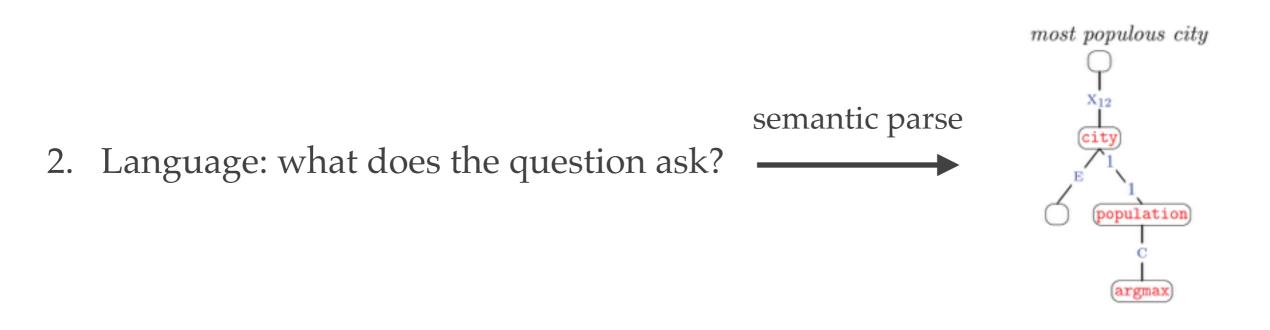
# Two sources of uncertainty

semantic segmentation

1. Vision: what is in the image?

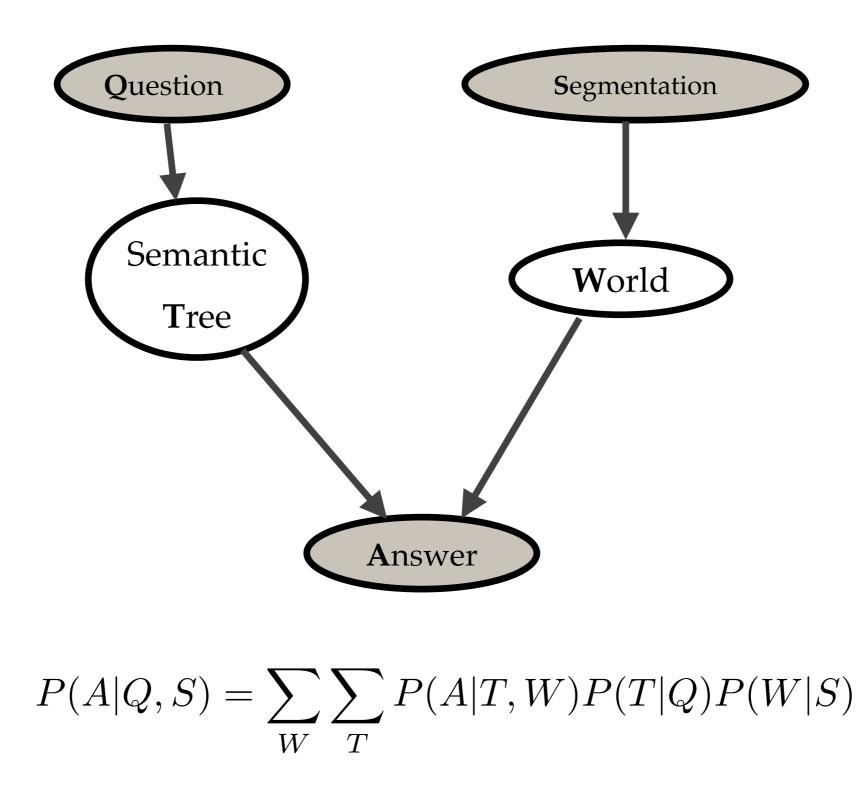


Figure from "Perceptual Organization and Recognition of Indoor Scenes from RGB-D images", Gupta et al, 2013



*Figure from "Learning Dependency-Based Compositional Semantics", Liang et al, 2013* 

# Graphical Model



# Representation

#### What is a world?

• Facts, e.g  $chair(segment, color, X_{\{min, mean, max\}}, Y_{\{min, mean, max\}}, Z_{\{min, mean, max\}})$ 

• Relations, e.g. above(A, B), inFront(A, B)

|                     | Predicate            | Definition                                                 |
|---------------------|----------------------|------------------------------------------------------------|
|                     | closeAbove(A, B)     | above(A, B) and $(Y_{min}(B) < Y_{max}(A) + \epsilon)$     |
| auxiliary relations | closeLeftOf(A, B)    | leftOf(A, B) and $(X_{min}(B) < X_{max}(A) + \epsilon)$    |
|                     | closeInFrontOf(A, B) | $inFrontOf(A, B) and (Z_{min}(B) < Z_{max}(A) + \epsilon)$ |
|                     | $X_{aux}(A,B)$       | $X_{mean}(A) < X_{max}(B)$ and $X_{min}(B) < X_{mean}(A)$  |
|                     | $Z_{aux}(A,B)$       | $Z_{mean}(A) < Z_{max}(B) and Z_{min}(B) < Z_{mean}(A)$    |
|                     | $h_{aux}(A,B)$       | closeAbove(A, B)  or  closeBelow(A, B)                     |
|                     | $v_{aux}(A, B)$      | $closeLeftOf(A, B) \ or \ closeRightOf(A, B)$              |
| a                   | $d_{aux}(A,B)$       | closeInFrontOf(A, B)  or  closeBehind(A, B)                |
|                     | leftOf(A, B)         | $X_{mean}(A) < X_{mean}(B))$                               |
| ial                 | above(A, B)          | $Y_{mean}(A) < Y_{mean}(B)$                                |
| spatial             | inFrontOf(A, B)      | $Z_{mean}(A) < Z_{mean}(B))$                               |
|                     | on(A, B)             | $closeAbove(A, B) and Z_{aux}(A, B) and X_{aux}(A, B)$     |
|                     | close(A, B)          | $h_{aux}(A, B)$ or $v_{aux}(A, B)$ or $d_{aux}(A, B)$      |

Figure from Malinowski and Fritz, 2014

# Simplifying Assumptions

 $P(A|Q,S) = \sum_{W} \sum_{T} P(A|T,W) P(T|Q) P(W|S)$ 

1.  $P(T|Q) \propto \exp(w^T \phi(T,Q))$ 

2. 
$$P(W|S) = P(s_1 = c_{f(1)}..., s_n = c_{f(n)}) = \prod_i P(s_i = c_{f(i)})$$

3. Sample 25 possible worlds

4.  $P(A|T, W) \sim 3$ -nearest neighbour "batch" approximation

## Results

## Results

#### Human question-answer pairs (HumanQA)

| Segmentation   | World(s) | #classes | Accuracy | WUPS at 0.9 | WUPS at 0 |
|----------------|----------|----------|----------|-------------|-----------|
| HumanSeg       | Single   | 894      | 7.86%    | 11.86%      | 38.79%    |
| HumanSeg       | Single   | 37       | 12.47%   | 16.49%      | 50.28%    |
| AutoSeg        | Single   | 37       | 9.69%    | 14.73%      | 48.57%    |
| AutoSeg        | Multi    | 37       | 12.73%   | 18.10%      | 51.47%    |
| Human Baseline |          | 894      | 50.20%   | 50.82%      | 67.27%    |
| Human Ba       | seline   | 37       | 60.27%   | 61.04%      | 78.96%    |

#### **My Baseline**

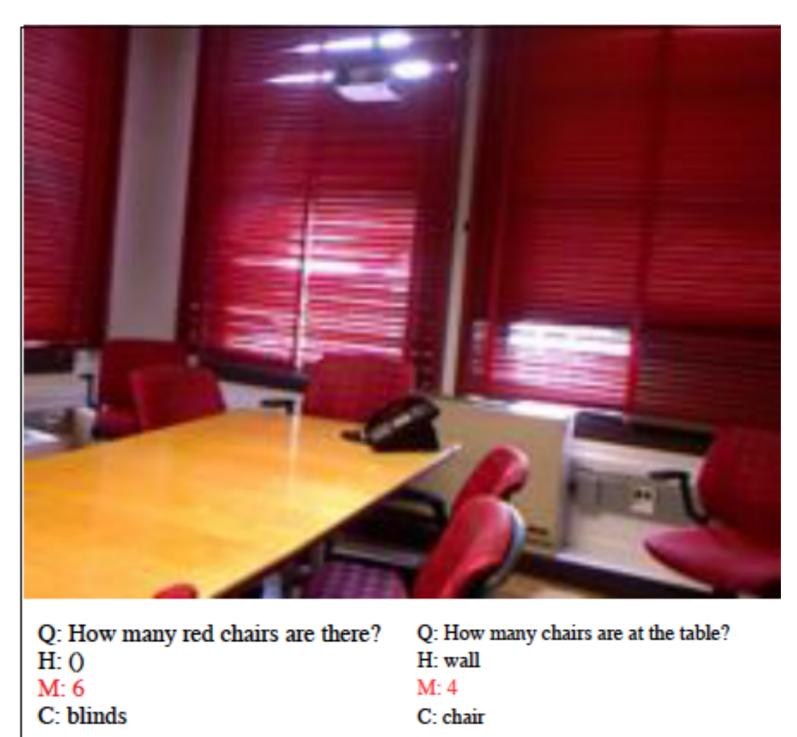
"how many" —> 2

"what color" —> *white* 



else -----> {*table*}

# Error Analysis - Language



# Error Analysis - Vision

| synthetic question-answer pairs (SynthQA) |                    |           |          |  |  |  |  |
|-------------------------------------------|--------------------|-----------|----------|--|--|--|--|
| Segmentation                              | World(s)           | # classes | Accuracy |  |  |  |  |
| HumanSeg                                  | Single with Neg. 3 | 37        | 56.0%    |  |  |  |  |
| HumanSeg                                  | Single             | 37        | 59.5%    |  |  |  |  |
| AutoSeg                                   | Single             | 37        | 11.25%   |  |  |  |  |
| AutoSeg                                   | Multi              | 37        | 13.75%   |  |  |  |  |

# Summary

- Very interesting, high-level vision problem
- Very difficult, large dataset
- Unclear performance measure
- Authors' approach doesn't work