

Deep Visual-Semantic Alignments for Generating Image Descriptions

Andrej Karpathy, Fei-Fei Li

Overview

Goal

"To generate dense, free-form descriptions of images"

Not to generate Flickr-like descriptions!

Figure from (Karpathy and Li 2014)

Motivation

- It's hard
- Humans can do it

Challenges

- Big Challenge: build a model that reasons jointly about vision and language
- Deep Learning Manifesto: "The model should be free of assumptions about specific hard-coded templates, rules or categories, and instead rely primarily on training data"
- Immediate challenge: how do we learn a model that generates dense, regionlevel descriptions from training data of sparse, image-level descriptions?
- Training data is *extremely* noisy

"trampolines are fun way to exercise"

Contributions

 Infer region-word alignments (R-CNN + BRNN + MRF) 2. Generative model of image descriptions (new RNN architecture)

3. Generate region-level descriptions

Technical Approach

Inferring Alignments

Dataset of images and sentence descriptions

training image

"A Tabby cat is leaning on a wooden table, with one paw on a laser mouse and the other on a black laptop"

R-CNN: Regions with CNN features

Figure from (Girshick et al 2014) - <u>http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf</u>

Figure adapted from (Karpathy and Li 2014)

Inferring Segment Alignments

Figure generated by http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/

0.26 outdoors

0.42 blond

0.07 woman

-0.81 yellow

0.30 people

-0.10 inside

Smoothing via MRF

Smoothing with an MRF

Let $a_j = t$ mean that the *j*th word w_j is aligned to the *t*th region r_t .

Then to independently align each word to the best region, minimize

$$E(a_1..a_N) = \sum_{a_j=t} -similarity(w_j, r_t)$$

But to encourage nearby words to point to the same region, add a penalty β when nearby words point to different regions:

$$E(a_1..a_N) = \sum_{a_j=t} -similarity(w_j, r_t) + \sum_{j=1..N-1} \beta[a_j = a_{j+1}]$$

The argmin can be found with dynamic programming.

Generating Descriptions

- RNN architecture
- doesn't try to embed images and descriptions into a common space
- uses a "context" and the previous word to determine the probability distribution over the next word
- *adds* image features to the initial context

Region-Level Descriptions

- Train the description generating RNN on the aligned regions + sentence fragments!
- At test time, run on many bounding boxes separately

Evaluation

Evaluation

BLEU on new region dataset

Alignment Evaluation

	Image Annotation				Image Search				
Model	R@1	R@5	R@10	Med r	R@1	R@5	R@10	Med r	
Flickr30K									
DeViSE (Frome et al. [10])	4.5	18.1	29.2	26	6.7	21.9	32.7	25	
SDT-RNN (Socher et al. [42])	9.6	29.8	41.1	16	8.9	29.8	41.1	16	
Kiros et al. [19]	14.8	39.2	50.9	10	11.8	34.0	46.3	13	
Mao et al. [31]	18.4	40.2	50.9	10	12.6	31.2	41.5	16	
DeFrag (Karpathy et al. [18])	14.2	37.7	51.3	10	10.2	30.8	44.2	14	
Our implementation of DeFrag [18]	19.2	44.5	58.0	6.0	12.9	35.4	47.5	10.8	
Our model: DepTree edges	20.0	46.6	59.4	5.4	15.0	36.5	48.2	10.4	
Our model: BRNN	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2	

- ranking evaluation as a proxy for alignment quality
 - Image Annotation: given image, find closest training description
 - Image Search: given description, find closest image
- uses image-sentence alignment score (sum of word-region alignments), instead of distance in multimodal space.
- outperform across the board, but is this a fair comparison?

Description Evaluation

	Flickr8K			Flickr30K			MSCOCO					
Method of generating text	\mathcal{PPL}	B-1	B-2	B-3	\mathcal{PPL}	B-1	B-2	B-3	\mathcal{PPL}	B-1	B-2	B-3
4 sentence references												
Human agreement	-	0.63	0.40	0.21	-	0.69	0.45	0.23	-	0.63	0.41	0.22
5 sentence references												
Generating: RNN	-	0.45	0.21	0.09	-	0.47	0.21	0.09	-	0.53	0.28	0.15
Mao et al. [31]	24.39	0.58	0.28	0.23	35.11	0.55	0.24	0.20	-	-	-	-
Generating: RNN (OxfordNet CNN [40])	22.66	0.51	0.31	0.12	21.20	0.50	0.30	0.15	19.64	0.57	0.37	0.19

- BLEU scores surprisingly close to human agreement
- Perplexity (how well the model predicts test descriptions) is surprisingly low at 20 bits per sentence
 - vs ~8 bits per word for the best language models

Region-Level Evaluation

Method of generating text	B-1	B-2	B-3
Human agreement	0.54	0.33	0.16
Ranking: Nearest Neighbor	0.14	0.03	0.07
Generating: Full frame model	0.12	0.03	0.01
Generating: Region level model	0.17	0.05	0.01

- Used new dataset of region-level annotations
 - 1469 annotations in 237 images
 - average length of annotation: 4.13 words
- Model performs much worse relative to humans
 - brevity means BLEU penalties sharper
 - model trained on *extremely* noisy data

Discussion

Priors (Deep Learning Heresies)

• descriptions are object-centric (hence use R-CNN detections)

Figure generated by http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/

Priors (Deep Learning Heresies)

• image-sentence scores are sums of word-region scores

Best image result for "small dog sleeping in living room chair"

http://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/ 22

Summary

- New goal: dense descriptions
- New model to infer word-region alignments
 - BRNN to embed words
 - R-CNN to embed images
 - Trained using ranking loss over alignment score
- New description generation model
 - RNN with additive image context
- New region-level annotation dataset

