CSCC73
Algorithm design & analysis

Week 8 Tutorial
Question 1

Another DP algorithm for 0/1 knapsack.

Recall the problem:

Input: For each i, $1 \leq i \leq n$, the value v_i and the weight w_i of item i; and the capacity C of the knapsack.

Output: The maximum value of a subset of the items whose total weight does not exceed C. (Also, the actual subset of items, but we won’t worry about that here.)
In the DP algorithm in class we defined the following subproblems:

For \(i = 0, 1, \ldots, n \), and \(c = 0, 1, \ldots, C \),

\[K(i, c) = \text{the maximum value of a subset of items} \{1, 2, \ldots, i\} \text{ whose weight is } \leq c. \]

We found a recursive formula to compute these subproblems, and used that to design a DP algorithm for the 0/1 knapsack problem.

Running time: \(O(nC) \) — pseudopolynomial.
Now we will define the subproblem differently.
For \(i = 0, 1, \ldots, n \), let
\[
V_i = \sum_{t=1}^{i} v_t. \quad (V_0 = 0.)
\]

For \(i = 0, 1, \ldots, n \), and \(v = 0, 1, \ldots, V_i \),
\[
W(i, v) = \text{the minimum weight of a subset of items } \{1, 2, \ldots, i\} \text{ whose value is } \geq v.
\]

Compare to the subproblems we defined before:

\[
K(i, c) = \text{the maximum value of a subset of items } \{1, 2, \ldots, i\} \text{ whose weight is } \leq c.
\]
Question 1 (cont’d)

For $i = 0, 1, \ldots, n$, and $v = 0, 1, \ldots, V_i$,
$W(i, v)$ = the minimum weight of a subset of items
$\{1, 2, \ldots, i\}$ whose value is $\geq v$.

• Give a recursive formula to compute the subproblems.

• Describe your DP algorithm in pseudocode.

• Analyze the running time of your algorithm.

• Modify the algorithm to find the actual set of items
of maximum value whose weight does not exceed
the knapsack capacity C.
Question 2

Give a pseudo-polynomial time DP algorithm to solve the “knapsack with replacement” problem:

For each item \(i = 1, 2, \ldots, n \), let \(v_i \) be the value and \(w_i \) be the weight of \(i \), where each weight is a positive integer. Let \(C \) be a positive integer (the knapsack capacity).

Assume that there is an unlimited number of each item. We want to find how many copies \(S(i) \) of each item \(i \) to steal, where \(S(i) \) is a non-negative integer, so that the stolen items have maximum value and fit in the knapsack: find \(S \) that maximizes \(\sum_{i=1}^{n} S(i) \cdot v_i \), so that \(\sum_{i=1}^{n} S(i) \cdot w_i \leq C \).
Question 2

Focus on the problem of finding the maximum value of a multiset of items from 1, 2, ..., n whose weight does not exceed C.

• Define the subproblems to solve, and state how solving these subproblems helps solving the above problem.

• Give a recursive formula to compute the subproblems.

• Write pseudocode to solve the problem of finding the number $S(i)$ of each item i in an optimal knapsack with replacement.
Let A be a sequence. A subsequence of A is a sequence A' obtained by removing zero or more elements from A, leaving the remaining elements in their original order.

A sequence is **palindromic**, if it is equal to its reverse.

Describe a polynomial time DP algorithm that, given a sequence $A[1..n]$, finds the length of the **longest palindromic subsequence of** A. Analyze the running time of your algorithm.
Question 3 (cont’d)

• Define the subproblems of your DP algorithm.

• Give a recursive formula to compute the subproblems.

• Describe your DP algorithm in pseudocode.

• Analyze the running time of your algorithm.

• Retrofit your algorithm to compute the actual longest palindromic subsequence of the given sequence \(A \).
Question 4

Run the Bellman-Ford algorithm on the graph below where the start node is 1. Show the L-value of every node in every iteration. (Shown are the L-values after initialization.) Don’t trace BF line-by-line; use your knowledge of what the L-values represent!

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 5
Run the Floyd-Warshall algorithm on the graph below. Shown next to the graph is the matrix C(-,-,0). Show the matrix C(-,-,k) for every other relevant value of k. Don’t trace FW line-by-line; use your knowledge of what C(-,-,-) represents!

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 3 & 8 & 5 \\
2 & \infty & 0 & \infty & 1 \\
3 & \infty & 1 & 0 & \infty \\
4 & \infty & \infty & 2 & 0 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & \quad & \quad & \quad \\
2 & \quad & \quad & \quad \\
3 & \quad & \quad & \quad \\
4 & \quad & \quad & \quad \\
\end{array}
\quad
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & \quad & \quad & \quad \\
2 & \quad & \quad & \quad \\
3 & \quad & \quad & \quad \\
4 & \quad & \quad & \quad \\
\end{array}
\]
Question 6

To think about on your own:

1) Does the Bellman-Ford algorithm find a shortest path from node s to every node with the minimum number of edges? If not, can you change it so that it does?

2) Does the Floyd-Warshall algorithm find a shortest path between every pair of nodes with the minimum number of edges? If not, can you change it so that it does?