Recall that a dynamic programming algorithm to solve a given problem P involves the following elements:

(a) A definition of a polynomial number of subproblems that will be solved (and from whose solution we will compute the solution to P — see (c) below).

(b) A recursive formula to compute the solution to each subproblem from the solutions to smaller subproblems. This induces a partial order on the subproblems defined in (a).

(c) A way to compute the solution to P from the solutions to the subproblems computed in (b).

Proving the correctness of a dynamic programming algorithm amounts to justifying (i) why the recursive formula in step (b) correctly computes the subproblems defined in step (a), and (ii) why the computation in (c) yields a solution to the given problem. Part (ii) is often immediate from the definition of the subproblems.

Question 1. (15 marks) Business is booming for the catering service described in Question 1 of Assignment 2. The decision is therefore made to expand the variety of orders so that each may take any number
of time units, not necessarily just one as in the original setting. To ensure the high quality of the product, however, the same single cook still does all the cooking. The goal is to find a most profitable schedule for filling orders in this new and more general setting.

To be more precise, the catering service receives a set of \(n \) orders. Order \(i, 1 \leq i \leq n \), has a **deadline** \(d_i \) by which it must be completed, a **length** \(\ell_i \leq d_i \) that it requires to be completed, and a **profit** \(p_i > 0 \) that the catering service receives if the order is completed by the deadline; if the order is completed after the deadline there is no profit made and therefore it is not filled at all. Deadlines and lengths are expressed as **positive integers**, to be thought of as multiples of an appropriate time unit.

The cook starts work at time 0. The catering service must decide on a schedule in which to fill a subset of the orders, each completed by its deadline. A schedule now is a function \(S \) that maps each order \(i \) to the finish time \(S(i) \) of preparing that order, where \(S(i) \geq \ell_i \) is a positive integer, meaning that order \(i \) will be prepared during the interval \((S(i) - \ell_i, S(i)) \); or to the finish “time” \(+\infty \), meaning that order \(i \) will not be filled. We require that, for any distinct orders \(i \) and \(j \), if \(S(i) \neq +\infty \) and \(S(j) \neq +\infty \), then the intervals \((S(i) - \ell_i, S(i)) \) and \((S(j) - \ell_j, S(j)) \) are disjoint: the single cook works on one order at a time and brings it to completion before starting another one. The problem is to design an algorithm that, given as input the \(n \) triples \((d_i, \ell_i, p_i) \), returns as output a schedule \(S \) that maximizes the total profit: for every schedule \(S' \), \(\sum_{i: S(i) \neq +\infty } p_i \geq \sum_{i: S'(i) \neq +\infty } p_i \).

a. Give a counterexample proving that the following greedy strategy does not work: Sort and consider the orders by non-increasing profit. For the current order \(i \), if there is a time \(t \) such that \(\ell_i \leq t \leq d_i \) and the interval \((t - \ell_i, t) \) is disjoint from all intervals of jobs scheduled so far, let \(t^* \) be the maximum such time and schedule order \(i \) to finish at time \(t^* \) — i.e., set \(S(i) := t^* \); otherwise, don’t fill order \(i \) — i.e., set \(S(i) := +\infty \).

Hint: Sort the orders by non-increasing deadline, and take the subproblems to be the maximum profit \(P(i,t) \) achievable by scheduling a subset of orders \(1..i \) so that they all finish by time \(t \).

b. Retrofit your algorithm for part (b) to find an optimal schedule (as opposed to its profit). It suffices to show only the changes to your algorithm for part (b).

c. Describe and justify the correctness of a dynamic programming algorithm that finds the **maximum profit** achievable by scheduling a subset of the given orders. Analyze the running time of your algorithm. Is your algorithm a polynomial-time one? Explain why or why not.

Hint: Sort the orders by non-increasing deadline, and take the subproblems to be the maximum profit \(P(i, t) \) achievable by scheduling a subset of orders \(1..i \) such that all finish by time \(t \).

Question 2. (10 marks) We are given an \(n \times n \) array \(B[1..n, 1..n] \) of bits (0s or 1s). We want to find a largest square of 1s within this array. (For example, the array could represent a map, where a 0 denotes a square parcel of private land and a 1 denotes a square parcel of public land. We want to find the largest possible square piece of public land, say to build a new school.)

More precisely, a **square of 1s** is a triple of integers \((i, j, \ell) \) such that \(i, j \geq 1, \ell \geq 0, i + \ell \leq n, j + \ell \leq n, \) and \(B[i', j'] = 1 \) for all \(i', j' \) such that \(i \leq i' \leq i + \ell \) and \(j \leq j' \leq j + \ell \). We want to find a square of 1s such that \(\ell \) is as large as possible.

Describe and justify the correctness of a dynamic programming algorithm to solve this problem, and analyze its running time. For full credit, your algorithm should run in \(O(n^2) \) time.

Hint: For each \(i, j \), consider the size of a largest square of 1s whose lower right corner is \((i,j) \).

Question 3. (10 marks) Let \(G = (V, E) \) be an undirected graph, \(wt : E \to \mathbb{R} \) be an edge weight function such that \(wt(e) > 0 \) for every \(e \in E, V' \subseteq V \), and \(d \in \mathbb{R} \) be a positive real number. The graph represents a road map of a rural area. Each node corresponds to a town, each edge corresponds to a road that connects two towns, and the weight of an edge indicates the length of that road. The subset \(V' \) is the subset of
towns that have a gas station, and d is the maximum distance that your car can travel on a full tank of gas.

Given the above information and two nodes $s, t \in V'$, you want to find the shortest route so you can drive from s to t without running out of gas; that is, any portion of the route that is longer than d should pass through a town with a gas station. Note that s and t are both in V' — so you can fill up before the trip starts and when it ends.

Using one or more algorithms described in class, describe a polynomial time algorithm that takes as input $G, \mathbf{wt}, V', d,$ and $s, t \in V'$, and returns the desired route (as a sequence of towns). Analyze the running time of your algorithm. For full credit your algorithm should run in $O(n^3)$ time.

You should describe your algorithm in clear, point-form English; do not write pseudocode. You do not need to justify the correctness of your algorithm, as it it should be immediate from the algorithm(s) it uses. Algorithms designed “from scratch”, which do not take advantage of algorithms discussed in this course, will receive no credit. (This is to help you avoid designing unnecessarily complicated, and probably wrong, solutions.)