Question 1. (10 marks) Suppose we have a two-dimensional array $A[1..n, 1..n]$ of numbers, every row and column of which is sorted. That is, $A[i,j] \leq A[i,j']$, for all $1 \leq i \leq n$ and all $1 \leq j \leq j' \leq n$; and $A[i,j] \leq A[i',j]$, for all $1 \leq j \leq n$ and all $1 \leq i \leq i' \leq n$. We want to determine whether a given number x is in A.

One way to do this is to perform binary search in each row, until we either find x is some row, or determine that x is not in any row. (Of course, we could equally well do binary search in each column instead.) This clearly takes $\Theta(n \log n)$ time, but exploits only the fact that rows are sorted, ignoring that the columns are also sorted.

In an attempt to devise an algorithm that exploits the order in both dimensions, we are led to the following divide-and-conquer idea: Divide up the square array into four roughly equal two-dimensional arrays; upper-left, upper-right, lower-right, and lower-left. Look at the “middle” element of the array (roughly the element $A[n/2,n/2]$ with appropriate rounding). Based on comparing this element with x, eliminate a part of the array where we can be certain that x cannot be, and search the rest of the array.

Describe in pseudocode a divide-and-conquer algorithm to search A based on the idea sketched in the preceding paragraph, justify its correctness, analyze its running time, and compare the running time of your algorithm to the running time of the algorithm that uses binary search for each row. You may assume
that \(n \) is a power of two. As in the analysis of the first algorithm, express the running time as a function of \(n \), the number of rows and columns of the input \(A \). (Note that the size of the input, assuming \(O(1) \)-space for each entry of \(A \), is \(n^2 \), not \(n \).)

To think about, but not to submit with your answer: There is a better algorithm than either of the above two. Can you find one?

Question 2. (10 marks) Let \(S \) be a set of at least two numbers, and let

\[
\text{ads}(S) = \frac{\max(S) - \min(S)}{|S| - 1}.
\]

Intuitively, this is the average distance between pairs of successive elements of \(S \) in sorted order: there are \(|S| - 1 \) such pairs, and the distances between all of them add up to \(\max(S) - \min(S) \). We say that \(x, y \in S \) are **close in** \(S \) if \(x \neq y \) and \(|x - y| \leq \text{ads}(S) \) — i.e., the distance between \(x \) and \(y \) is at most the average distance between successive elements of \(S \). Note that any set of at least two numbers must contain a pair of close numbers: this is for the same reason that it is impossible for all of you to receive an above-average grade! Also note that a pair of numbers that are close in \(S \) need not be successive in sorted order; nor is every pair of successive numbers necessarily close in \(S \).

Describe a divide-and-conquer algorithm that, given a set \(S \) of \(n \geq 2 \) numbers in arbitrary order, finds a pair of numbers in \(S \) that are close; your algorithm should run in \(O(n) \) time. Justify the correctness and running time of your algorithm.

Hint. Use the following fact, which you should prove: Let \(p \) be any element of \(S \), \(S_0 = \{ x \in S : x \leq p \} \) and \(S_1 = \{ x \in S : x \geq p \} \). (Note that \(p \) belongs to both \(S_0 \) and \(S_1 \), and so \(|S_0| + |S_1| = |S| + 1 \).) Let \(a_i = \text{ads}(S_i) \), for \(i \in \{0, 1\} \), and let \(m \in \{0, 1\} \) be such that \(a_m = \min(a_0, a_1) \). Then **every** close pair in \(S_m \) is a close pair in \(S \).