Menger’s Theorem

Vassos Hadzilacos

(This document describes optional material for this course.) In our discussion of the problem of finding a maximum cardinality set of edge-disjoint $s \to t$ paths in a graph we developed results that we can leverage to prove Menger’s Theorem, a well-known result in graph theory. It is one of those max-this-equals-min-those results, like max-flow-equals-min-cut and bipartite-max-matching-equals-min-vertex-cover. All these results are instances of a general phenomenon known as “linear programming duality”. I didn’t have time to discuss Menger’s Theorem in class, so here it is, for those who are interested.

Menger’s Theorem. Let $G = (V, E)$ be a digraph and $s, t \in V$. The maximum number of edge-disjoint $s \to t$ paths in G is equal to the minimum number of edges whose removal from G disconnects t from s.

Proof. Let P be any set of edge-disjoint $s \to t$ paths, and D be any set of edges whose removal from G disconnects t from s. By the pigeonhole principle, $|P| \leq |D|$: Every path in P (pigeon) must use an edge in D (pigeonhole); otherwise, the removal of D from G does not disconnect t from s. So, there is a function $\phi : P \to D$ such that path $p \in P$ uses edge $\phi(p) \in D$. Since P is edge-disjoint, ϕ must be one-to-one. So, by the pigeonhole principle $|P| \leq |D|$. This immediately implies the following:

Fact. If $|P| = |D|$ then (a) P is a maximum cardinality set of edge-disjoint $s \to t$ paths, and (b) D is a minimum cardinality set of edges whose removal disconnects t from s.

Let P be a maximum cardinality set of edge-disjoint $s \to t$ paths. Let F be the flow network obtained from G by removing all edges into s and from t, and assigning capacity 1 to every edge. Let f be a maximum flow of F, (S, T) be a minimum (s, t)-cut of F, and $D = \text{out}(S) \cap \text{in}(T)$; i.e., D is the set of edges that cross the cut from S to T. By definition, the removal of D from the graph of F disconnects t from s, and so the removal of D from G also disconnects t from s (why?). We have:

\[
|P| = V(f) = c(S, T) = |D|
\]

[proved in class in discussion of max edge-disjoint path problem]

[by max-flow-min-cut]

[by definition of D and the fact that all edges have capacity 1]

By part (b) of the above Fact, D is a minimum cardinality set of edges whose removal from G disconnects t from s.

So, we proved that the maximum number of edge-disjoint $s \to t$ paths in G is equal to the minimum number of edges whose deletion from G disconnects t from s.

This proof of Menger’s theorem immediately suggests an algorithm that, given a directed graph G and nodes s, t, finds a minimum cardinality set of edges whose deletion from G disconnects t from s:

1. Construct F from G, s, and t
2. Find a maximum flow f of F
3. Using f, find a minimum cut (S, T) of F
4. Return the set of edges $\text{out}(S) \cap \text{in}(T)$

This takes $O(mn)$ time, where m is the number of edges of G and n is the number of nodes of G.

1