Menger’s Theorem

Vassos Hadzilacos

(This document describes optional material for this course.) In our discussion of the problem of finding a maximum cardinality set of edge-disjoint \(s \to t \) paths in a digraph we developed results that we can leverage to prove Menger’s Theorem, a well-known result in graph theory. It is one of those max-this-equals-min-those results, like max-flow-equals-min-cut and bipartite-max-matching-equals-min-vertex-cover. All these results are instances of a general phenomenon known as “linear programming duality”. I didn’t have time to discuss Menger’s Theorem in class, so here it is, for those who are interested.

Menger’s Theorem. Let \(G = (V,E) \) be a digraph and \(s,t \in V \). The maximum number of edge-disjoint \(s \to t \) paths in \(G \) is equal to the minimum number of edges whose removal from \(G \) disconnects \(t \) from \(s \).

Proof. Let \(P \) be any set of edge-disjoint \(s \to t \) paths, and \(D \) be any set of edges whose removal from \(G \) disconnects \(t \) from \(s \). By the pigeonhole principle, \(|P| \leq |D|\): Every path in \(P \) (pigeon) must use an edge in \(D \) (pigeonhole); otherwise, the removal of \(D \) from \(G \) does not disconnect \(t \) from \(s \). So, there is a function \(\phi : P \to D \) such that path \(p \in P \) uses edge \(\phi(p) \in D \). Since \(P \) is edge-disjoint, \(\phi \) must be one-to-one. So, by the pigeonhole principle \(|P| \leq |D|\). This immediately implies the following:

Fact. If \(|P| = |D|\) then (a) \(P \) is a maximum cardinality set of edge-disjoint \(s \to t \) paths, and (b) \(D \) is a minimum cardinality set of edges whose removal disconnects \(t \) from \(s \).

Let \(P \) be a maximum cardinality set of edge-disjoint \(s \to t \) paths. Let \(F \) be the flow network obtained from \(G \) by removing all edges into \(s \) and from \(t \), and assigning capacity 1 to every edge. Let \(f \) be a maximum flow of \(F \), \((S,T)\) be a minimum \((s,t)\)-cut of \(F \), and \(D = \text{out}(S) \cap \text{in}(T) \); i.e., \(D \) is the set of edges that cross the cut from \(S \) to \(T \). By definition, the removal of \(D \) from the graph of \(F \) disconnects \(t \) from \(s \), and so the removal of \(D \) from \(G \) also disconnects \(t \) from \(s \) (why?). We have:

\[
|P| = V(f) \quad \text{[proved in class in discussion of max edge-disjoint path problem]}
= c(S,T) \quad \text{[by max-flow-min-cut]}
= |D| \quad \text{[by definition of \(D \) and the fact that all edges have capacity 1]}
\]

By part (b) of the above Fact, \(D \) is a minimum cardinality set of edges whose removal from \(G \) disconnects \(t \) from \(s \).

So, we proved that the maximum number of edge-disjoint \(s \to t \) paths in \(G \) is equal to the minimum number of edges whose deletion from \(G \) disconnects \(t \) from \(s \). \(\square \)

This proof of Menger’s theorem immediately suggests an algorithm that, given a directed graph \(G \) and nodes \(s,t \), finds a minimum cardinality set of edges whose deletion from \(G \) disconnects \(t \) from \(s \):

1. Construct \(F \) from \(G \), \(s \), and \(t \)
2. Find a maximum flow \(f \) of \(F \)
3. Using \(f \), find a minimum cut \((S,T)\) of \(F \)
4. Return the set of edges \(\text{out}(S) \cap \text{in}(T) \)

This takes \(O(mn) \) time, where \(m \) is the number of edges of \(G \) and \(n \) is the number of nodes of \(G \).