Longest Increasing Subsequence
Vassos Hadzilacos

We want to find the length of a longest subsequence of a sequence $A[1..n]$. After examining the problem, we decided that, to solve it, we would solve a related, but slightly different, problem; namely, to compute

$$L(i) = \text{the length of a longest subsequence of } A \text{ that ends in position } i$$

for each $1 \leq i \leq n$. (So, more accurately, we will solve a whole set of related problems.) If we do this, the answer to our original problem is simply $\max\{L(i) : 1 \leq i \leq n\}$.

We then came up with a recursive formula for computing $L(i)$, namely,

$$L(i) = \begin{cases}
1, & \text{if } A[j] \geq A[i], \text{ for all } 1 \leq j < i \\
1 + \max\{L(j) : 1 \leq j < i \text{ and } A[j] < A[i]\}, & \text{otherwise}
\end{cases} \quad (\dagger)$$

We now need to show that the recursive formula (\dagger) indeed computes $L(i)$ as defined in (\ast). In lecture we effectively did this as we reasoned our way to the dynamic programming algorithm to compute the length of a longest increasing subsequence. Below I give a sample of how you might write up this argument.

Claim. The formula (\dagger) correctly computes $L(i)$ as defined in (\ast).

Proof. There are two cases:

Case 1. For every j, $1 \leq j < i$, $A[j] \geq A[i]$. In this case, the longest increasing subsequence of A that ends in position i consists of just $A[i]$, and so it has length 1. So the formula (\dagger) is correct in this case.

Case 2. For some j, $1 \leq j < i$, $A[j] < A[i]$. Let S be a longest increasing subsequence of A that ends in position i. Therefore $S = S' \circ A[i]$, for some sequence S'.

S' is an increasing subsequence of A that ends at some j, $1 \leq j < i$, such that $A[j] < A[i]$. This is because, otherwise, S would not be an increasing subsequence of A (never mind a longest one).

Furthermore, S' is longest among all longest increasing subsequences of A that end at some position j, $1 \leq i < j$, such that $A[j] < A[i]$. For, if S'' is not, then there is an increasing subsequence S'' of A that ends at some j, $1 \leq i < j$, such that $A[j] < A[i]$, and S'' is longer than S'. But then $S'' \circ A[i]$ is an increasing subsequence of A that ends at i that is longer than $S' \circ A[i] = S$, contradicting the definition of S.\(^1\) Therefore, $L(i) = \max\{L(j) : 1 \leq j < i \text{ and } A[j] < A[i]\}$, and the formula (\dagger) is correct in this case. QED

In the presentation of the algorithm in class, we went through the same reasoning in the process of coming up with the formula (\dagger). Here, we simply presented (\dagger) and then proved that it correctly computes $L(i)$.

I don’t much care which alternative you choose when presenting dynamic programming algorithms in your assignments or exams. To some extent it is a matter of taste, and to some extend it depends on the goals of the presentation. When you want to demonstrate the reasoning that led you to the algorithm, the approach I followed in class is perhaps more instructive, but less well organised — as the discovery process usually is! The approach taken here is perhaps clearer but more opaque in terms of demonstrating how one might come up with the algorithm.

\(^1\)This is a so-called “cut-and-paste” argument: We “cut” S' and “paste” S''. This type of argument is so standard that, in such simple situations, you can simply say “By a cut-and-paste argument...”.