\textbf{MULT}(x, y) \\
\textit{n} := \text{max}(\text{length}(x), \text{length}(y)) \\
\textbf{if} \ n = 1 \ \textbf{then return} \ x[1] \land y[1] \\
\text{make } x \text{ and } y \text{ of equal length by padding with leading 0s} \\
x_1 := \text{left } [n/2] \text{ bits of } x; \ x_0 := \text{right } [n/2] \text{ bits of } x \\
y_1 := \text{left } [n/2] \text{ bits of } y; \ y_0 := \text{right } [n/2] \text{ bits of } y \\
s := \text{ADD}(x_1, x_0); \ t := \text{ADD}(y_1, y_0) \\
a := \text{MULT}(x_1, y_1); \ b := \text{MULT}(x_0, y_0); \ c := \text{MULT}(s, t) \\
u := \text{SUB}(c, \text{ADD}(a, b)) \\
\text{append } n \text{ 0s to } a \\
\text{append } [n/2] \text{ 0s to } u \\
\textbf{return} \ \text{ADD}(a, \text{ADD}(u, b))