Correctness and running time of Huffman’s algorithm

Vassos Hadzilacos

We prove the correctness of Huffman’s algorithm by induction on the number of symbols n in the alphabet.

The base case, $n = 2$ is obvious because the only possibility (that is not obviously suboptimal) is a code where both codewords are one bit long, which is what Huffman’s algorithm produces in this case.

Suppose that the algorithm produces an optimal tree for alphabets with $n - 1 \geq 2$ symbols and their associated frequencies. We will prove that it produces an optimal tree for alphabets with n symbols and their associated frequencies.

Let Γ be an alphabet with n symbols, and $f(a)$ be the frequency for each $a \in \Gamma$. Let H be the tree produced by Huffman’s algorithm for Γ, f. We must prove that H is optimal for this input.

By the algorithm, there are two symbols of minimum frequency (according to f) that are siblings in H; let these symbols be x and y. Let z be a new symbol (that is not in Γ); and let $\Gamma' = (\Gamma - \{x, y\}) \cup \{z\}$ and f' be frequencies of the symbols in Γ' defined by

$$f'(a) = \begin{cases} f(a), & \text{if } a \neq z \\ f(x) + f(y), & \text{if } a = z. \end{cases}$$

(Intuitively, we are replacing the symbols x and y with a new symbol z, whose frequency is the sum of the frequencies of x and y.) Finally, let H' be the tree obtained from H by removing x and y and replacing their parent by z. From the definition of weighted average depth, we have

$$\text{ad}(H) = \text{ad}(H') + (f(x) + f(y)). \quad (1)$$

Note that H' is a tree produced by Huffman’s algorithm on input Γ', f'. Γ' has $n - 1$ symbols so, by induction hypothesis,

$$H' \text{ is optimal for } \Gamma', f'. \quad (2)$$

Now, let T be an optimal tree for Γ, f. Without loss of generality, we can assume that x and y are siblings and are at maximum depth of T. (If not, we can move them so that they are siblings at the maximum depth of T without increasing the weighted average depth of the tree, by swapping them with symbols that are siblings at the maximum depth.) Let T' be obtained from T as H' was obtained from H. Thus, T' is a tree for Γ', f'. We have:

$$\text{ad}(T) = \text{ad}(T') + (f(x) + f(y)) \quad [\text{by definition of ad}]$$

$$\geq \text{ad}(H') + (f(x) + f(y)) \quad [\text{by (2)}]$$

$$= \text{ad}(H) \quad [\text{by (1)}]$$

Since T is optimal for Γ, f, so is H. So, Huffman’s algorithm produces optimal trees for alphabets with n symbols and their associated frequencies.

We can implement this algorithm to run in time $O(n \log n)$ using heaps. Let n be the number of symbols in the alphabet, and $f(i)$ be the frequency of the i-th symbol, $1 \leq i \leq n$. The algorithm constructs a full
binary tree with $2n-1$ nodes, each labeled with a positive integer i, $1 \leq i \leq 2n-1$. Nodes labeled $1, 2, \ldots, n$ are leaves, where the leaf node labeled i corresponds to the i-th symbol. Nodes $n+1, n+2, \ldots, 2n-1$ are internal nodes, i.e., nodes that are not leaves. (Note that a full binary tree with n leaves has $n-1$ internal nodes, and therefore a total of $2n-1$ nodes. This is easy to prove by complete induction.)

The algorithm uses a heap H that stores pairs of the form $x = (i, p)$ where $1 \leq i \leq 2n-1$ and $0 \leq p \leq 1$. The first component of the pair x, denoted x.label, is the label of a node in the tree that the algorithm constructs. The second component, denoted x.freq, is the label of a node in the tree that the algorithm stores in the leaves of the subtree rooted at the node labeled x.label; x.freq is used as the priority for ordering the pairs in the heap H. The algorithm expressed in pseudocode is shown below.

```
HUFFMAN(n, f)
1 for i := 1 to n do
2     H[i] := (i, f(i))
3     create a leaf node labeled $i$ (both children are Nil)
4 BUILDHEAP(H)
5 for i := n + 1 to 2n − 1 do
6     x := EXTRACTMIN(H); y := EXTRACTMIN(H)
7     create a node labeled $i$ with children the nodes labeled $x$.label and $y$.label
8     INSERT(H, (i, x.freq + y.freq))
```

This algorithm runs in $O(n \log n)$ time: Putting the first n pairs into H and creating the n leaves takes $O(n)$ time (lines 1–3), and turning H into a heap using BUILDHEAP also takes $O(n)$ time (line 4). The for loop in lines 5–8 is repeated $n − 1$ times. In each iteration we perform two EXTRACTMIN operations and one INSERT operation, each of which takes $O(\log n)$ time. So the loop takes $O(n \log n)$ time, and the entire algorithm takes $O(n) + O(n) + O(n \log n) = O(n \log n)$ time.