Correctness and running time of
Huffman’s algorithm

Vassos Hadzilacos

We prove the correctness of Huffman’s algorithm by induction on the number of symbols \(n \) in the alphabet.

The base case, \(n = 2 \) is obvious because the only possibility (that is not obviously suboptimal) is a code where both codewords are one bit long, which is what Huffman’s algorithm produces in this case.

Suppose that the algorithm produces an optimal tree for alphabets with \(n - 1 \geq 2 \) symbols and their associated frequencies. We will prove that it produces an optimal tree for alphabets with \(n \) symbols and their associated frequencies.

Let \(\Gamma \) be an alphabet with \(n \) symbols, and \(f(a) \) be the frequency for each \(a \in \Gamma \). Let \(H \) be the tree produced by Huffman’s algorithm for \(\Gamma, f \). We must prove that \(H \) is optimal for this input.

By the algorithm, there are two symbols of minimum frequency (according to \(f \)) that are siblings in \(H \); let these symbols be \(x \) and \(y \). Let \(z \) be a new symbol (that is not in \(\Gamma \)); and let \(\Gamma' = (\Gamma - \{x, y\}) \cup \{z\} \) and \(f' \) be frequencies of the symbols in \(\Gamma' \) defined by

\[
f'(a) = \begin{cases}
 f(a), & \text{if } a \neq z \\
 f(x) + f(y), & \text{if } a = z.
\end{cases}
\]

(Intuitively, we are replacing the symbols \(x \) and \(y \) with a new symbol \(z \), whose frequency is the sum of the frequencies of \(x \) and \(y \).) Finally, let \(H' \) be the tree obtained from \(H \) by removing \(x \) and \(y \) and replacing their parent by \(z \). From the definition of weighted average depth, we have

\[
ad(H) = \ad(H') + (f(x) + f(y)). \tag{1}
\]

Note that \(H' \) is a tree produced by Huffman’s algorithm on input \(\Gamma', f' \). \(\Gamma' \) has \(n - 1 \) symbols so, by induction hypothesis,

\(H' \) is optimal for \(\Gamma', f' \). \tag{2}

Now, let \(T \) be an optimal tree for \(\Gamma, f \). Without loss of generality, we can assume that \(x \) and \(y \) are siblings and are at maximum depth of \(T \). (If not, we can move them so that they are siblings at the maximum depth of \(T \) without increasing the weighted average depth of the tree, by swapping them with symbols that are siblings at the maximum depth.) Let \(T' \) be obtained from \(T \) as \(H' \) was obtained from \(H \). Thus, \(T' \) is a tree for \(\Gamma', f' \). We have:

\[
\ad(T) = \ad(T') + (f(x) + f(y)) \quad [\text{by definition of } \ad] \\
\geq \ad(H') + (f(x) + f(y)) \quad [\text{by (2)}] \\
= \ad(H) \quad [\text{by (1)}]
\]

Since \(T \) is optimal for \(\Gamma, f \), so is \(H \). So, Huffman’s algorithm produces optimal trees for alphabets with \(n \) symbols and their associated frequencies.

We can implement this algorithm to run in time \(O(n \log n) \) using heaps. Let \(n \) be the number of symbols in the alphabet, and \(f(i) \) be the frequency of the \(i \)-th symbol, \(1 \leq i \leq n \). The algorithm constructs a full
binary tree with \(2n - 1\) nodes, each labeled with a positive integer \(i, 1 \leq i \leq 2n - 1\). Nodes labeled \(1, 2, \ldots, n\) are leaves, where the leaf node labeled \(i\) corresponds to the \(i\)-th symbol. Nodes \(n + 1, n + 2, \ldots, 2n - 1\) are internal nodes, i.e., nodes that are not leaves. (Note that a full binary tree with \(n\) leaves has \(n - 1\) internal nodes, and therefore a total of \(2n - 1\) nodes. This is easy to prove by induction.)

The algorithm uses a heap \(H\) that stores pairs of the form \(x = (i, p)\) where \(1 \leq i \leq 2n - 1\) and \(0 \leq p \leq 1\). The first component of the pair \(x\), denoted \(x.\text{label}\), is the label of a node in the tree that the algorithm constructs. The second component, denoted \(x.\text{freq}\), is the label of a node in the tree that the algorithm constructs. The second component, denoted \(x.\text{freq}\), is the label of a node in the tree that the algorithm constructs. \(x.\text{freq}\) is used as the priority for ordering the pairs in the heap \(H\). The algorithm expressed in pseudocode is shown below.

\[
\text{HUFFMAN}(n, f) \\
1 \text{ for } i := 1 \text{ to } n \text{ do } \\
2 \quad H[i] := (i, f(i)) \\
3 \quad \text{create a leaf node labeled } i \text{ (both children are NIL)} \\
4 \quad \text{BUILDHEAP}(H) \\
5 \text{ for } i := n + 1 \text{ to } 2n - 1 \text{ do } \\
6 \quad x := \text{EXTRACTMIN}(H); y := \text{EXTRACTMIN}(H) \\
7 \quad \text{create a node labeled } i \text{ with children the nodes labeled } x.\text{label} \text{ and } y.\text{label} \\
8 \quad \text{INSERT}(H, (i, x.\text{freq} + y.\text{freq}))
\]

This algorithm runs in \(O(n \log n)\) time: Putting the first \(n\) pairs into \(H\) and creating the \(n\) leaves takes \(O(n)\) time (lines 1–3), and turning \(H\) into a heap using \text{BUILDHEAP} also takes \(O(n)\) time (line 4). The \textbf{for} loop in lines 5–8 is repeated \(n - 1\) times. In each iteration we perform two \text{EXTRACTMIN} operations and one \text{INSERT} operation, each of which takes \(O(\log n)\) time. So the loop takes \(O(n \log n)\) time, and the entire algorithm takes \(O(n) + O(n) + O(n \log n) = O(n \log n)\) time.