Proof of “Flow Theorem”

Vassos Hadzilacos

Let \(\mathcal{F} = (G, s, t, c) \) be a flow network, where \(G = (V, E) \). The theorem below relates the value of an arbitrary flow \(f \) in \(F \) to the traffic on the edges connecting the two components of an arbitrary \((s, t)\)-cut \((S, T)\) of \(F \). This result is key in the proof of correctness of the Ford-Fulkerson algorithm, as we saw in class.

Notation. If \(u \in V \), \(\text{out}(u) \) is the set of edges out of \(u \), i.e., \(\text{out}(u) = \{(u, v) : \exists v \in V \text{ such that } (u, v) \in E\} \); similarly, \(\text{in}(u) \) is the set of edges into \(u \), i.e., \(\text{in}(u) = \{(v, u) : \exists v \in V \text{ such that } (v, u) \in E\} \). We generalize this for \(X \subseteq V \) in the obvious way: \(\text{out}(X) \) is the set of edges out of nodes in \(X \), i.e., \(\text{out}(X) = \cup_{u \in X} \text{out}(u) \); similarly, \(\text{in}(X) \) is the set of edges into nodes in \(X \), i.e., \(\text{in}(X) = \cup_{u \in X} \text{in}(u) \). Note that if both endpoints of an edge are in \(X \), then the edge is in \(\text{out}(X) \) as well as in \(\text{in}(X) \). The theorem below states that the value of any flow can be determined by looking at the traffic on the edges that cross any cut \((S, T)\): Add up the traffic on the edges entering \(T \) from \(S \) and subtract the traffic on the edges entering \(S \) from \(T \).

Flow Theorem. For any flow \(f \) and any \((s, t)\)-cut \((S, T)\) of the flow network \((G, s, t, c)\),

\[
\mathcal{V}(f) = \sum_{e \in \text{out}(S) \cap \text{in}(T)} f(e) - \sum_{e \in \text{out}(T) \cap \text{in}(S)} f(e).
\]

Proof. Let \(f \) be an arbitrary flow and \((S, T)\) be an arbitrary \((s, t)\)-cut of \((G, s, t, c)\). By definition of \(\mathcal{V}(f) \) and the fact that there are no edges into \(s \) we have that \(\mathcal{V}(f) = \sum_{e \in \text{out}(s)} f(e) - \sum_{e \in \text{in}(s)} f(e) \); and for all nodes \(v \in S - \{s\} \) by the conservation property we have that \(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) = 0 \). Therefore,

\[
\begin{align*}
\mathcal{V}(f) &= \sum_{v \in S} \left(\sum_{e \in \text{out}(v)} f(e) - \sum_{e \in \text{in}(v)} f(e) \right) \\
&= \sum_{v \in S} \sum_{e \in \text{out}(v)} f(e) - \sum_{v \in S} \sum_{e \in \text{in}(v)} f(e) \quad \text{[rearrange terms]} \\
&= \sum_{e \in \text{out}(S)} f(e) - \sum_{e \in \text{in}(S)} f(e) \quad \text{[def. of out, in]} \\
&= \left(\sum_{e \in \text{out}(S) \cap \text{in}(T)} f(e) + \sum_{e \in \text{out}(S) \cap \text{out}(T)} f(e) \right) - \left(\sum_{e \in \text{in}(S) \cap \text{out}(T)} f(e) + \sum_{e \in \text{in}(S) \cap \text{in}(T)} f(e) \right) \\
&= \sum_{e \in \text{out}(S) \cap \text{in}(T)} f(e) - \sum_{e \in \text{out}(T) \cap \text{in}(S)} f(e).
\end{align*}
\]

In going from the pre-penultimate to the penultimate line in the above derivation, we use the fact that an edge out of a node in \(S \) goes either into a node in \(S \) or to a node in \(T \) but not both (because \(S \) and \(T \) are disjoint); and, similarly, an edge into a node in \(S \) goes out of either a node in \(S \) or a node in \(T \) but not both. Thus, \(\text{out}(S) = (\text{out}(S) \cap \text{in}(S)) \cup (\text{out}(S) \cap \text{in}(T)) \); and, similarly, \(\text{in}(S) = (\text{in}(S) \cap \text{out}(S)) \cup (\text{in}(S) \cap \text{out}(T)) \), where both unions are disjoint. \(\square \)