A decidable language that is not in \mathbf{P}

Vassos Hadzilacos

Theorem 7.2 The language

$$EXP = \{(M, x) : M \text{ accepts } x \text{ in at most } 2^{|x|} \text{ steps}\}$$

is decidable but it is not in \mathbf{P}.

Proof. To decide whether $\langle M, x \rangle \in EXP$, we run the universal Turing machine on input $\langle M, x \rangle$ for up to $2^{|x|}$ steps or until M on x halts, whichever happens first. If M accepts x within that number of steps, we accept; otherwise we reject.

To prove that $EXP \notin \mathbf{P}$ we use a form of diagonalization. Suppose, for contradiction, that $EXP \in \mathbf{P}$. Then the language

$$EXP' = \{\langle M \rangle : M \text{ accepts } \langle M \rangle \text{ in at most } 2^{|\langle M \rangle|} \text{ steps}\}$$

is also in \mathbf{P}. (This is because, from input $\langle M \rangle$ we can first construct $\langle M, \langle M \rangle \rangle$ in polytime, and then use this as input to a polytime Turing machine M_{EXP} that decides EXP; the answer of M_{EXP} on $\langle M, \langle M \rangle \rangle$ tells us whether $\langle M \rangle \in EXP'$.)

Now consider the complement of EXP', which we denote D (for “diagonal”):

$$D = \{\langle M \rangle : M \text{ does not accept } \langle M \rangle \text{ in at most } 2^{|\langle M \rangle|} \text{ steps}\}.$$

Since EXP' is in \mathbf{P}, so is its complement D. (All we have to do is negate the output of a polytime Turing machine that decides EXP'.) So, let M_D be a polytime Turing machine that decides D, and let $p(n)$ be a polynomial that is an upper bound on the running time of M_D. Because $p(n)$ is a polynomial, there is some natural number n_0 such that for all $n \geq n_0$, $p(n) \leq 2^n$. (This is because every polynomial n^k, no matter how large the degree k, is eventually dominated by every exponential b^n, no matter how small the base $b > 1$.) Without loss of generality, we can assume that $|\langle M_D \rangle| \geq n_0$. (This is because we can pad M_D with junk states or tape symbols — i.e., states that M_D never enters or tape symbols that it never writes — to make its description longer than n_0.) So,

$$p(|\langle M_D \rangle|) \leq 2^{|\langle M_D \rangle|}. \quad (*)$$

Now let’s see what happens if we unleash M_D on itself. There are two cases.

Case 1. M_D accepts $\langle M_D \rangle$. Since the running time of M_D is bounded from above by the polynomial $p(n)$, we have that M_D accepts $\langle M_D \rangle$ in at most $p(|\langle M_D \rangle|)$ steps. By $(*)$, M_D accepts $\langle M_D \rangle$ in at most $2^{|\langle M_D \rangle|}$ steps. Thus, by the definition of D, $\langle M_D \rangle \notin D$; and since M_D is a decider for D, M_D does not accept $\langle M_D \rangle$, contrary to the hypothesis of Case 1.

Case 2. M_D does not accept $\langle M_D \rangle$. In particular, M_D does not accept $\langle M_D \rangle$ in at most $2^{|\langle M_D \rangle|}$ steps. By definition of D then, $\langle M_D \rangle \notin D$; and since M_D is a decider for D, M_D accepts $\langle M_D \rangle$, contrary to the hypothesis of Case 2.

Since both cases lead to contradiction, our original assumption, that $EXP \in \mathbf{P}$, is false. Therefore $EXP \notin \mathbf{P}$, as wanted. \qed