Encoding Turing machines

Encoding of arbitrary $\mathrm{TM} M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, h_{A}, h_{R}\right)$ as a string over $\{0,1, \#\}$.

- Encode each $q \in Q$ by a unique binary string $\langle q\rangle$ of length $\left\lceil\log _{2}|Q|\right\rceil$.
- Encode $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ as the string $\langle Q\rangle=\left\langle q_{1}\right\rangle \#\left\langle q_{2}\right\rangle \# \ldots \#\left\langle q_{n}\right\rangle$ with the convention that
- $\left\langle q_{1}\right\rangle$ is the encoding of the initial state
- $\left\langle q_{2}\right\rangle$ is the encoding of the accept state
- $\left\langle q_{3}\right\rangle$ is the encoding of the reject state.

Encoding Turing machines

- Encode each $a \in \Gamma$ by a unique binary string $\langle a\rangle$ of length $\left[\log _{2}|\Gamma|\right]$.
- Encode $\Sigma=\left\{a_{1}, a, \ldots, a_{m}\right\}$ as the string $\langle\Sigma\rangle=\left\langle a_{1}\right\rangle \#\left\langle a_{2}\right\rangle \# \ldots \#\left\langle a_{m}\right\rangle$.
- Encode Γ similarly with the convention that the encoding of \sqcup is listed first; the encoding of Γ is denoted $\langle\Gamma\rangle$.
- Encode string $x=a_{1} a_{2} \ldots a_{k} \in \Gamma^{*}$ as the string $\langle x\rangle=\left\langle a_{1}\right\rangle\left\langle a_{2}\right\rangle \ldots\left\langle a_{m}\right\rangle$.
(Since we have fixed-length codes for the symbols in Γ we don't need separators.)

Encoding Turing machines

- Encode the state transition $\delta(q, a)=(p, b, D)$ as the string $\langle q\rangle\langle a\rangle\langle p\rangle\langle b\rangle\langle D\rangle$, where $\langle D\rangle=0$ if $D=L$ and $\langle D\rangle=1$ if $D=R$.
- Encode the entire state transition function as $\langle\delta\rangle=\left\langle\operatorname{trans}_{1}\right\rangle\left\langle\operatorname{trans}_{2}\right\rangle \ldots\left\langle\right.$ trans $\left._{\ell}\right\rangle$.
- Encode the entire TM M as

$$
\langle M\rangle=\langle Q\rangle \# \#\langle\Sigma\rangle \# \#\langle\Gamma\rangle \# \#\langle\delta\rangle
$$

Encoding Turing machines

Conventions:
Strings in $\{0,1, \#\}^{*}$ that do not encode a TM according to the above conventions are assumed to encode a fixed TM, say one that rejects all strings in zero moves (i.e., initial state $=$ reject state).

Strings in $\{0,1, \#\}^{*}$ that do not encode a string in Γ^{*} according to the above conventions are assumed to encode a fixed string, say ε (empty string).

Encoding Turing machines

Fix any alphabet sufficient to encode Turing machines (e.g., $\{0,1, \#\}$ or even just $\{0,1\}$.

- The encoding of M is denoted $\langle M\rangle$.
- For any finite mathematical object O (natural number, set, sequence, graph...) the encoding of O is denoted $\langle O\rangle$.
- The encoding of a sequence $O_{1}, O_{2}, \ldots, O_{k}$ of finite mathematical objects is denoted $\left\langle O_{1}, O_{2}, \ldots, O_{k}\right\rangle$. E.g., the encoding of the pair consisting of a Turing machine M and an input x is denoted $\langle M, x\rangle$.

Universal Turing machine

A Turing machine M_{U} that, given $\langle M, x\rangle$, simulates the computation of machine M on input x.
$\mathcal{L}\left(M_{U}\right)=\{\langle M, x\rangle$: Turing machine M accepts input $x\}$

- Tape 1: Input tape --- always contains input $\langle M, x\rangle$
- Tape 2: Contains (encoding of) M's tape; initially blank
- Tape 3: Contains (encoding of) M's state; initially blank

Universal Turing machine

1. From tape 1 copy $\left\langle q_{0}\right\rangle$ (found in $\langle M\rangle$) to tape 3 and copy $\langle x\rangle$ to tape 2. Position the head of tape 2 on the leftmost cell.
2. If the (encoded) state of M on tape 3 is $\left\langle h_{A}\right\rangle$, accept; if it is $\left\langle h_{R}\right\rangle$, reject.
3. Determine the encoding $\langle a\rangle$ of the symbol of M that starts at the present position of the head on tape 2, and the encoding $\langle q\rangle$ of the current state of M on tape 3 . On tape 1 find the encoding $\langle q\rangle\langle a\rangle\langle p\rangle\langle b\rangle\langle D\rangle$ of the state transition that starts with $\langle q\rangle\langle a\rangle$.

Universal Turing machine

4. Simulate the execution of this transition:

- on tape 3 change the encoding of M 's state from $\langle q\rangle$ to $\langle p\rangle$
- on tape 2 change the encoding of M 's symbol that starts at the present position of the tape 2 head from $\langle a\rangle$ to $\langle b\rangle$
- position the head of tape 2 to the beginning of the encoding of the next or previous symbol of M, depending on $\langle D\rangle$

5. Go to step 2

Universal Turing machine

1. From tape 1 copy $\left\langle q_{0}\right\rangle$ (found in $\langle M\rangle$) to tape 3 and copy $\langle x\rangle$ to tape 2. Position the head of tape 2 on the leftmost cell.
2. If the (encoded) state of M on tape 3 is $\left\langle h_{A}\right\rangle$, accept; if it is $\left\langle h_{R}\right\rangle$, reject.
3. Determine the encoding $\langle a\rangle$ of the symbol of M that starts at the present position of the head on tape 2, and the encoding $\langle q\rangle$ of the current state of M on tape 3 . On tape 1 find the encoding $\langle q\rangle\langle a\rangle\langle p\rangle\langle b\rangle\langle D\rangle$ of the state transition that starts with $\langle q\rangle\langle a\rangle$.
