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Rice’s Theorem is a very general and powerful result. Roughly speaking, it states that it every non-
trivial property of recognizable languages is undecidable. As immediate corollaries we have that it is
impossible to decide if, given a Turing machine, its language is regular, or is context-free, or is empty, or
is finite, or contains the string 0100, or contains only strings of odd length, and so on.

To state the theorem we must define what we mean by “property of recognizable languages”. We use a
very general and simple definition: A property P of recognizable languages is any set of recognizable
languages. (Intuitively, if we think of the property P as a predicate that a language satisfies or not, the
set in question is precisely the set of languages that satisfy the predicate.) Property P is non-trivial if
it is neither empty nor the set of all recognizable languages: In other words, some recognizable languages
have property P and some don’t. Do not confuse the property P = ∅ with the property P ′ = {∅}. The
former is trivial (no language has it) while the second is non-trivial (exactly one language has it, namely
the language that contains no strings).

Theorem 5.1 For any non-trivial property P of recognizable languages, the set

TP = {〈M〉 : L(M) ∈ P},

i.e., the set of codes of Turing machines whose languages have property P , is undecidable.

Proof. We consider two cases, depending on whether the empty language has property P .

Case 1. ∅ /∈ P . Since P is nontrivial, there is some recognizable language L ∈ P . Let ML be a Turing
machine that recognizes L; so, L(ML) ∈ P .

To prove that TP is undecidable it suffices to show that U ≤m TP . For this, we show how, given 〈M,x〉,
we can construct a Turing machine M ′ with the following properties:

(a) If M accepts x, then L(M ′) ∈ P .
(b) If M does not accept x, then L(M ′) /∈ P .

Here is how to construct such an M ′ given 〈M,x〉:
M ′ := on input y:

1 run M on x
2 if M accepts x then
3 run ML on y
4 if ML accepts y then accept y
5 else reject y
6 else reject y

Clearly the above transformation of 〈M,x〉 to 〈M ′〉 is computable. Furthermore, we have:

• If M accepts x, then line 1 terminates and the conditional on line 2 is true; so M ′ executes line 3.
Thus, in this case, M ′ accepts y if and only if ML accepts y. So, L(M ′) = L(ML) ∈ P , and (a) is
satisfied.
• If M does not accept x, then M ′ does not accept y, for any y: it either loops on y on line 1 or it

outright rejects y in line 6. So, in this case L(M ′) = ∅. By the hypothesis of the case, ∅ /∈ P , and
so (b) is satisfied.
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So, in this case we have shown that U ≤m TP , as wanted.

Case 2. ∅ ∈ P . Consider the property P — i.e., the set of recognizable languages not in P . Since P is
non-trivial, so is P . So, by Case 1, TP is undecidable. Thus, since the set of decidable languages is closed
under complementation, TP is undecidable as well. But

TP = {〈M〉 : L(M) /∈ P} = {〈M〉 : L(M) ∈ P} = TP .

So, in this case too, TP is undecidable.

As with any powerful tool, it is important to understand not only how to use Rice’s theorem but also
the limits to its applicability. Note the following:

(1) Rice’s theorem cannot be used directly to prove that a language is unrecognizable; only that it is
undecidable. It can be used to prove unrecognizability indirectly, in conjunction with other results.
For example, we might be able to prove that L is unrecognizable by (a) using Rice’s theorem to argue
that L is undecidable, and (b) somehow reasoning that L is recognizable. It then follows that L is
unrecognizable. (Do you see why?) In such cases you should not simply appeal to Rice’s theorem; you
should also state what other facts you use to obtain your desired result.

(2) Rice’s theorem directly applies only to the set of codes of Turing machines whose languages have some
property. It does not apply, for example, to the set{

〈M1,M2, k〉 : M1 and M2 are Turing machines and k ∈ N such that |L(M1) ∩ L(M2)| ≥ k
}

(i.e., the set of encodings of a pair of Turing machines and a non-negative integer k such that the two
Turing machines accept at least k strings in common.) This is an undecidable (but recognizable) set,
but this fact does not follow directly from Rice’s theorem.

(3) Rice’s theorem is about properties of the languages recognized by Turing machines. It is not about

• syntactic properties of Turing machines (e.g., the set of codes of Turing machines that have
exactly 15 states, which is obviously decidable); or
• properties of the behaviour of Turing machines, some of which are decidable (e.g., the set of

codes of Turing machines that never move left on empty tape), while others are undecidable (e.g.,
the set of codes of Turing machines that halt on empty tape).
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