CSCC63

Hamiltonian cycle problem
Instance: \(\langle G \rangle \), where \(G \) is a directed graph

Question: Does \(G \) have a Hamiltonian cycle

Hamiltonian cycle: Visits every node exactly once.

Prove:

Vertex Cover \(\leq_{p}^{m} \) Directed Hamiltonian Cycle

Given \(\langle G, b \rangle \) where \(G \) is a directed graph and \(b \) is a positive integer, construct directed graph \(G_D \) s.t.

\[
\text{\(G \) has a vertex cover of size } b
\]

\[\iff\]

\[G_D\text{ has a directed Hamiltonian cycle}\]
A graph G with vertices 1, 2, 3, and 4.
nodes of G_D corresponding to node 1 of G.
nodes of G_D corresponding to node 2 of G.
nodes of G_D corresponding to node 3 of G.
nodes of G_D corresponding to node 4 of G
nodes of G_D corresponding to edge 12 of G
nodes of G_D corresponding to edge 13 of G
nodes of G_D corresponding to edge 14 of G
nodes of G_D corresponding to edge 23 of G
nodes of G_D corresponding to edge 34 of G
nodes of G_D corresponding to potential cover of size 2
The entire directed graph G_D constructed from G.

The undirected graph G.

Vassos Hadzilacos © 2022
not visited yet
Hamiltonian path of G_D corresponding to vertex cover $\{1,3\}$ of G.