Hamiltonian cycle

Vassos Hadzilacos

The *Directed Hamiltonian Cycle* problem, abbreviated DHC, is the following decision problem: Instance: $\langle G \rangle$, where G is a directed graph.

Question: Does G have a simple cycle that visits every node? (A cycle $u_1, u_2, \ldots, u_k, u_1$ is *simple* if the nodes u_1, \ldots, u_k are all distinct.)

A simple cycle that includes every node is called a *Hamiltonian cycle*, and a graph that has such a cycle is called a *Hamiltonian graph*. Figure 1 shows a Hamiltonian and a non-Hamiltonian graph.

Figure 1: A non-Hamiltonian graph (left) and a Hamiltonian graph (right)

Theorem 10.3 DHC is NP-complete.

PROOF. It is straightforward to show that DHC \in **NP**. Let G = (V, E), and let |V| = n, |E| = m. The certificate is a sequence of nodes u_1, u_2, \ldots, u_n ; this can be represented as a string of $O(m \log n)$ bits. The verifier checks that the nodes in the sequence are pairwise distinct, and that, for every $i \in [1..n - 1]$, (u_i, u_{i+1}) is an edge of G, and that (u_n, u_1) is also an edge of G. This can be done in polynomial time in n and m.

We prove that DHC is **NP**-hard by showing that VERTEXCOVER \leq_m^p DHC.

Given $\langle G, k \rangle$ where G = (V, E) is an undirected graph and k is an integer in [1..|V|], we show how to construct, in polynomial time, a directed graph $G_D = (V_D, E_D)$ such that

$$G$$
 has a vertex cover of size $k \Leftrightarrow G_D$ has a Hamiltonian cycle. (*)

To define the nodes and edges of G_D we need some notation. We abbreviate the edge $\{u, v\}$ of G as uv; since G is undirected, uv is exactly the same edge as vu. We list the edges of G adjacent to node u in some arbitrary order and denote them as $e_u^1, e_u^2, \ldots, e_u^{d_u}$, where d_u is the degree of node u, i.e., the number of edges incident on u. The edge uv is listed both among the edges adjacent to u and also among the edges adjacent to v, so uv is e_u^i for some $i \in [1..d_u]$ as well as e_v^j for some $j \in [1..d_v]$.

We now describe the nodes and edges of the directed graph G_D .

- G_D has the following nodes:
 - -k nodes denoted c_1, \ldots, c_k , which we will call "cover" nodes, and

Figure 2: The four nodes of G_D that correspond to the edge uv of G

- four nodes for every edge uv of G, denoted (u, uv, 0), (u, uv, 1), (v, uv, 0), and (v, uv, 1). Getting a little ahead of ourselves, these four nodes will be connected as shown in Figure 2, with the edges coming from points A and B and going to points C and D to be explained shortly. Imagine the nodes of G_D of the form (u, -, -) being arranged vertically in a column in the order $(u, e_u^1, 0)$, $(u, e_u^1, 1), (u, e_u^2, 0), (u, e_u^2, 1), \ldots, (u, e_u^{d_u}, 0), (u, e_u^{d_u}, 1).$
- G_D has the following edges:
 - For each $i \in [1..k]$ and each $u \in V$, the edge $(c_i, (u, e_u^1, 0))$ i.e., edges from each "cover" node c_i to the first node of the column of G_D nodes that corresponds to each node u of G.
 - For each $i \in [1..k]$ and each $u \in V$, the edge $((u, e_u^{d_u}, 1), c_i)$ i.e., edges from the last node of the column of G_D nodes that corresponds to each node u of G to each "cover" node c_i .
 - For each $uv \in E$, the edges
 - \circ ((u, uv, 0), (u, uv, 1)) and ((v, uv, 0), (v, uv, 1)) the vertical edges shown in Figure 2;
 - \circ ((u, uv, 0), (v, uv, 0)), ((u, uv, 1), (v, uv, 1)), ((v, uv, 0), (u, uv, 0)), ((v, uv, 1), (u, uv, 1)) the horizontal edges shown in Figure 2.
 - For each $u \in V$ and $i \in [1..d_u 1]$, the edge $((u, e_u^i, 1), (u, e_u^{i+1}, 0))$ the edges from A and B to C and D, respectively, shown in Figure 2.

An example of the construction of G_D from G is shown in Figure 3. You may also find useful the step-by-step illustration of the construction in this example described <u>here</u>.

Let us first examine the time needed to construct G_D from G. We have

$$|V_D| = 4m + k$$

$$|E_D| = 2kn + 6m + \sum_{u \in V} (d_u - 1) = 2kn + 6m + 2m - n = (2k - 1)n + 8m.$$

Without loss of generality we can assume that $k \leq n$: otherwise the given instance of VERTEX COVER is obviously a no-instance and therefore we can map any such instance to a trivial no-instance of DHC. Therefore, $|V_D| = O(m+n)$ and $|E_D| = O(n^2 + m) = O(n^2)$. So the size of G_D is polynomial in the size of G, and obviously it can be constructed from it in polynomial time.

It remains to prove (*).

[ONLY IF] Let u_1, \ldots, u_k be a vertex cover of G. We will show that G_D has a Hamiltonian cycle.

Consider the following path: Start at c_1 , continue to $(u_1, e_{u_1}^1, 0)$ (the first node in the "column" of G_D nodes that corresponds to the first node u_1 of the vertex cover of G), and then visit every node of the form $(u_1, -, -)$ in turn, following the "vertical" edges of that column. When the last node $(u_1, e_{u_1}^{d^u}, 1)$ of

Figure 3: The directed graph G_D obtained from the undirected graph G

that column is reached follow the edge to c_2 , continue to $(u_2, e_{u_2}^1, 0)$ (the first node in the "column" of G_D nodes that corresponds to the second node u_2 of the vertex cover of G), and then visit the nodes of the form $(u_2, -, -)$. After visiting these, follow the edge to c_3 and so on, until we have done the same with each node u_i , $i \in [1..k]$, in the vertex cover of G. From the last node of the column of nodes of the form $(u_k, -, -)$, return to c_1 .

The path described above is a simple cycle, but it is not a Hamiltonian cycle because it misses the nodes of the form (v, e_v^j, b) for all $v \neq u_i$, $i \in [1..k]$, $j \in [1..d_v]$, and $b \in \{0, 1\}$ — i.e., the nodes in the columns that do not correspond to nodes of G in the vertex cover. Consider any such node, say (v, e_v^j, b) . Recall that e_v^j is the edge vu in G, for some node u; and since v is not in the vertex cover of G, u must be. So, $e_v^j = e_u^i$ for some u in the vertex cover and $i \in [1..d_u]$. Thus, we can modify the above path to include the nodes (v, e_v^j, b) by replacing the edge $(u, e_u^i, 0), (u, e_u^i, 1)$ by the path $(u, e_u^i, 0), (v, e_v^j, 0), (v, e_v^j, 1), (u, e_u^i, 1)$. (See Figure 2: instead of going directly down from A to D, we take a detour to include the two nodes on the right).

By adjusting the path in this manner for all the nodes it misses, we obtain a Hamiltonian cycle of G_D .

[IF] Suppose that H is a Hamiltonian cycle of G_D . We will show that G has a vertex cover of size k.

The cycle H must pass through all the nodes c_1, \ldots, c_k in some order. Without loss of generality, assume that it does so in this order (we can ensure this by re-indexing the nodes c_1, \ldots, c_k , if necessary). So, H consists of k segments, each starting at c_i and ending in $c_{i\oplus 1}$, for $i \in [1..k]$, where $i \oplus 1 = (i \mod k) + 1$ (so the "next" integer after k is 1):

$$H = c_1 \rightsquigarrow c_2 \rightsquigarrow c_3 \rightsquigarrow \cdots \rightsquigarrow c_k \rightsquigarrow c_1.$$

From the definition of G_D , the first node after c_i on the $c_i \sim c_{i\oplus 1}$ segment of C is $(u_i, e_{u_i}^1, 0)$, for some node u_i of G. We will show that u_1, u_2, \ldots, u_k form a vertex cover of G.

To see why, first refer to Figure 2. If H enters this group of four nodes from A, it must exit from C: if it exits from D it will miss one of the other two nodes of the group. Similarly, if H enters this group of four nodes from B, it must exit from D. Therefore,

every node on the $c_i \sim c_{i\oplus 1}$ segment of H, except c_i and $c_{i\oplus 1}$, is of the form $(-, u_i v, -)$

(recall that $u_i v$ is identical to $v u_i$). This implies that

for every node (-, e, -) on H, the edge e of G is covered by one of the nodes u_1, \ldots, u_k .

Since *H* passes through every node of G_D , and for every edge *e* of *G* there are nodes (-, e, -) in G_D , it follows that u_1, \ldots, u_k is a vertex cover of *G*, as wanted.

The undirected Hamiltonian cycle problem

The undirected Hamiltonian cycle problem, UHC, is just like DHC, except that the graph G is undirected. Note that a cycle in an undirected graph must have length at least three; that is, if $\{u, v\}$ is an edge of G, u, v, u is not a cycle. (In contrast, a directed graph can have cycles of length 2.) Figure 4 shows two undirected graphs, one that has no Hamiltonian cycle and one that does.

Figure 4: Undirected graphs without (left) and with (right) Hamiltonian cycle

Theorem 10.4 UHC is NP-complete.

PROOF SKETCH. It is straightforward to show that UHC is in **NP**. To show that it is **NP**-hard, we sketch a polytime mapping reduction of DHC to UHC, leaving the detailed argument as an exercise.

Given a directed graph G = (V, E) we construct an undirected graph G' = (V', E') such that G has a Hamiltonian cycle if and only G' does. Intuitively, the idea is to create three nodes u_1, u_2, u_3 in G' for each node u of G. We add edges $\{u_1, u_2\}$ and $\{u_2, u_3\}$, and for every (directed) edge (u, v) of G we add the (undirected) edge $\{u_3, v_1\}$ in G'. This construction is illustrated in Figure 5.

Figure 5: Illustration of reduction of DHC to UHC

More precisely, if G = (V, E), we define G' = (V', E') as follows:

$$V' = V \times \{1, 2, 3\}$$

$$E' = \{\{(u, 1), (u, 2)\}, \{(u, 2), (u, 3)\}: u \in V\} \cup \{\{(u, 3), (v, 1)\}: (u, v) \in E\}$$

It is obvious that G' can be constructed in time polynomial in the size of G. We leave it as an exercise to prove that G has a Hamiltonian cycle if and only if G' does. The only-if direction is straightforward. The converse is a little more delicate. (Check that your proof does not apply if instead we had "split" each node u of G into two, rather than three, nodes in G'. Show, by means of a counterexample, that this simpler construction is **not** a correct reduction.)