Hamiltonian cycle

Vassos Hadzilacos

The Directed Hamiltonian Cycle problem, abbreviated DHC, is the following decision problem:
Instance: $\langle G\rangle$, where G is a directed graph.
Question: Does G have a simple cycle that visits every node? (A cycle $u_{1}, u_{2}, \ldots, u_{k}, u_{1}$ is simple if the nodes u_{1}, \ldots, u_{k} are all distinct.)
A simple cycle that includes every node is called a Hamiltonian cycle, and a graph that has such a cycle is called a Hamiltonian graph. Figure 1 shows a Hamiltonian and a non-Hamiltonian graph.

Figure 1: A non-Hamiltonian graph (left) and a Hamiltonian graph (right)

Theorem 10.3 DHC is $\boldsymbol{N P}$-complete.

Proof. It is straightforward to show that DHC \in NP. Let $G=(V, E)$, and let $|V|=n,|E|=m$. The certificate is a sequence of nodes $u_{1}, u_{2}, \ldots, u_{n}$; this can be represented as a string of $O(m \log n)$ bits. The verifier checks that the nodes in the sequence are pairwise distinct, and that, for every $i \in[1 . . n-1]$, $\left(u_{i}, u_{i+1}\right)$ is an edge of G, and that (u_{n}, u_{1}) is also an edge of G. This can be done in polynomial time in n and m.

We prove that DHC is NP-hard by showing that VertexCover \leq_{m}^{p} DHC.
Given $\langle G, k\rangle$ where $G=(V, E)$ is an undirected graph and k is an integer in $[1 . .|V|]$, we show how to construct, in polynomial time, a directed graph $G_{D}=\left(V_{D}, E_{D}\right)$ such that

$$
\begin{equation*}
G \text { has a vertex cover of size at most } k \Leftrightarrow G_{D} \text { has a Hamiltonian cycle. } \tag{}
\end{equation*}
$$

To define the nodes and edges of G_{D} we need some notation. We abbreviate the edge $\{u, v\}$ of G as $u v$; since G is undirected, $u v$ is exactly the same edge as $v u$. We list the edges of G adjacent to node u in some arbitrary order and denote them as $e_{u}^{1}, e_{u}^{2}, \ldots, e_{u}^{d_{u}}$, where d_{u} is the degree of node u, i.e., the number of edges incident on u. The edge $u v$ is listed both among the edges adjacent to u and also among the edges adjacent to v, so $u v$ is e_{u}^{i} for some $i \in\left[1 . . d_{u}\right]$ as well as e_{v}^{j} for some $j \in\left[1 . . d_{v}\right]$.

We now describe the nodes and edges of the directed graph G_{D}.

- G_{D} has the following nodes:
- k nodes denoted c_{1}, \ldots, c_{k}, which we will call "cover" nodes, and

Figure 2: The four nodes of G_{D} that correspond to the edge $u v$ of G

- four nodes for every edge $u v$ of G, denoted $(u, u v, 0),(u, u v, 1),(v, u v, 0)$, and $(v, u v, 1)$. Getting a little ahead of ourselves, these four nodes will be connected as shown in Figure 2, with the edges coming from points A and B and going to points C and D to be explained shortly. Imagine the nodes of G_{D} of the form ($\left.u,-,-\right)$ being arranged vertically in a column in the order ($u, e_{u}^{1}, 0$), $\left(u, e_{u}^{1}, 1\right),\left(u, e_{u}^{2}, 0\right),\left(u, e_{u}^{2}, 1\right), \ldots,\left(u, e_{u}^{d_{u}}, 0\right),\left(u, e_{u}^{d_{u}}, 1\right)$.
- G_{D} has the following edges:
- For each $i \in[1 . . k]$ and each $u \in V$, the edge $\left(c_{i},\left(u, e_{u}^{1}, 0\right)\right)$ - i.e., edges from each "cover" node c_{i} to the first node of the column of G_{D} nodes that corresponds to each node u of G.
- For each $i \in[1 . . k]$ and each $u \in V$, the edge $\left(\left(u, e_{u}^{d_{u}}, 1\right), c_{i}\right)$ - i.e., edges from the last node of the column of G_{D} nodes that corresponds to each node u of G to each "cover" node c_{i}.
- For each $u v \in E$, the edges - $((u, u v, 0),(u, u v, 1))$ and $((v, u v, 0),(v, u v, 1))$ - the vertical edges shown in Figure 2;
- $((u, u v, 0),(v, u v, 0)),((u, u v, 1),(v, u v, 1)),((v, u v, 0),(u, u v, 0)),((v, u v, 1),(u, u v, 1))-$ the horizontal edges shown in Figure 2.
- For each $u \in V$ and $i \in\left[1 . . d_{u}-1\right]$, the edge $\left(\left(u, e_{u}^{i}, 1\right),\left(u, e_{u}^{i+1}, 0\right)\right)$ - the edges from A and B, and to C and D shown in Figure 2.

An example of the construction of G_{D} from G is shown in Figure 3. You may also find useful the step-by-step illustration of the construction in this example described here.

Let us first examine the time needed to construct G_{D} from G. We have

$$
\begin{aligned}
& \left|V_{D}\right|=4 m+k \\
& \left|E_{D}\right|=2 k m+6 m+\sum_{u \in V}\left(d_{u}-1\right)=2 k m+6 m+2 m-n=2 k m+8 m-n .
\end{aligned}
$$

Without loss of generality we can assume that $k<n$: otherwise the given instance of Vertex Cover is obviously a yes-instance and therefore we can map any such instance to a trivial yes instance of DHC. Therefore, $\left|V_{D}\right|=O(m+n)$ and $\left|E_{D}\right|=O(m n)$. So the size of G_{D} is polynomial in the size of G, and obviously it can be constructed from it in polynomial time.

It remains to prove $(*)$.
[Only IF] Let u_{1}, \ldots, u_{k} be a vertex cover of G. We will show that G_{D} has a Hamiltonian cycle.
Consider the following path: Start at c_{1}, continue to $\left(u_{1}, e_{u_{1}}^{1}, 0\right)$ (the first node in the "column" of G_{D} nodes that corresponds to the first node u_{1} of the vertex cover of G), and then visit every node of the form ($u_{1},-,-$) in turn, following the "vertical" edges of that column. When the last node ($u_{1}, e_{u_{1}}^{d^{u}}, 1$) of

Figure 3: The directed graph G_{D} obtained from the undirected graph G
that column is reached follow the edge to c_{2}, continue to $\left(u_{2}, e_{u_{2}}^{1}, 0\right)$ (the first node in the "column" of G_{D} nodes that corresponds to the second node u_{2} of the vertex cover of G), and then visit the nodes of the form $\left(u_{2},-,-\right)$. After visiting these, follow the edge to c_{3} and so on, until we have done the same with each node $u_{i}, i \in[1 . . k]$, in the vertex cover of G. From the last node of the column of nodes of the form $\left(u_{k},-,-\right)$, return to c_{1}.

The path described above is a simple cycle, but it is not a Hamiltonian cycle because it misses the nodes of the form $\left(v, e_{v}^{j}, b\right)$ for all $v \neq u_{i}, i \in[1 . . k], j \in\left[1 . . d_{v}\right]$, and $b \in\{0,1\}$ - i.e., the nodes in the columns that do not correspond to nodes of G in the vertex cover. Consider any such node, say $\left(v, e_{v}^{j}, b\right)$. Recall that e_{v}^{j} is the edge $v u$ in G, for some node u; and since v is not in the vertex cover of G, u must be. So, $e_{v}^{j}=e_{u}^{i}$ for some u in the vertex cover and $i \in\left[1 . . d_{u}\right]$. Thus, we can modify the above path to include the nodes $\left(v, e_{v}^{j}, b\right)$ by replacing the edge $\left(u, e_{u}^{i}, 0\right),\left(u, e_{u}^{i}, 1\right)$ by the path $\left(u, e_{u}^{i}, 0\right),\left(v, e_{v}^{j}, 0\right),\left(v, e_{v}^{j}, 1\right),\left(u, e_{u}^{i}, 1\right)$. (See Figure 2: instead of going directly down from A to D, we take a detour to include the two nodes on the right).

By adjusting the path in this manner for all the nodes it misses, we obtain a Hamiltonian cycle of G_{D}. [IF] Suppose that H is a Hamiltonian cycle of G_{D}. We will show that G has a vertex cover of size k.

The cycle H must pass through all the nodes c_{1}, \ldots, c_{k} in some order. Without loss of generality, assume that it does so in this order (we can ensure this by re-indexing the nodes c_{1}, \ldots, c_{k}, if necessary). So, H consists of k segments, each starting at c_{i} and ending in $c_{i \oplus 1}$, for $i \in[1 . . k]$, where $i \oplus 1=$ $(i \bmod k)+1$ (so the "next" integer after k is 1):

$$
H=c_{1} \leadsto c_{2} \leadsto c_{3} \leadsto \cdots \leadsto c_{k} \leadsto c_{1} .
$$

From the definition of G_{D}, the first node after c_{i} on the $c_{i} \leadsto c_{i \oplus 1}$ segment of C is $\left(u_{i}, e_{u_{i}}^{1}, 0\right)$, for some node u_{i} of G. We will show that $u_{1}, u_{2}, \ldots, u_{k}$ form a vertex cover of G.

To see why, first refer to Figure 2. If H enters this group of four nodes from A, it must exit from C : if it exits from D it will miss one of the other two nodes of the group. Similarly, if H enters this group of four nodes from B, it must exit from D. Therefore,

$$
\text { every node on the } c_{i} \leadsto c_{i \oplus 1} \text { segment of } C \text {, except } c_{i} \text { and } c_{i \oplus 1} \text {, is of the form }\left(-, u_{i} v,-\right)
$$

(recall that $u_{i} v$ is identical to $v u_{i}$).
From this, it follows that u_{1}, \ldots, u_{k} is a vertex cover of G : Suppose, for contradiction, that some edge $v w$ of G is not covered by these nodes. Therefore, by (\dagger), nodes of G_{D} of the form $(-, v w,-)$ are not in any of the k segements of H, which contradicts the fact that H is a Hamiltonian cycle of G_{D}. We conclude that u_{1}, \ldots, u_{k} is a vertex cover of G, i.e., G has a vertex cover of size at most k, as wanted.

The undirected Hamiltonian cycle problem

The undirected Hamiltonian cycle problem, UHC, is just like DHC, except that they graph G is undirected. Note that a cycle in an undirected graph must have length at least three; that is, if $\{u, v\}$ is an edge of G, u, v, u is not a cycle. (In contrast, a directed graph can have cycles of length 2.) Figure 4 shows two undirected graphs, one that has no Hamiltonian cycle and one that does.

Figure 4: Undirected graphs without (left) and with (right) Hamiltonian cycle

Theorem 10.4 UHC is $\boldsymbol{N P}$-complete.
Proof Sketch. It is straightforward to show that UHC is in NP. To show that it is NP-hard, we sketch a polytime mapping reduction of DHC to UHC, leaving the detailed argument as an exercise.

Given a directed graph $G=(V, E)$ we construct an undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ such that G has a Hamiltonian cycle if and only G^{\prime} does. Intuitively, the idea is to create three nodes u_{1}, u_{2}, u_{3} in G^{\prime} for each node u of G. We add edges $\left\{u_{1}, u_{2}\right\}$ and $\left\{u_{2}, u_{3}\right\}$, and for every (directed) edge (u, v) of G we add the (undirected) edge $\left\{u_{3}, v_{1}\right\}$ in G^{\prime}. This construction is illustrated in Figure 5.

Figure 5: Illustration of reduction of DHC to UHC
More precisely, if $G=(V, E)$, we define $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows:

$$
\begin{aligned}
& V^{\prime}=V \times\{1,2,3\} \\
& E^{\prime}=\{\{(u, 1),(u, 2)\},\{(u, 2),(u, 3)\}: u \in V\} \cup\{\{(u, 3),(v, 1)\}:(u, v) \in E\}
\end{aligned}
$$

It is obvious that G^{\prime} can be constructed in time polynomial in the size of G. We leave it as an exercise to prove that G has a Hamiltonian cycle if and only if G^{\prime} does. The only-if direction is straightforward. The converse is a little more delicate. (Check that your proof does not apply if instead we had "split" each node u of G into two, rather than three, nodes in G^{\prime}. Show, by means of a counterexample, that this simpler construction is not a correct reduction.)

