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Abstract
We develop an acoustic feature set for the estimation of a per-
son’s age from a recorded speech signal. The baseline features
are Mel-frequency cepstral coefficients (MFCCs) which are ex-
tended by various prosodic features, pitch and formant frequen-
cies. From experiments on the University of Florida Vocal Ag-
ing Database we can draw different conclusions. On the one
hand, adding prosodic, pitch and formant features to the MFCC
baseline leads to relative reductions of the mean absolute error
between 4-20%. Improvements are even larger when percep-
tual age labels are taken as a reference. On the other hand,
reasonable results with a mean absolute error in age estimation
of about 12 years are already achieved using a simple gender-
independent setup and MFCCs only. Future experiments will
evaluate the robustness of the prosodic features against channel
variability on other databases and investigate the differences be-
tween perceptual and chronological age labels.
Index Terms: Age regression, age estimation, vocal aging,
prosodic features, support vector regression (SVR)

1. Introduction
This paper investigates the problem of automatic age estima-
tion of adult speakers’ voices. The goal is to develop a suitable
acoustic feature set for this task. Linville [2] has described a
number of acoustic properties that listeners often consider to be
characteristic for aged speakers, like coalescence in the pitch of
adult male and female voices, increased harshness, strain, vocal
tremor and breathiness. Other features include reduced loud-
ness, slower speaking rate and longer pause duration. Linville’s
findings suggest that virtually all aspects of the speech signal
should be included in the search for an appropriate feature set
for age estimation. This is supported by results in the literature
on physiological changes (refer to [3] for a recent overview):
the speech generation process is affected by age in many dif-
ferent ways, for instance the vocal tract length can be increased
by a lowered glottis position, the pulmonary function may be
reduced and the vocal folds may become stiffer.

Therefore our study strives to cover a very broad range of
different feature types, including not only short-term cepstral
features but also long-term prosodic features. In order to eval-
uate to what extent the features contain useful information we
measure the mean absolute error of a support vector machine for
the estimation of a speaker’s age. For the experiments the Uni-
versity of Florida Vocal Aging Database (UF-VAD) is utilized.
UF-VAD is a collection of read speech by male and female
adult speakers representing equally young, middle aged, and
older speakers (see [4] for a full description of the database).
For each speaker in the database, not only the actual age but
also perceived age judgements are available. This allows us to
benchmark recognition rates of the automatic classifier against
human age perception.

The problem of automatic age classification from the
speech signal has already been investigated by others. Mine-
matsu et al. showed in [8] a high correlation between LDA
scores and five perceptual age classes. Gaussian mixture mod-
els (GMM) for the different age classes are combined with two
prosodic features for speaking rate and local power perturba-
tion. Metze et al. compare four different systems for age and
gender classification in [10]. Four different age groups (chil-
dren, young speakers, adults, and seniors) are distinguished.
The best performing system is based on Mel-frequency cep-
strum coefficients (MFCCs) as features and phone recognizers
as acoustic models for each age group. A system based on a
combination of GMM and support vector machines, similar to
many state-of-the-art speaker recognizers, has been described
by Bocklet et al. in [1]. Müller and Burkhardt compare differ-
ent methods to combine a long-term pitch feature with the short-
term MFCC-based feature vectors in [5]. The focus of the above
mentioned papers is on developing a system for the disambigua-
tion of few age classes of practical relevance, sometimes by ex-
tending the conventional cepstral feature vector with one or two
selected prosodic features. This is in contrast to our work which
concentrates on the development of a large feature vector that
allows to estimate an adult speaker’s age as precisely as possi-
ble. Therefore this paper is much more comparable to Schötz’s



publication [6]. Schötz evaluates several different prosodic and
spectral features like fundamental frequency, formants, energy,
jitter, shimmer, and duration for the task of age estimation using
CARTs. Our work differs in the sense that we are less interested
in comparing selected features but more in the development of
a feature vector integrating many different cepstral, spectral and
prosodic parameters to get a low error rate.

The rest of the paper is structured as follows: In section 2
we describe the database we used in our experiments. Then we
present in section 3 the analyzed features and the applied feature
selection algorithm. In the subsequent section the setup of the
experiments is described. After discussing the results the paper
ends with the conclusions and a short outlook on future work.

2. Data
The data used for our experiments is taken from the Univer-
sity of Florida Vocal Aging Database (UF-VAD) [4], a corpus
of American English recorded between 2003 and 2007. The
database itself features 150 different speakers and 1350 utter-
ances of read speech originating from known material such as
the Rainbow Passage, the Grandfather Passage, and SPIN sen-
tences. Each subject reads approximately 2 minutes of the same
text into the same microphone and recording conditions, aggre-
gating a total corpus length of about 5 hours. Moreover, the
contributing speakers are evenly distributed in terms of gender
and three general age groups. That is, we have 25 male and
25 female speakers from each of young (18-29), middle-aged
(40-55), and old (62-92) categories. This gives 75 representa-
tives for each gender, as well as 50 representatives for each age
group. The mean ages for each age group are 21, 48, and 79,
respectively.

For our purposes, the consistency of the UF-VAD helps us
normalize the significant variabilities caused by factors other
than age. The use of the same microphone, recording equip-
ment and environment reduces the likelihood of channel depen-
dence in our resulting age-classifier, while the use of the same
read text across all speakers reduces its dependence on varying
linguistic content.

Finally, the corpus also provides a separate set of data on the
perceived ages of the contributing speakers, 147 listeners esti-
mated the respective ages of the corpus’ contributing speakers
from the sentence-level material in the database (16 sentences
total). The set of results were included in the UF-VAD, which
allow for the possibility of comparing our age-classification sys-
tem with the abilities of human perception.

3. Features
We extract several different types of features to cover a broad
range of phonetic dimensions. As baseline we use the well-
known Mel-frequency cepstrum coefficients (MFCCs). Three
additional groups of features are computed from voiced seg-
ments of the speech signal: pitch f0, the first four formants
F1 − F4 and prosodic features. In combination we get 220
features. In order to reduce the total number of features we ap-
ply a selection process called MAX R which is described at the
end of the section.

3.1. MFCCs

The MFCCs are the standard features in speech processing.
Here the MFCC vector has a dimension of 24, consisting of
the log-energy, the first 11 static MFCCs and 12 dynamic fea-

tures, which are calculated using a regression-line over the 5
surrounding frames. The window size of each frame is 16 ms
and the frame shift is 10 ms.

3.2. Pitch and formants

The pitch f0 is computed using the normalized cross correlation
function and dynamic programming. The formant trajectories
are estimated by Linear Prediction Coding (LPC) and optimized
with dynamic programming as well. For each frame the first
four formant frequencies F1 − F4 are extracted together with
the corresponding bandwidthsB1−B4. Pitch and formants are
computed with a frame shift of 10 ms each. As implementation
of both extraction algorithms we used the Snack Toolkit [15].

3.3. Prosodic features

Once the so-called basic features pitch and energy and the
voiced-unvoiced decision have been computed for each frame
of the signal, a high-dimensional prosodic feature vector is gen-
erated for each voiced speech segment. The prosodic features
are derived from the basic features, the duration of the seg-
ments, the speech pauses and the speech quality (i.e. jitter
and shimmer). Various attributes model the prosodic proper-
ties of each voiced segment. As an example Fig. 1 shows the
attributes for the basic feature pitch f0. Each of the attributes
results in a prosodic feature. In addition a context of five voiced
segments is taken into account yielding an even larger context-
dependent prosodic feature vector. For an in-depth description
of the prosodic feature set see [12, 13]. All in all we get a vector
of 187 different prosodic features, each of them belongs to one
of the following five feature groups: Pitch, Energy, Duration,
Pause and Quality.
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Figure 1: Modeling the pitch contour in a voiced segment (after
[12]).

3.4. Feature selection with MAX R

Feature selection is performed using multiple regres-
sion/correlation analysis as described in [11]. This procedure
is a sped up alternative to the MAX R algorithm presented in
[14]. The basic idea of the algorithm is to select the best feature
subset by maximizing the explained variance R2 with R as
correlation. In this respect the approach iteratively determines
the best subset consisting of one feature, two features and
so on. For this MAX R calculates all possible exchanges of
additional features (after [14, p. 86]) until there is no better
subset. If additional features doesn’t improve the results, the



algorithm stops. For each subset the weighted correlations of
the features are computed by solving the least square error to
the system of linear equations y = Xβ where X is the matrix
of regressor effects (feature vectors in the rows) and β is the
vector with the regression parameters (feature weights). y is
the vector of response values, i.e. in our case the ages of the
speakers.

4. Experiments
To get an objective measurement of how the different fea-
tures reflect the changes of the aging voice, a regression sys-
tem is constructed that estimates the age of each speaker in the
database.

4.1. Setup

For each speaker in the database a single high-dimensional fea-
ture vector is generated which contains all information that is
available: the meta feature vector. The age estimation system is
trained and tested on the basis of this meta feature vector.

4.1.1. Feature modeling

The age estimation experiments require a constant dimension of
the meta feature vector that is independent of the length of the
utterances and of the underlying features which can be extracted
on the frame or segment level. Therefore the meta feature vector
consists only of the speaker-wise means µ and standard devia-
tions σ of the different features. This kind of modeling cor-
responds to a Gaussian mixture model with only one mixture.
So, the dimension of the meta feature vector is twice the sum
of the dimensions of the underlying base features. With the 220
different features we obtain for each speaker a meta feature vec-
tor of dimension 440, containing the µ and σ of the pitch, the
formants, MFCCs and the prosodic features.

4.1.2. Regression

For the age estimation a Support Vector Regression (SVR) with a
linear kernel is applied. The method of SVR adopts the principle
of support vectors known from classification with Support Vec-
tor Machines (SVM) for the area of regression [7]. The system
is evaluated with a n-fold cross validation (leave one speaker
out) where n equals the number of instances in the database.
Afterwards of all folds the mean absolute error (MAE) in years
is calculated.

4.2. Results

The age estimation experiments are realized under various con-
ditions. On the one hand they are arranged under the aspect
of speakers gender: the SVR system estimates the chronological
and the perceived age of males and females. Additionally males
and females are combined to a gender independent set. On the
other hand we look at the features and process them separately:
First we choose the different feature sets by hand: pitch, for-
mants, MFCCs and prosodic features. Second we used MAX R
to analytically select features. The results of our age estimation
experiments are summarized in Tab. 1. In the last column one
can find the results on all features.

4.3. Discussion

The results shown in Tab. 1 demonstrate that the chronologi-
cal (actual) age of a speaker can be effectively estimated using

a combination of prosodic, spectral and cepstral features: both
for males and females the mean absolute error (MAE) is about
ten years. When the genders are combined in a single exper-
iment as shown in the last two rows of Tab. 1 there is only a
relatively small degradation leading to a MAE of 12 years. In
our opinion this indicates that the features we used for age es-
timation are to a certain extent gender-independent, or, put the
other way round, that there are similarities in the vocal aging
process of male and female speakers. This is supported by an
analysis of the features preferred by the MAX R-selection al-
gorithm: Tab. 2 compares the number of features selected from
each feature group for both genders. It can be easily seen that
both for male and female speakers there is a clear preference
of MFCCs, Pitch, and Energy-based features which persists for
the combined experiment. For female speakers, formants seem
to be more valuable than for male speakers. Our observation
of small gender differences in the features is somewhat surpris-
ing, because it is contradictory to the results of Schötz [6], who
found more prominent differences between the male and female
speakers, and to Higgins and Saxman [9] who state that both
genders age differently.

Comparing the errors for the different feature groups in
Tab. 1 shows that in all cases f0 performs worst of all features.
For chronological age labels, MFCCs are the best performing
feature group. Adding all prosodic features, pitch and formants
to the MFCC reduces the MAE by 20% relative for the female
speakers and just by 4% relative for the male speakers. For the
experiment with both genders combined, no improvement could
be found over standard MFCCs by adding other feature groups.
Feature selection using the MAX R algorithm leads to a much
smaller feature vector dimension together with a small increase
in error. Interestingly the relative reduction in MAE by adding
prosodic features, pitch and formants to the MFCC baseline is
much larger for the perceptual age labels than for the chrono-
logical labels: when using MAX R the relative reduction for
female speakers is 25% and for male speakers it is 12%. For
both genders combined, a relative reduction in MAE of 23%
has been achieved.

For all feature types the estimation error is smaller when
computed w.r.t. the perceptual age than for the chronological
age. This fits to our expectation that it is difficult to estimate
the age for a certain subset of the speakers, both for the humans
and the computer. By comparing the perceptual age estimations
and the chronological age the average human performance can
be computed: the MAE for human listeners is 6.4 years. Thus,
the human error is about 50% smaller than for the machine.

5. Conclusions and future work
Our age-regression experiments demonstrated that a speaker’s
age can be effectively estimated using a feature vector of
prosodic, spectral and cepstral features. In order to achieve rea-
sonable results it seems that it is not necessary to distinguish
male and female speakers beforehand. Feature selection exper-
iments show that MFCCs, pitch and energy are the most impor-
tant feature groups. The relative error reductions over a stan-
dard MFCC baseline feature vector by adding prosodic, spectral
and pitch features are between 4-20% relative. For a gender-
independent setup, no improvement at all could be measured.
Considering the additional effort for extracting these features,
we come to the conclusion that MFCC features are sufficient to
build a practical system. However, the error of this system is
about twice the error of human listeners. Furthermore we ob-
served significant improvements from adding prosodic, spectral



Table 1: MAE (Mean Absolute Error) of the experiments with different feature sets. MAX R column shows the results after the
MAX R feature selection step described in section 3.4.

MAE (years) f0 Formants MFCCs Prosodic MAX R All
Females Perc 11.3 9.5 9.2 7.3 6.9 6.2

Chrono 18.6 13.5 12.0 14.1 10.0 9.5
Males Perc 13.2 11.0 8.6 9.5 7.6 7.9

Chrono 19.1 15.6 10.5 11.6 13.3 10.1
Combined Perc 14.5 11.0 9.0 9.2 6.9 9.4

Chrono 21.0 16.6 11.3 14.9 12.8 11.5

Table 2: Analysis of the features selected by MAX R. Count of the different feature groups.

female male combined
perc chrono perc chrono perc chrono

∑
MFCC 5 3 1 3 4 5 21
Formant 3 3 1 1 0 1 9
Pitch 4 3 3 3 2 2 17
Energy 2 4 4 4 3 5 22
Duration 1 2 3 1 2 0 9
Pause 0 0 0 0 0 0 0
Quality 0 2 0 1 1 1 5
Number of features 15 17 12 13 12 14 83

and pitch features when using the perceptual age labels as a ref-
erence. Therefore future investigations will concentrate on the
differences between the chronological and the perceptual age
labels. Furthermore we plan to measure the robustness of the
prosodic features w.r.t. channel variations, an aspect that can-
not be evaluated using the UF-VAD database.
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