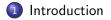
An Extended Analysis of a Method of All-words Sense Disambiguation

VARADA KOLHATKAR kolha002@d.umn.edu Advisor: Dr. Ted Pedersen

Thesis defense, July 28, 2009



2 Background

- WN-SRAW Algorithm
- 4 Experimental Data
- Experiments and Results
- 👩 Related Work
- 7 Conclusion
- 8 Future Work

4 E

3

Word Sense Disambiguation

Words in a natural language often have multiple senses.

Sir William Walton was a British composer and conductor.

conductor \to the person who leads a musical group conductor \to a substance that readily conducts electricity and heat

- Humans are fairly adept in solving ambiguity by drawing on context and their knowledge of the world.
- Useful in various applications if software could distinguish between different senses of a word.
 - Examples: Machine Translation, Information Retrieval, Question Answering etc.
- Word Sense Disambiguation (WSD) is the process of selecting the correct sense of a word in given context.

イロト 不得下 イヨト イヨト 二日

All-words Sense Disambiguation

- All-words Sense Disambiguation (all-words) is the process of disambiguating all words in a text.
- Why all-words?
 - Helps understand the overall meaning of a sentence.
 - Can be used more generally in the translation, searching or summarization of a text.
- Complex problem : Mapping between words and senses is many-to-many.
- Current state-of-the-art accuracy remains a long way off far from natural human abilities.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Contributions of the Thesis

- The thesis starts by formalizing the algorithm of Michelizzi, 2005 for all-words.
- The time complexity is also examined.
- The thesis presents our analysis of some of the components that might be contributing to the level of error currently plaguing all-words sense disambiguation.
- Enhanced the method of Michelizzi in significant ways (via version 0.19 which is freely available on the Web).

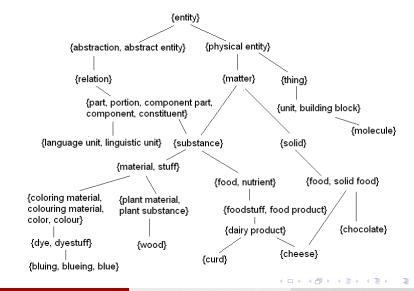
< 回 ト < 三 ト < 三 ト

WordNet Overview

- Lexical database based on psycholinguistic principles.
- Contains only open class words.
 nouns (n), verbs (v), adjectives (a), adverbs (r)
- Concepts are organized in a semantic network.
- Nodes represent cognitively synonymous concepts called synsets.
 e.g. {conductor, music director, director} is a synset of concept 'the person who leads a musical group'.
- Edges represent relations between concepts.
- Separate network for each part of speech.
- The networks of nouns and verbs may be viewed as hierarchies.
- squash#n#1 means the first sense of the noun squash.

• • = • • = •

WordNet *is-a* Hierarchy



VARADA KOLHATKAR kolha002@d.umm.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 7 / 38

WordNet Overview

- Other relations include has-a, antonyms, pertaining-to, derived-from etc.
 - ship has-a deck.
 - rich is an antonym of poor.
 - dental pertains to tooth.
- About 155,287 words organized in over 115,000 synsets
- A total of 207,000 word-sense pairs.
- Contains about 117,700 nouns, 11,500 verbs, 21,400 adjectives and 4400 adverbs.
- Structure is well suited for the tasks where interpretation of a word based on its lexical semantics is required
- A very useful resource for the research in WSD.

The Measures of Similarity and Relatedness

- Between which pair is the stronger relation?
 rose and flower or rose and calculator
- A variety of similarity and relatedness measures that exploit structure of WordNet
- Similarity Vs. Relatedness
 - rich and poor are related (antonyms), however they are not similar.
 - Similarity is limited to *is-a* hierarchies
 - Relatedness is more general and considers all relations.

.

Path Based Measures

- Counting number of edges between two synsets.
- The greater the path-length, less similar the synsets are.
- Unfortunately not well suited where each node has different interpretation.
- Measures that use path-lengths that incorporate a variety of correcting factors
- Depth of the taxanomy [Leacock and Chodorow, 1994 (lch)]
- Depth of the least common subsumer [Wu and Palmer, 1994 (wup)]
- Relatedness measure, lexical chains [Hirst and St-Onge, 1998 (hso)]

(日) (四) (日) (日) (日)

Information Content Based Measures

- Information Content (*IC*): Measure specificity of a concept.
 - general concept entity: low IC, specific concept cheese: high IC.
- IC of the least common subsumer [Resnik, 1995 (res)].
- *IC* to find semantic distance between concepts [Jiang and Conrath, 1997 (jcn)].
- concepts sharing a lot of specific information are more similar [Lin, 1997 (lin)]

くぼう くほう くほう しほ

Gloss Based Measures

- Relatedness measures
- Can be applied to all parts-of-speech
- Extended gloss overlap (lesk) [Banerjee and Pedersen, 02]
 - Combines advantages of [Lesk, 86] gloss overlap with the structure of concept hierarchy
 - doesn't differentiate between a single word and a phrasal overlap
- Context vectors measure (vector) [Patwardhan and Pedersen, 03]
 - Gloss vector
 - Context vector formed by considering WordNet gloss as the context

(本間) (本語) (本語) (語)

• relatedness is measured by measuring the cosine of the angle between the normalized gloss vectors.

Overview

- Unsupervised knowledge based algorithm for all-words.
- Originally developed by Michelizzi, 2005.
- Assigns a WordNet sense to each content word in a sentence that is most related or similar to the surrounding words.
- Processes one sentence per line and one line per sentence.
- Formats
 - (raw) Sir William Walton was a British composer and conductor
 - (tagged) Sir_William_Walton#NNP was#VBD a#DT British#JJ composer#NN and#CC conductor#NN
 - (wntagged) Sir_William_Walton#n was#v a British#a composer#n and conductor#n

- If the format is raw, converts text into lower case and removes punctuation.
- Follow the steps below sequentially.

Compoundify

Input: the white house is the official residence of the president of the u.s. Output: the white_house is the official residence of the president of the u.s.

- Compounds are multi-word terms found in WordNet.
- Non-compositional meaning.
- If the format is raw, crucial to identify compounds for correct disambiguation.
- No combination of senses of *white* and *house* would imply "the residence and office of the President of the United States."
- 40% strings in WordNet are compounds.
- WordNet::Tools Perl module for compound identification.
- Greedy search to find the longest compound.

(日) (同) (日) (日) (日)

Stop Words Removal

Input: sir_william_walton was **a** *british composer and conductor Output: sir_william_walton was british composer and conductor*

- Stop words (prepositions, determiners etc.) are not included in WordNet.
- Only disambiguate content words i.e. words found in WordNet.
- Stop words are automatically excluded.
- Some commonly used stop words have unusual senses in WordNet. e.g. an : Associate in Nursing, AN - (an associate degree in nursing)
- Stoplist (a list of stop words) to eliminate commonly used stop words that have unusual senses in WordNet.
- Each content word occurring in the stoplist is not further considered for disambiguation.

イロト 不得 トイヨト イヨト 二日

Lemmatization

Input: sir_william_walton **was** *british composer and conductor Output: sir_william_walton* **be** *british composer and conductor*

- Obtaining the base forms of a word **be** is the lemma of **was**
- If was isn't lemmatized to be, WN-SRAW might consider Washington, WA – (a state in northwestern United States on the Pacific)
- Uses a simple lemmatization provided by WordNet::QueryData Perl module.
- Given a word or word#pos, it provides a list of all alternate forms (alternate spellings, conjugations, plural/singular forms, etc
- WordNet::QueryData also provides an interface to WordNet.

イロト 不得下 イヨト イヨト

Disambiguation

Input: sir_william_walton be british composer conductor Output: sir_william_walton#n#1 be#v#1 british#a#1 composer#n#1 conductor#n#1

- Input of the algorithm is a sentence
 - which contains only content words (words found in WordNet),
 - in which compounds are identified,
 - in which stop words are eliminated,
 - which is lemmatized
- Each word is disambiguated separately
- Word being disambiguated is the **target** and the surrounding words form **window context**

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Window Size = n

sir_william_walton be british composer conductor

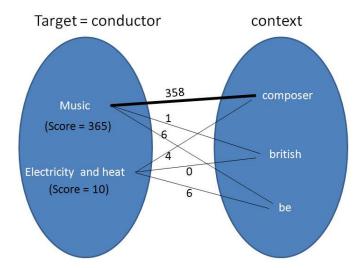
- balance context according to the size n
- $\operatorname{ceil}((n-1)/2)$ words on the left of the target
- floor ((n-1)/2) words on the right of the target

ceil(x) = smallest integer not less than x as a real number floor(x) = largest integer not greater than x as a real number

・ 何 ト ・ ヨ ト ・ ヨ ト

- window = 3, target = british
 context window = {be, composer}
- window = 4, target = british
 context window = {sir_william_walton, be, composer}

Disambiguation₁



Higher weight \rightarrow closely related, Lower weight \rightarrow not really related VARADA KOLHATKAR kolha0020d.umn.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 19 / 38

Disambiguation₂

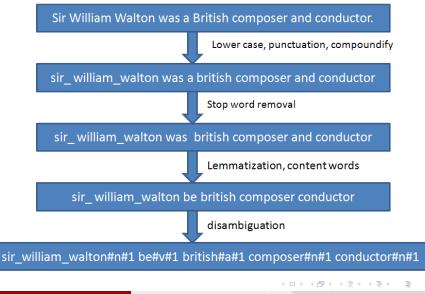
Unfortunately context words also have multiple senses

 $W(Music, british) = \max_{1 \le \ell \le \#senses(british)} (relatedness(music, british_{\ell}))$ british_{\ell} denotes ℓ^{th} sense of british.

• Each sense is assigned a score by summing the weights associated with its incoming edges

• The sense with the highest score is the winning sense.

Algorithm Summary



VARADA KOLHATKAR kolha002@d.umn.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 21 / 38

Definitions

A monoseme

A word or a phrase with a single meaning.

1. (12) Tuesday, Tues – (the third day of the week; the second working day)

Polysemy

Having or being characterized by multiple meanings.

I went walking. I went for a walk. I walk the dog. I took a graduation walk.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Manually Sense-tagged Corpora

• Human annotators assign sense tags to each content word in a text using WordNet.

 Manually sense-tagging all words is a time consuming, expensive and error prone process.

• Involves learning senses of a number of words.

• Relatively less sense-tagged corpora available.

• • = • • = •

SemCor

- Widely-used freely available manually sense-tagged corpus.
- Created at Princeton University.
- Comprises of \approx 234,000 semantically annotated words. (80% Brown Corpus, 20% a novel, "The Red Badge of Courage")
- All open class words are manually tagged with WordNet 1.6 senses.
- WN-SRAW uses SemCor 3.0 that is compatible with WordNet 3.0. (translated by Rada Mihalcea)
- SemCor 3.0
 - 185,273 manually sense-tagged open class words.

イロト 不得下 イヨト イヨト

SENSEVAL

- Competitions held in order to evaluate various WSD systems.
- Four competitions held so far. (SENSEVAL-1 in 1998, SENSEVAL-2 in 2001, SENSEVAL-3 2004 and SENSEVAL-4 in 2007)
- Includes a number of different tasks.
- Different types of data sets created for all-words task.

corpus	nouns	verbs	adjectives	adverbs
SemCor	87,002 (47%)	47,570 (26%)	31,754 (17%)	18,947 (10%)
SensEval-2	1,057 (47%)	509 (23%)	417 (18%)	277 (12%)
SensEval-3	884 (46%)	719 (37%)	322 (17%)	12 (0.6%)

$\operatorname{SENSEVAL-2}$ and $\operatorname{SENSEVAL-3}$

• SensEval-2

- Small subset of the Penn Treebank corpus.
- Three Wall Street Journal articles.
- 2,260 open class words found in WordNet.

• SensEval-3

- Small subset of the Penn Treebank corpus.
- Three articles
 - (2 from Wall Street Journal, 1 is a work of fiction from Brown corpus).

• • = • • = •

- 1,937 open class words found in WordNet.
- SENSEVAL-1 didn't have an all-words task.
- SENSEVAL-4 data would be an interesting data to work on.

General Methodology and Evaluation Measures

General Methodology

- Performance is evaluated using manually sense-tagged corpora.
- Extract the key (the gold standard).
- Extract the part of speech tagged text from the corpus.
- Disambiguate the extracted text using WN-SRAW.
- Score the answers of WN-SRAW against the key.

Evaluation Measures

• Results are reported using precision (p) , recall (r) and F-score (F)

•
$$p = rac{\#instances assigned correct senses}{\#attempted instances}$$

• $r = \frac{\#instances assigned correct senses}{\#total instances in the corpus}$

•
$$F = \frac{2.p.r}{p+r}$$

VARADA KOLHATKAR kolha0020d.umn.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 27 / 38

(過) () ティート () 日本

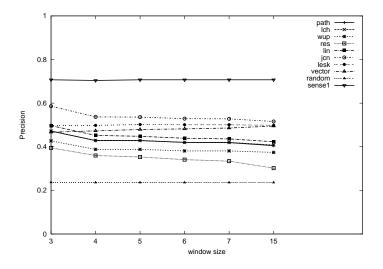
Baselines

Random Scheme (lower bound)

- assignment of a random sense to each instance.
- done after lemmatization, leaving a relatively few senses from which to choose a random sense.
- Sense1 Scheme (upper bound)
 - WordNet senses are arranged according to their frequencies in SemCor.
 - Assignment of sense1 in WordNet to all instances.
 - Like a supervised system which uses information about distribution of senses.
 - Works great for the available sense-tagged corpora.
 - Won't generalize well for the text in a different domain.

イロト 不得下 イヨト イヨト 二日

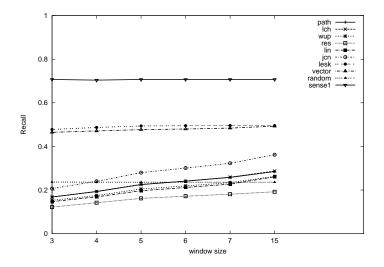
Expanding Context Window₁



Precision decreases with increased window size.

VARADA KOLHATKAR kolha002@d.umm.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 29 / 38

Expanding Context Window₂



• Recall, F-score increase with increased window size.

VARADA KOLHATKAR kolha0020d.umn.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 30 / 38

Polysemy and Difficulty

Polysemy	Р	R	F	# instances
1	1.000	1.000	1.000	28,673 (19.67 %)
2	0.677	0.666	0.672	23,417 (16.06 %)
3	0.680	0.673	0.677	25,525 (17.51 %)
4	0.515	0.513	0.514	18,776 (12.88 %)
5	0.473	0.470	0.471	13,210 (9.06 %)
6	0.412	0.410	0.411	9,944 (6.82 %)
7	0.381	0.379	0.380	9,056 (6.21 %)
8	0.363	0.362	0.363	5,123 (3.51 %)
9	0.329	0.328	0.328	4,726 (3.24 %)
10	0.302	0.301	0.302	5,465 (3.75 %)
11	0.351	0.347	0.349	5,437 (3.73 %)
12	0.296	0.296	0.296	2,355 (1.62 %)

- Spearman's rank correlation rho between Polysemy and F = -0.820.
- Polysemy is directly proportional to the difficulty of disambiguation.

• • = • • = •

Results of Frequently Occurring Types

word type	Р	R	F	# Instances	Polysemy
be#v	0.624	0.621	0.623	8,400 (4.5%)	13
person#n	1.000	0.987	0.993	6,696 (3.6%)	3
not#r	1.000	0.984	0.992	1,703 (0.91%)	1
group#n	0.981	0.981	0.981	1,329 (0.71%)	3
have#v	0.124	0.123	0.124	1,126 (0.61%)	19
say#v	0.215	0.210	0.212	1,005 (0.54%)	11
location#n	0.955	0.952	0.952	993(0.0.53%)	4
make#v	0.085	0.085	0.085	757 (0.41%)	49
man#n	0.674	0.672	0.673	576(0.31%)	11
see#v	0.053	0.053	0.053	549 (0.29%)	24
know#v	0.280	0.268	0.274	512 (0.28%)	11
time#n	0.103	0.103	0.103	511 (0.%28)	10

Some frequently occurring types consistently perform poorly.

- 御下 - 西下 - 西下 - 西

Tagged and Raw Format Experiments (lesk, window=5)

		brill tagged	raw
	Ρ	0.535	0.504
Nouns	R	0.525	0.501
	F	0.530	0.503
	Р	0.389	0.313
Verbs	R	0.380	0.310
	F	0.384	0.311
	Ρ	0.541	0.422
Adjectives	R	0.487	0.420
	F	0.513	0.421
	Ρ	0.436	0.283
Adverbs	R	0.418	0.279
	F	0.427	0.281
	Ρ	0.484	0.419
All	R	0.469	0.416
	F	0.476	0.417

Knowing part-of-speech tag is helpful.

VARADA KOLHATKAR kolha002@d.umn.edu An Extended Analysis of a Method of All-wor Thesis defense, July 28, 2009 33 / 38

- 本間下 소문下 소문下 - 臣

Best Performing Measures for Polysemous Instances

POS	SemCor	SensEval-2	SensEval-3
Nouns	<i>jcn</i> ₁₅ (0.574)	$vector_{15}(0.547)$	$lesk_{15}(0.481)$
Verbs	$vector_{15}(0.410)$	$vector_{15}(0.342)$	$vector_{15}(0.387)$
Adj.	<i>lesk</i> 7(0.582)	<i>lesk</i> ₆ (0.597)	<i>lesk</i> ₆ (0.494)
Adv.	<i>lesk</i> 7(0.469)	<i>lesk</i> 7(0.509)	-

(B)

3

Related Work

Related Work

- Miller, et al., 1996
 - proposes benchmarks (random, sense1)
- Mihalcea and Faruque, 2004
 - minimally supervised system
 - uses parsing (syntax) and co-occurrences
- Navigli and Lapata, 2007
 - graph-based unsupervised algorithm, uses WordNet
 - correct sense is identified by using a variety of measures that analyze the connectivity of graph structures.
- Preiss, et al., 2009
 - starts with sense1 and tries to refine it
 - supervised, uses ranking algorithm and a Wikipedia similarity measure.

< 回 ト < 三 ト < 三 ト

Conclusion

The experimental results provide evidence in favor of the following hypotheses

- The degree of difficulty in disambiguating a word is proportional to the number of senses of that word (polysemy).
- A significant percentage of word sense disambiguation error is caused by just a few highly frequent word types.
- Part-of-speech tagged text will be disambiguated more accurately than raw text.

Other Observations

• Expanding the context window around a polysemous target word improves recall significantly, but lowers precision suggesting that expanding the context may add significant noise.

イロト 不得下 イヨト イヨト 二日

Future Work

Future Work

- Flexible context selection
 - varying the context selection according to the situation.
 - Avoiding context words that might add noise.
- Incorporating the notion of syntax.
- Performance in terms of time
 - storing similarity scores.
 - parallelize the disambiguation.
- Combination method that combines best performing measures based on part-of-speech.

通 ト イヨ ト イヨト

Links

WordNet::SenseRelate::AllWords

Project

http://search.cpan.org/dist/WordNet-SenseRelate-AllWords/

Web Interface

http://talisker.d.umn.edu/allwords/allwords.html

Data

http://www.cse.unt.edu/~rada/downloads.html

Publication

http://www.d.umn.edu/~tpederse/Pubs/pedersenk09-demo-final.pdf

向下 イヨト イヨト

THANKS!