
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of master’s thesis by

Varada Kolhatkar

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Dr. Ted Pedersen

Name of Faculty Adviser

Signature of Faculty Advisor

Date

GRADUATE SCHOOL

An Extended Analysis of a Method of

All Words Sense Disambiguation

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Varada Kolhatkar

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

August 2009

Acknowledgements

I express my heartfelt gratitude towards my adviser Dr. Ted Pedersen for his guidance during

my time at UMD. He has been a great advisor and I thoroughly enjoyed working with him. I

sincerely appreciate his close reading and valuable comments. Among other countless things, he

has introduced me to the field of Natural Language processingfor which I will be always grateful

to him.

I sincerely thank Dr. Joe Gallian and Dr. Hudson Turner for being on my thesis committee and for

their detailed reading of my thesis. The insightful questions and comments they raised often gave

me new perspectives on my research.

I am very grateful to Dean Riehl and Dr. Carolyn Crouch for providing travel funding to the Annual

Meeting of the North American Chapter of the Association forComputational Linguistics.

I would also like to thank all the professors from whom I have had the opportunity to learn. Thank

you also to the friendly staff of the Computer Science department.

None of this work would have been possible without the support of my friends and family who

cheered me up and motivated me whenever I needed it. Finally,I thank the great lake of Duluth for

the company of her natural beauty and soothing spirit on manylong walks.

i

Abstract

One of the central problems in processing a natural languageis ambiguity. In every natural

language there are many potentially ambiguous words. Humans are fairly adept at solving

ambiguity by drawing on context and their knowledge of the world. However, it is not so easy

for machines to understand the intended meaning of a word in agiven context.Word Sense

Disambiguation(WSD) is the process of selecting the correct sense of a word in a specific

context.

It is often useful to generalize the problem of disambiguating a single word to that of disam-

biguating all content words in a given text. This generalized problem is referred to asall-words

sense disambiguation. The long history of WSD research includes many different supervised,

unsupervised and knowledge-based approaches. But the reality is that current state-of-the-art

accuracy in WSD remains a long way off far from natural human abilities.

This thesis presents our analysis of some of the components that might be contributing to

the level of error currently plaguing all-words sense disambiguation. Our analysis makes use

of WordNet::SenseRelate::AllWords, an unsupervised knowledge-based system for all-words

sense disambiguation, which is freely available on the Web as a perl Module. The system

assigns a WordNet sense to each word in a text using measures of semantic similarity and

relatedness.

We find that the degree of difficulty in disambiguating a word is proportional to the number

of senses of that word (polysemy), which confirms the conclusion of Daelemans [10]. The ex-

perimental evidence indicates that a significant percentage of word sense disambiguation error

is caused by a relatively small number of highly frequent word types. We also demonstrate that

part-of-speech tagged text will be disambiguated more accurately than raw text. We show that

expanding the context window helps in terms of coverage but doesn’t improve disambiguation.

Finally we find that if the answer is not the most frequent sense, disambiguation turns out to

be a hard problem even for an unsupervised system which doesn’t use any information about

sense distribution.

ii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

2 Background 7

2.1 WordNet . 7

2.2 Measures of Similarity and Relatedness 11

2.2.1 Path Based Measures .11

2.2.2 Information Content Based Measures 14

2.2.3 Gloss Based Measures .16

2.3 Definitions .. 18

3 WN-SRAW Algorithm 20

3.1 Compoundify .21

3.2 Stop Words Removal .. 22

3.3 WordNet Interface and Lemmatization 24

3.4 Disambiguation .. . 25

3.4.1 WN-SRAW as a Complete Bipartite Graph 27

3.4.2 Time Complexity of the Disambiguation Algorithm 29

4 Experimental Data 31

4.1 SemCor . 32

iii

4.2 SENSEVAL /SEMEVAL . 36

5 Experimental Results 38

5.1 Hypothesis 1: If the context window around a polysemous target token is expanded,

there will be more related tokens available to measure against that target, which will

lead to a more accurate disambiguation. 44

5.2 Hypothesis 2: If an all-words sense disambiguation system is not using any fre-

quency count information, it will show the same performanceon instances where

sense1 is not correct as on overall polysemous instances. 51

5.3 Hypothesis 3: The degree of difficulty in disambiguatinga token is proportional to

the number of senses of that token (polysemy). 54

5.4 Hypothesis 4: A significant percentage of word sense disambiguation error is caused

by just a few highly frequent word types. 60

5.5 Hypothesis 5: Part-of-speech tagged text will be disambiguated more accurately. . 69

5.6 Hypothesis 6: Given any two parts-of-speech, the more polysemous will be less

accurately disambiguated. 73

5.7 Other Observations 81

6 Related Work 85

6.1 Miller, et al., 1994 85

6.2 Mihalcea and Faruque, 2004 87

6.3 Navigli and Lapata, 2007 89

6.4 Preiss, et al., 2009 91

6.5 Guo and Diab, 2009 .. 93

6.6 Schwartz and Gomez, 2009 95

iv

7 Conclusions 97

8 Future Work 100

A Appendix 104

A.1 Penn Treebank tags to WordNet tags mapping 104

A.2 lesk and vector stoplist 105

A.3 Result Tables .. 111

A.3.1 SemCor Tables . 111

A.3.2 SENSEVAL -2 Tables . 136

A.3.3 SENSEVAL -3 Tables . 160

References 187

v

List of Figures

1 Lexical sample example .. . 2

2 A portion of the WordNet 3.0 entry for the wordsquash. 8

3 Illustration of WordNetis-a relations . 9

4 SemCor formatted data .. 33

5 Instance space of the all-words sense disambiguation, showing proportion of in-

stances in SemCor. Total Number of instances = 185,273. 40

6 SemCor F-score results with –score poly option. Number of instances = 145,773. . 46

7 SENSEVAL -2 F-score results with –score poly option. Number of instances =1,796. 46

8 SENSEVAL -3 F-score results with –score poly option. Number of instances =1,617. 47

9 SemCor Precision results with –score poly option. Number of instances = 145,773. 47

10 SENSEVAL -2 precision results with –score poly option. Number of instances =1,796. 48

11 SENSEVAL -3 Precision results with –score poly option. Number of instances =1,617. 48

12 SemCor Recall results with –score poly option. Number of instances = 145,773. . . 49

13 SENSEVAL -2 Recall results with –score poly option. Number of instances =1,796. 49

14 SENSEVAL -3 Recall results with –score poly option. Number of instances =1,617. 50

15 SemCor results with –score s1nc option. Number of instances = 43,730. 52

16 SENSEVAL -2 results with –score s1nc option. Number of instances =752. 53

17 SENSEVAL -3 results with –score s1nc option. Number of instances =664. 53

18 Word types in SemCor follow Zipfian distribution. Total number of types = 21,513 61

19 An illustration of verb hierarchy in WordNet 74

vi

20 SemCor noun results with –score poly option. 75

21 SENSEVAL -2 noun results with –score poly option.75

22 SENSEVAL -3 noun results with –score poly option.76

23 SemCor verb results with –score poly option. 76

24 SENSEVAL -2 verb results with –score poly option.77

25 SENSEVAL -3 verb results with –score poly option.77

26 SemCor adjective results with –score poly option. 78

27 SENSEVAL -2 adjective results with –score poly s1nc option. 78

28 SENSEVAL -3 adjective results with –score poly option. 79

29 SemCor adverb results with –score poly option. 79

30 SENSEVAL -2 adverb results with –score poly option. 80

31 SENSEVAL -3 adverb results with –score poly option. 80

32 SemCor results with –usemono option. Number of instances= 185273. 81

33 SENSEVAL -2 results with -usemono option. Number of instances =2260.. 82

34 SENSEVAL -3 results with –usemono option. Number of instances =1937.. 82

35 An excerpt from SemCor reformatted text. 101

vii

List of Tables

1 Some of the WordNet Relations. The parenthesis denote the possible parts-of-speech. 10

2 The number of tokens broken down by part-of-speech where the token is defined in

WordNet. 34

3 Overall number of tokens and word types. 34

4 Percentage of monosemous tokens per part-of-speech. 34

5 First n most frequent word types where the type frequency for frequently occurring

word types in SemCor> 500. 35

6 Most frequent types in SemCor where word type frequency> 500. Polysemy rep-

resents the total number of senses in WordNet. 55

7 Polysemy results with wntagged format, window=7, measure= lesk, contextScore=0.0,

pairScore=0.0, –score n with lesk stoplist and no forcepos.Total number of in-

stances = 145,773. Overall P=0.499, R=0.495, F=0.497. Spearman’s rank correla-

tion rho for Polysemy and F = -0.820 57

8 Polysemy results with wntagged format, window=15, measure= jcn, contextScore=0.0,

pairScore=0.0, –score n with no measure config, no forcepos and no stoplist. Total

number of instances = 145,773. Overall P=0.528, R=0.323, F=0.401. Spearman’s

rank correlation rho for Polysemy and F = -0.840 58

9 Polysemy results with wntagged format, window=15, measure= lch, contextScore=0.0,

pairScore=0.0, –score n with no measure config, no forcepos and no stoplist. Total

number of instances = 145,773. Overall P=0.420, R=0.259, F=0.320. Spearman’s

rank correlation rho for Polysemy and F=-0.721 59

viii

10 Frequently occurring types from SemCor where the instance frequency account for

at least 0.27% of the SemCor data (i.e. instance frequency> 500). Total SemCor

instances = 185,273, measure=lesk, window size=7 and using–word 62

11 Confusion matrix of the verbsayfrom SemCor measure=lesk with lesk stoplist and

window size=7, P=0.134, R=0.130, F=0.132,say#v has total 11 senses. 63

12 Confusion matrix of the verbsay from SENSEVAL -2 measure=lesk and window

size=7, P=0.083, R=0.083, F=0.083,say#v has total 11 senses. 63

13 Confusion matrix of the verbsay from SENSEVAL -3 measure=lesk with lesk sto-

plist and window size=7, P=0.000, R=0.000, F=0.000,say#v has total 11 senses. . 64

14 Confusion matrix of the verbringer from SENSEVAL -2 measure=lesk and window

size=7, P=0.222, R=0.222, F=0.222 65

15 Confusion matrix of the nountime from SemCor measure=lesk with lesk stoplist

and window size=7, P=0.106, R=0.106, F=0.106,time#n has total 10 senses. . . . 67

16 Tagged and raw format experiments. Measure used is lesk with window=5 with

lesk stoplist, –nocompoundify, –score poly. 135,572 attempted out of 143,431 total

instances for Brill tagged text and 139,753 attempted out of143,431 total instances

for raw text. The POS annotated text is the part of speech annotated SemCor text (#

instances = 145,773). .. 71

17 SemCor Brill tagged text confusion matrix. Includes onlythe instances where

word#pos of the Brill tagged text is defined in the WordNet 72

18 SemCor raw text confusion matrix. Includes only the attempted instances, i.e the

instances where the relatedness is found with the surrounding instances using lesk. 72

19 Average polysemy per part-of-speech for polysemous instances. The parenthesis

show lesk F-score for the part-of-speech. 73

20 Best performing measures for polysemous instances (–score poly option), subscript

denotes the window size and the parenthesis denotes F-score. 84

ix

21 Best performing measures for instances where sense1 is not correct (–score s1nc

option), subscript denotes the window size and the parenthesis denotes F-score . . 84

22 Best performing measures for monosemous and polysemous instances (–usemono

option), subscript denotes the window size and the parenthesis denotes F-score . . 84

23 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens =

145,773. ‘Att’ is ‘Attempted’. 112

24 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’

is ‘Attempted’. 112

25 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 113

26 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 113

27 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens =

145,773. ‘Att’ is ‘Attempted’. 114

28 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’

is ‘Attempted’. 114

29 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 115

x

30 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 115

31 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens =

145,773. ‘Att’ is ‘Attempted’. 116

32 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’

is ‘Attempted’. 116

33 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 117

34 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 117

35 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens =

145,773. ‘Att’ is ‘Attempted’. 118

36 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’

is ‘Attempted’. 118

37 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 119

38 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 119

xi

39 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens =

145,773. ‘Att’ is ‘Attempted’. 120

40 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’

is ‘Attempted’. 120

41 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 121

42 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 121

43 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens =

145,773. ‘Att’ is ‘Attempted’. 122

44 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’

is ‘Attempted’. 122

45 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 123

46 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273.

‘Att’ is ‘Attempted’. .. . 123

47 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 124

xii

48 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 124

49 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 125

50 SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 125

51 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 126

52 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 126

53 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 127

54 SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 127

55 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 128

56 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 128

57 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 129

58 SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 129

59 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 130

60 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 130

xiii

61 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 131

62 SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 131

63 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 132

64 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 132

65 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 133

66 SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 133

67 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 134

68 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 134

69 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 135

70 SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 135

71 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’. .. . 137

72 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’. 137

xiv

73 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 138

74 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 138

75 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’. .. . 139

76 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’. 139

77 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 140

78 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 140

79 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’. .. . 141

80 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’. 141

81 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 142

xv

82 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 142

83 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’. .. . 143

84 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’. 143

85 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 144

86 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 144

87 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’. .. . 145

88 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’. 145

89 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 146

90 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 146

xvi

91 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’. .. . 147

92 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’. 147

93 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 148

94 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 2,260.

‘Att’ is ‘Attempted’. .. . 148

95 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 149

96 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 149

97 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 150

98 SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 150

99 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 151

100 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 151

101 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 152

xvii

102 SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 152

103 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 153

104 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 153

105 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 154

106 SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 154

107 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 155

108 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 155

109 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 156

110 SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 156

111 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 157

112 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 157

113 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 158

114 SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 158

xviii

115 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 159

116 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 159

117 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 160

118 SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 161

119 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 162

120 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 163

121 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’. 163

122 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 164

123 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 164

124 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 165

xix

125 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’. 165

126 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 166

127 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 166

128 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 167

129 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’. 167

130 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 168

131 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 168

132 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 169

133 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’. 169

xx

134 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 1937.

‘Att’ is ‘Attempted’. .. . 170

135 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 170

136 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 171

137 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’. 171

138 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 172

139 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 172

140 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’. .. . 173

141 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’. 173

142 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 174

xxi

143 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 1,937.

‘Att’ is ‘Attempted’. .. . 174

144 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 175

145 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 175

146 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 176

147 SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 176

148 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 177

149 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 177

150 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 178

151 SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 178

152 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 179

153 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 179

154 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 180

xxii

155 SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 180

156 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 181

157 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 181

158 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 182

159 SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 182

160 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 183

161 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 183

162 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 184

163 SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 184

164 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos. 185

165 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.. 185

166 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos. 186

167 SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos. 186

xxiii

1 Introduction

Words in a natural language often have multiple senses. For example,squashcan meanthe vegetable

squashor the game squash. Nonetheless humans can for the most part resolve word ambiguities

quite easily by looking at the context in which a word is used.For example, given the following

sentences, it is not very hard for humans to distinguish between the senses ofblueused asgloomy

moodin the former and asblue color in the latter.

The sorrow etched in his face reflected his thoroughlyblue mood.

Theblue mountains were looking beautiful.

However, it is not so easy for machines to understand the intended meaning of a word in a given

context. Correctly understanding the meaning of particular instances of a given word requires suc-

cessfully distinguishing between different senses of thatword. It is then naturally very useful if

machines used for manipulating language have the ability todifferentiate different senses of a word.

Thus, for instance, machine-translation of the above sentences into a different language will ideally

produce translations that reflect different meanings ofblue, as these would be picked up by a native

English speaker.

In Computational Linguistics terms, this problem is known as Word Sense Disambiguation(WSD).

WSD is defined as the task of automatically assigning the correct sense to a given word based on

the context in which it occurs. WSD has a long history of research and is considered one of the

hardest problems in Artificial Intelligence. In the late 1940s, WSD was first thought of as a part of

Machine Translation, the general field investigating the use of computer software to translate from

one natural language to another. WSD quickly proved an immensely challenging problem. In the

1970s, several attempts to solve the problem using Artificial Intelligence techniques were made. In

the 1980s, the release of large scale lexical resources enabled automatic extraction of knowledge

and WSD research reached a turning point (e.g. Wilks et al., 1990 [44]). Later in the 1990s, WSD

was mainly dominated by statistical and machine learning approaches.

WSD task is viewed broadly in two different ways. In a lexicalsample task (also called ‘target word

task’), a sample of words is selected from the lexicon and theselected words are disambiguated in a

1

short given context. For instance, Figure 1 shows two instances of the target wordline used in two

different contexts. The lexical sample task would be to disambiguate each token ofline in the given

context.

Culinova fresh entrees, launched in 1986 by Philip Morris Cos.’s General Foods Corp.,

hit similar distribution problems. Last December, shortlyafter Philip Morris bought

Kraft Inc., the strugglingline was scrapped.

For now , we’ll concentrate on the system. Some of the major data banks , like the

ones held by Defense , may have five hundred or a thousand access lines.

Figure 1: Lexical sample example

It is assumed that the word to be disambiguated has a fixed set of senses in the sense inventory,

where the sense inventory contains the mapping of words and their different senses. Given this

assumption, WSD can be thought of as a classification problemwhere, given a word in a context

and its possible senses in a lexicon, the task is to classify the occurrence of the word in one or more

sense classes. For instance, the classification problem maylook like: Given two sense classesline

andphone, classify the examples in Figure 1 in one of the two classes based on whetherline is used

with thephonesense or theproductsense. For this task, it is possible to apply Machine Learning

classification techniques that build highly accurate models.

However, lexical sample disambiguation is limited, in thatit is only able to disambiguate a few

words at a time. To be useful in a practical setting, disambiguation should be considered in more

general terms. The all-words task serves that purpose.

Given a piece of text and a lexicon with a sense inventory, theall-words task is to disambiguate

every content word in the text based on the context in which itoccurs. More formally, letT be a

tuple made up ofk content wordsT = (c1, c2, ..., ck) andS be the sense inventory such that∀ciǫT ,

ci is defined inS with finite number of senses associated with each wordci. Suppose eachci has

mi possible senses inS, denoted as{si1, si2, ..., simi
}. The all-words task is to select for everyci,

one of the senses from the set{si1, si2, ..., simi
} as the most appropriate sense.

The complexity of the problem lies in the fact that the mapping between words and senses is many

to many. A word can have multiple meanings and a meaning or a sense can have multiple words

associated with it (synonyms). Even so, being able to disambiguate all words in a text makes the

2

disambiguation more useful, because it helps understand the overall meaning of a sentence and thus

can be used more generally in the translation, searching or summarization of a text.

It is important to note that all-words is not just an extension of the lexical sample problem. When it

comes to disambiguating all content words in a text, the classification problem we discussed before

becomes very complicated, introducing an enormous number of classes, which creates difficulty in

using machine learning techniques for classification with their usual settings.

Several approaches have been proposed for tackling WSD.Supervisedapproaches use a large sense-

annotated corpus for training and use supervised learning techniques. A sense-annotated corpus is

created by humans manually annotating each occurrence of the target word (in case of lexical sample

task) or all content words (in case of all-words task) in a text. A good deal of progress has been made

in supervised WSD for the lexical-sample task, achieving good accuracies. Different supervised

learning techniques such as decision lists, decision trees, naive bayes classifier, neural networks,

instance-based learning, and support vector machines havebeen tried. But these approaches need

manually sense-tagged corpora for training the classifiers.

Unfortunately, creation of such a sense-tagged corpus is a time consuming and expensive process. It

might be relatively easy for the lexical sample task since the annotator disambiguates a single target

word occurring many times making her familiar with the various senses of the word. However, in

the all-words setting, a human annotator will encounter many words only one time, and will have

to study and learn the sense inventory for a word simply to tagone occurrence, and then must move

on to another word which might well be new and need to be learned. This also makes all-words

annotation less accurate than lexical sample annotation. As a result of these difficulties, a very

small number of such manually sense-tagged corpora are available. The availability becomes more

of an issue when it comes to disambiguating a text in a certaindomain, say a text from Biology. The

scarcity of the sense-tagged data prevent the use of supervised methods in such cases.

This leads to usingsemi-supervisedandunsupervisedapproaches. The former uses very little an-

notated training data and the latter uses no training data. Yarowsky’s bootstrapping algorithm [46]

is a semi-supervised algorithm that exploits a decision list and uses a self-training approach. Un-

supervised methods include clustering. This type of WSD uses the idea that the same sense of a

word will have similar surrounding words and thus it createsclusters of words based on surrounding

3

words. A review of all of the above approaches can be found in Manning and Schütze [17]. It has

been observed that given sufficient training data, supervised WSD approaches outperforms unsu-

pervised ones. But the unavailability of sufficient sense-annotated data leads to using unsupervised

approaches for broad coverage WSD.

Because of the availability of a variety of lexical databases, ontologies and thesauri, approaches

that use knowledge in such resources have become popular. Particularly with the release of the

lexical database WordNet in the late 1980s, a variety of methods exploiting the structure of such re-

sources have been proposed. Methods which use external knowledge for disambiguation are called

knowledge-based methods. These methods can again be supervised or unsupervised. Supervised

knowledge-based methods use knowledge and manually-annotated training data for disambiguation,

while unsupervised knowledge-based methods use knowledgeextensively, but have the advantage

that they don’t need any manually annotated data.

The method used in this thesis is an unsupervised knowledge-based method for all-words sense

disambiguation. It doesn’t require any manually-annotated training corpus but makes extensive

use of the lexical database WordNet for disambiguation. Themethod was originally developed by

Michelizzi in 2003 [19] and is now enhanced significantly.

Before turning to the results presented in this thesis, it isimportant to mention why we are doing

this research. Apart from being an interesting problem in anacademic setting, all-words sense

disambiguation also has significant utility in real world applications. For example, being able to

translate the sentence‘The sorrow etched in his face reflected his thoroughlyblue mood.’ sensibly

into other languages (without translating the wordblue as blue color) requires the words to be

disambiguated correctly. As an another example, in information retrieval, if the query includes long

phrases or sentences, all-words sense disambiguation has apotential application. Beyond these

applications WSD would also be useful in lexicography and question answering. Kilgariff [12]

describes some of these applications.

That said, the state-of-the-art accuracy of all-words sense disambiguation is not very encouraging, a

fact which prevents its wide use in the applications mentioned above. Improving the ability to assign

senses to all the words that appear in a written document willsignificantly advance the state of the

art in Natural Language Processing, in particular methods that seek to understand documents so as

4

to better summarize, categorize, or translate them. In thisthesis, we present our analysis of some of

the components that might be contributing to the level of error currently plaguing all-words sense

disambiguation. We present an extensive set of experimental results along with the observations we

made.

The thesis starts by formalizing the algorithm of Michelizzi [19] in mathematical and graph theoretic

notations. It also discusses the time complexity of the algorithm.

Inspired by the question raised by George Miller [22], regarding how much context is required for

WSD, we evaluate our algorithm with different context sizesin order to determine the effects of

expanding the context. To see where exactly the error lies, we score the results in different ways

and this thesis presents those results along with the observations we made.

Polysemy, in general, is the the property of having multiplesenses. This poses a problem in WSD.

For example,basscan mean aa kind of a fishor the lowest part of the musical range. When

translating from English to some other language, if the wordis not disambiguated correctly, it

may be translated by a wildly inaccurate term, resulting in an awkward - if sometimes humorous

- translation. There are mixed conclusions about polysemy and the difficulty of disambiguation.

Preiss [33] argues that polysemy is not an ideal measure of difficulty. On the other hand Daelemans

[10] concludes that the fluctuations in accuracy of disambiguation largely depend on the polysemy

and entropy of the ambiguous words. In this thesis we furtherpresent results on the relation of

polysemy to the difficulty of disambiguation.

In general, the words in a text follow a Zipfian distribution [47]. This means that that a few words

occur very frequently, while many words only occur a few times. Words likehaveandbe occur

more frequently than words likemetamorphosisand there are many words likemetamorphosis

which only occur a few times. In order to improve overall disambiguation we need in particular

to see if the most frequently occurring words are disambiguated correctly. This thesis provides the

disambiguation results of frequently occurring words and presents our analysis of the difficulty in

disambiguating some of these frequently occurring words.

This thesis also examines to what degree the errors in identifying parts-of-speech contribute to the

overall disambiguation error. The WSD problem can be thought of as the task of assigning both

5

the correct part-of-speech to a word and then the correct sense from among the possible senses

of the word as that part-of-speech. For example, in the news line Grant helpstrain students in

Computational Mathematics research, it is first necessary to identify the part-of-speech oftrain and

then assign the appropriate sense to it. This gives an indication of the importance of the part-of-

speech tag or syntactic information for disambiguation.

To summarize briefly, this research presents an extensive set of experimental results on issues central

to the future direction of WSD, together with our related observations.

Other contributions include

• We refined the method developed by Michelizzi [19] in significant ways and carried out an ex-

tensive evaluation of the method on almost all available sense-tagged corpora by introducing

different scoring mechanisms.

• We also developed a web interface to the refined system1.

• We have released (via the CPAN archive) a freely available software package2 that includes

the above enhancements.

1http://talisker.d.umn.edu/allwords/allwords.html
2http://search.cpan.org/dist/WordNet-SenseRelate-AllWords/

6

2 Background

2.1 WordNet

WordNet [24] is an electronic lexical database for English which is widely used in the Natural Lan-

guage Processing (NLP) community for applications in Information Retrieval, Machine Translation

and Word Sense Disambiguation.

WordNet grew out of research at Princeton University in the 1980s by psychologist George Miller’s

group about how children acquire vocabulary. In the course of this research, they started to record

the relations between and among words. WordNet forms a largenetwork out of these relations which

can be visualized as a directed acyclic graph where each noderepresentsa conceptand an edge or a

link between nodes represents therelationbetween the concepts. Each node consists of one or more

words that arecognitively synonymous, meaning that the words are approximately equivalent and

can be substituted in many contexts. The groups of such synonymous words are called synonymous

sets orsynsets. Each synset represents a concept, and a unique gloss or definition, possibly with

usage examples, is associated with it. For example,{squash, squash racquets, squash rackets} is

the synset for the glossa game played in an enclosed court by two or four players who strike

the ball with long-handled rackets. Henceforth, we use the terms “synset,” “concept” and “node”

interchangeably.

Figure 2 shows a portion of the WordNet3 entry for the wordsquash. In this thesis, combination

of a word, part-of-speech and sense is denoted by word#pos#sense. For example, the second noun

sense ofsquashwill be denoted assquash#n#2.

WordNet considers four syntactic categories,noun (n), verb (v), adjective (a)andadverb (r)which

are called open class categories and doesn’t include closedclass categories of English (propositions,

pronouns, and delimiters). The synsets were added separately for each category, forming four dif-

ferent networks. The networks of nouns and verbs may be viewed as hierarchies where the nodes

at the higher level represents general concepts such asentityor objectand the leaf nodes represent

more specific concepts such asapple pieor butternut squash. Within each category, the network de-

3http://wordnet.princeton.edu/wordnet/download/

7

scribes lexical and semantic relationships between synsets. The relations within nouns in WordNet

are considered as one of the distinguishing characteristicof WordNet. The hierarchies for nouns are

deeper, making it useful for Natural Language Processing applications. The hierarchies for verbs

are many and shallow. Relations in WordNet generally do not cross part-of-speech. Although there

exist some derivational links between nouns and verbs and relations such as anattribute relation

that expresses the relationship between a noun and an adjective. For example, an attribute of the

adjectivebeautifulis the nounbeauty. However, the links that cross part-of-speech are very sparse.

Overview of noun squash

The noun squash has 3 senses (no senses from tagged texts)

1. squash, squash vine – (any of numerous annual trailing plants of the genus

Cucurbita grown for their fleshy edible fruits)

2. squash – (edible fruit of a squash plant; eaten as a vegetable)

3. squash, squash racquets, squash rackets – (a game played in an enclosed court

by two or four players who strike the ball with long-handled rackets)

Overview of verb squash

The verb squash has 1 sense (first 1 from tagged texts)

1. (1) squash, crush, squelch, mash, squeeze – (to compress with violence, out of

natural shape or condition; ”crush an aluminum can”; ”squeeze a lemon”)

Figure 2: A portion of the WordNet 3.0 entry for the wordsquash

The most common and useful relation for nouns isis-a. Figure 3 illustrates the is-a hierarchy

of WordNet. An is-a relation defines theis-a-kind-of relationship between synsets. In WordNet

terminology, it is described with ahyponymandhypernympair. For example, in Figure 2,{plant

material, plant substance} is a hypernym ofwoodandwoodis a hyponym of{plant material, plant

substance}. A synset can have more than one hypernyms. For example, in Figure 3,cheesehas two

hypernyms,dairy productand{food, solid food}. Verbs are related with each other by the is-a-way-

of-doing relationship. For example,bakeis a way ofcook. Meronymyandholonymydescribe has-a

relationship for noun synsets. If B is a part of A thenB is ameronymof A andA is aholonymof

B. For example,acceleratoris a meronym ofcar andcar is a holonym ofaccelerator. Adjective

and adverbs are not linked with is-a or has-a relations. Somerelations like antonymy, similarity and

8

see also are applicable for these part-of-speech.A is called an antonymB, if they express opposite

concepts. For example,poor is an antonym ofrich. This relation holds for all parts-of-speech. Table

1 shows some useful WordNet relations along with examples.

WordNet has now become a large lexical database for the English language which comprises of

about 155,287 words organized in over 115,000 synsets for a total of 207,000 word-sense pairs. It

contains about 117,700 nouns, 11,500 verbs, 21,400 adjectives and 4400 adverbs.

The structure of WordNet is well suited for tasks where interpretation of a word based on its lexical

semantics is required, and thus has become a very useful resource for research in WSD.

Figure 3: Illustration of WordNetis-a relations

9

Relation Description Example

ants(n,v,a,r) Antonyms rich is an antonym ofpoor

hype(n,v) Hypernyms squashis a hypernym ofwinter sqash

hypo(n,v) Hyponyms bakingis a hyponym ofcooking

entav Verb Entailment Entailment ofarrive at is travel

syns(n,v,a,r) Synonyms pretty is a synonym ofbeautiful

meron All Meronyms acceleratoris a meronym ofcar

holon All Holonyms car is a holonym ofaccelerator

pert(a,r) Pertainyms Adj. neuralpertains to nounneuron

attr(n,a) Attributes Attributes of adj.beautifulis nounbeauty

deri(n,v) Derived Forms The nounlocomotionis derived from the verblocomote

Table 1: Some of the WordNet Relations. The parenthesis denote the possible parts-of-speech.

10

2.2 Measures of Similarity and Relatedness

With the release of lexical database WordNet, many WSD approaches that exploit the structure of

WordNet were proposed. Most of the approaches are based on measuring the semantic similarity or

relatedness of concepts. Semantic similarity or relatedness is the degree to which two concepts are

related. In most of the cases, humans are able to tell the degree to which two concepts are related.

For example, they can tell thatcomputerandkeyboardare more related thansquashandkeyboard.

Similarity and relatedness measures try to quantify the degree of similarity or relatedness between

two concepts. This in turn can be used to find the meaning of a word based on its linguistic contexts.

This thesis makes a distinction between the notions of similarity and relatedness. Relatedness is

considered more general than similarity, in that two concepts can be related although they are not

similar. For example,rich#a#1 andpoor#a#2 are related with the antonymy relation in WordNet

but they are not similar. In other words, similarity measures are limited to the is-a hierarchies in

WordNet whereas relatedness measures can be applied to all kinds of relations. Since is-a hierar-

chies are applicable only in case of noun-noun and verb-verbpairs, similarity measures can’t go

beyond these part-of-speech. On the other hand, relatedness measures can be applied to all open

class part-of-speech.

A large number of similarity and relatedness measures have been proposed to date. This thesis uses

the implementation of similarity and relatedness measuresprovided by the freely available Perl

software WordNet::Similarity4 developed by Pedersen et al. [32]. We’ll now briefly discuss the

measures implemented in WordNet::Similarity.

These measures are grouped into three categories.

2.2.1 Path Based Measures

Given theis-ahierarchies in WordNet, the most intuitive way of finding similarity between synsets is

by using thepath-length, that is by counting the number of edges between two synsets and deriving

a formula based on how many edges or nodes lie on the path between the synsets. The greater

4http://wn-similarity.sourceforge.net/

11

the path-length, the less similar the synsets are. For example, in Figure 3, the path length between

cheeseandchocolateis 2 and betweencheeseandwood is 7 indicating thatcheeseandchocolate

are more similar thancheeseandwood.

The most basic formula for path based similarity measures isgiven as

Simpath(s1, s2) =
1

length(s1, s2)
(1)

where,length(s1, s2) is the shortest path-length between synsetss1 ands2.

Unfortunately, path length measure is not very well suited for the hierarchies in which the individual

nodes have different interpretations. Sussna [43] observed that, for WordNet, the nearby synsets that

are more specific (deep) in the hierarchy tend to be closely related to each other than the synsets

which are same path length apart but are more general (higher) in the hierarchy. For example, in

Figure 3,curd andchocolateare more related to each other thanrelation andmatter though both

have path-length four. This introduces the notion of thedepthof a synset. The depth of a synset is

defined as the path-length between the synset and the root node of the taxonomy. The depth of the

taxonomy is defined as the longest path between the leaf node and the root of the hierarchy.

In order to address the problem of simple path-length for measuring similarity, a variety of measures

were suggested which manipulate the measure by using the depth of the synsets and the depth of

the taxonomy.

Rada et al. [35] proposed a measure based on path-lengths formeasuring semantic relatedness of

medical terms, using a medical taxonomy called MeSH. Leacock and Chodorow [13] suggested

a similar kind of measure for WordNet. The similarity between two synsets is measured using

path-length between the synsets and then scaling it by the depth D of the taxonomy.

Thus they define the similarity between two synsetss1 ands2 as

Simlch(s1, s2) = − log(
length(s1, s2)

2×D
) (2)

Not all hierarchies in WordNet are of same depth. Some are deeper and others are very shallow. The

introduction of a unique root node in WordNet 3.0, creates 2 different taxonomies, one for nouns

12

and one for verbs5. This associates a constant number with the depth of a taxonomy.

As we noted, a synset can have multiple hypernyms. The commonancestors of two synsets are

called subsumers and the most specific ancestor among those is called as the lowest common sub-

sumer (lcs). For example, in Figure 3, the subsumers ofcheeseandchocolateare{food, solid food},

matter, physical entityandentityand the lowest common subsumer (lcs) is{food, solid food}.

In 1994, Wu and Palmer [45] suggested to use depth of the leastcommon subsumer and the path

lengths between the synsets and the least common subsumer. Resnik [38] suggested a slight modi-

fication of using depths of the synsets instead of using the path lengths between the synsets and the

least common subsumer. Thus the measure is defined in terms offinding the depth of the lcs and

then scaling it by summation of the depths of the two synsets.

Simwup(s1, s2) =
2× (depth(lcs(s1, s2)))

depth(s1) + depth(s2)
(3)

Wu and Palmer describe this measure relative to a verb taxonomy, but in fact the measure can be

used equally well for other parts-of-speech as long as the concepts are arranged in a hierarchy.

The measures we discussed so far were limited tois-a relations. Hirst and St-Onge [9] suggested

a path based measure of relatedness that goes beyondis-a relations. Because of this, the measure

is able to find relatedness between two synsets across different parts-of-speech. For example, it

can find relatedness betweenmoney#n andrich#a. The measure is based on finding lexical chains

between two synsets. The intuition behind the measure is that the closely related synsets will lie

in the lexical chain that is neither too long nor has many changes in direction. The degree of

relatedness is described with the nominal valuesextra-strong, strong, medium-strongand weak.

Two synsets have extra-strong relatedness if they are identical. The relatedness is strong in three

scenarios. First, when synsets are synonyms. Second, when there exists a single link between the

synsets (e.g. in case of antonym). Third, when one synset is acompound word of another word and

when a WordNet relation exists between them (e.g.winter squashis a compound word ofsquash

andsquashis a hypernym ofwinter squash).

5In WordNet 3.0, there was a structural change that linked allthe nouns together by introducing a hypothetical root

node.

13

The medium-strong relatedness is decided based on the weights calculated as below.

weight = C − path-length− (k × #changes-in-direction) (4)

whereC andk are constants. The constantk decides how much weight should be given to the num-

ber of changes in direction. In WordNet::Similarity the values forC andk are 8 and 1 respectively.

If there are not many changes in the direction and the synsetsnot far away in the lexical chain, then

the weight is higher. A weak relation has a weight of 0.

2.2.2 Information Content Based Measures

Information contentmeasures the specificity of a concept. Specificity can be thought of as the recip-

rocal of the occurrence frequency of a concept. A frequentlyoccurring concept is less specific and

has lower information content while a rarely occurring concept is more specific and has higher in-

formation content. For example, the more general conceptobject#n#1 would have low information

content, while the more specific conceptapple pie#n#1 will have a high information content.

Mathematically, information content for a concepts is defined as the negative log of the probability

of concepts in a given corpus containingN distinct concepts.

IC(s) = − log P (s) (5)

And the probabilityP (s) is defined as

P (s) =
frequency(s)

N
(6)

An interesting aspect of information content is that the counts associated with a synset are prop-

agated up the hierarchy, in that when the child synset gets a count, the counts associated with its

ancestors are incremented as well. Therefore the higher level concepts have higher counts associ-

ated with them. This leads to lower information content for general concepts and relatively higher

information content for specific concepts.

14

To calculate the probability, the measures need a sense-tagged corpus to compute concept frequen-

cies. If sensetagged text is not available the measures mustadopt an alternative counting scheme.

Resnik [36] suggests counting the number of occurrences of aword in a corpus and then dividing

the number of different senses associated with that word type equally within the count. For exam-

ple, as shown in Figure 2,squashhas 4 senses. Ifsquashoccurs 10 times in the corpus, each sense

of squashwould get a frequency of10/4.

To handle the zero valued frequencies, WordNet::Similarity uses add-1 smoothing.

Resnik [37] proposed a similarity measure based on information content that computes the infor-

mation content of the least common subsumer of the synsetss1 ands2

Simres(s1, s2) = IC(LCS(s1, s2)) (7)

The similarity between synsets is based on how much information they share with each other. If

they are sharing more specific information then the synsets are more related. The limitation of this

similarity measure is that there are many concepts in WordNet that share the same least common

subsumer. This results in assigning the same similarity score to all the concepts. This is more

common for verbs, as verb hierarchies in WordNet are very shallow. Because of this, the measure

is unable to make fine distinctions between two concepts and is considered as a coarse grained

measure.

Jiang and Conrath [11] use information content to find semantic distance between conceptss1 and

s2 in the noun hierarchy. The intuition behind the measure is that, for concepts that share a lot

of information, the information content of the lowest common subsumer will be high. This will

result in a smaller semantic distance between the concepts and the lowest common subsumer. The

semantic distance defined by Jiang and Conrath is:

Distjcn(s1, s2) = IC(s1) + IC(s2)− (2× IC(lcs(s1, s2))) (8)

The concepts with smaller semantic distance are more similar to each other than the concepts with

a larger distance.

15

Thus the similarity can be described as

Simjcn(s1, s2) =
1

Distjcn(s1, s2)
(9)

In 1998, Lin [15] proposed a measure based on information content which is similar to Jiang and

Conrath’s measure. Lin calculates the semantic similaritybetween the synsetss1 ands2 using the

equation

Simlin(s1, s2) =
2× IC(LCS(s1, s2))

IC(s1) + IC(s2)
(10)

The idea is that if two concepts share a lot of specific information, then the similarity score would

be greater. If the concepts do not share much information, then the score will be lower. Note that

the termdepthused by Wu and Palmer in path based measures can also be thought of as a measure

of specificity, in that the more deep the concepts are, the more specific they are. The measure

developed by Wu and Palmer (wup) is considered as a special case of the Lin measure.

2.2.3 Gloss Based Measures

The similarity measures we have seen by now are limited tois-a relations in WordNet. Gloss based

measures are relatedness measures and go beyond is-a relations. In 1986, Lesk proposed a solution

to word sense disambiguation based on the overlaps between semantic relatedness between words

[14]. He suggests that given a specific word from a text, the sense of that word could be identified

by counting the number of overlaps in the definitions of that word and the definitions of the word

preceding or following that word and the sense with maximum matches (overlaps) would potentially

be the intended sense.

Based on this idea, a new measure of semantic relatedness based on extended gloss overlap (lesk)

was then introduced by Banerjee and Pedersen [1]. The measure combines the advantages of Lesk’s

gloss overlap with the structure of a concept hierarchy to create an extended view of relatedness.

The scoring mechanism is different than Lesk’s scoring, since this measure doesn’t differentiate

between a single word and a phrasal overlaps. Given two glosses, the longest overlap between them

is detected. Then the overlap is removed and a unique marker is placed in both strings. The process

is continued in a recursive fashion until there is no overlapin the two strings. A phrasal overlap of

16

n words is assigned a scoren2. The summation of the squares of the lengths of individual overlaps

is the score for the pair of glosses.

pairscore =

#overlaps∑

i=1

length2(overlapi) (11)

where,length2(overlapi) is the number of overlapping words in theith overlap.

For example, given synsets,s1 = cat#n#7 anddog#n#1 and the overlaps{claws, fissiped mam-

mals} using hypernym-hypernym relation, the pairscore betweens1 ands2 will be 1 + 22 = 5.

A pairscore is computed for each relation pair. The relatedness score between synsets is then given

by

Relatedness(s1, s2) =

#relations∑

j=1

pairscorej (12)

For the above example, if there exist overlaps for2 more relation pairs, a pairscore of20 for

hyponym-hyponym relation pair, and a pairscore of1 for hyponym-holonym pair, then the relat-

edness score betweens1, ands2 would be5 + 20 + 1 = 26.

Another gloss based measure of relatedness is the context vectors measure (vector) proposed by

Patwardhan [29]. In this measure, each synset is represented by a gloss vector where a gloss vector

is a context vector formed by considering a WordNet gloss as the context. The semantic relatedness

of two synsets is then computed by measuring the cosine of theangle between the corresponding

normalized gloss vectors. A context vector is a sparse vector, which contains components denoting

the co-occurrence frequencies of the word and the words in its glosses. For example, suppose we

are finding the relatedness betweens1 = cent#n#2 ands2 = dollar#n#3. The gloss ofcent#n#2

contains the content words (words that are included in WordNet)coin, worth, one-hundredth, value,

basic, unit. The context vector of the wordcoinwhich contains the content wordsflat, metal, piece,

used, usually, moneyin its gloss may look like6

−−→
coin = (0 2 0 3 0 1 0 1 0 5 0 0 1 0 0 0 0 0)

6In reality this vector is a very high dimensional sparse vector.

17

The higher frequencies mean that the words co-occur more number of times. A gloss vector is then

created by adding all context vectors. For example, the gloss vector for
−−−−−−→
cent#n#2 will be

−−−−−−→
cent#n#2 =

−−→
coin +

−−−→
worth +

−−−−−−−−−−→
one-hundredth +

−−−→
value +

−−−→
basic +

−−→
unit

Similarly a gloss vector fordollar#n#3 is created and the relatedness between synsetss1 ands2 is

computed as the cosine angle between the gloss vectors−→s1 and−→s2

Relatedness(s1, s2) =
−→s1 .−→s2

|−→s1 ||−→s2 |
(13)

Vector measure is more general than the extended lesk measure in that it goes beyond finding exact

string overlaps between glosses.

This thesis uses the measures of relatedness and similaritydiscussed above to solve the problem of

all-words sense disambiguation. It is important to note that, for a WSD problem, the usefulness of

WordNet based measures is limited by sparsity of its arcs. Therefore, it is important to understand

the variations and limitations of these measures in order tounderstand the results presented in this

thesis.

In the subsequent chapters, we’ll discuss the algorithm andexperimental results. We refer to our

system as WN-SRAW (WordNet SenseRelateAllWords). The similarity and relatedness measures

will be referred to with the abbreviations in the parenthesis: Path Length (path), Wu and Palmer

[45] (wup), Leacock and Chodorow [13] (lch), Hirst and St-Onge [9] (hso), Resnik [37] (res), Lin

[15] (lin), Jiang and Conrath [11] (jcn), Extended Gloss Overlap [1] (lesk) and Gloss Vector [29]

(vector).

2.3 Definitions

Monosemy

The problem of WSD exists because words are ambiguous. That said, in an arbitrary text, not all

words are ambiguous. A significant number of words simply have one meaning. A monoseme is

18

a word or a phrase with a single meaning. For example,friday is a monoseme which has a single

sense in WordNet –the sixth day of the week; the fifth working day.

Polysemy

Though most words in a dictionary are monosemous, it is the ambiguous words that occur in a

text more often [23]. The termpolysemousis defined as having or being characterized by multiple

meanings. For example,walk is polysemous, in that it can meanwent walking, went for a walk,

walk the dog, graduation walk. Though there are multiple meanings associated with the word walk,

they are more or less related. But in some cases, the words have same form but completely different

meanings. For example,squashin Figure 2, has completely different meanings ofvegetable squash

andgame squash. This is called homonymy, where the words take same form but have completely

different senses.

Unfortunately, WordNet doesn’t make any distinction between polysemy and homonymy and hence

this thesis tackles homonyms and polysems the same way. As weuse the term, polysemy simply

means the property of having multiple senses, irrespectiveof whether they are related or completely

different. If a word has a large number of senses in the sense inventory, we say that the word is highly

polysemous. For example, the verbmake, which has 49 senses in WordNet is highly polysemous.

Types and Tokens

How many unique words are there in the text below? We can see that the wordsthings, learn, the,

youare repeated several times. The unique words in a text are referred to astypesor word typesand

the distinct words are referred to astokensor word tokens. In the following text there are 19 word

types and 25 word tokens.

“The only things you learn arethe things youtame,” saidthefox. “People haven’t time

to learn anything. They buythingsready-made in stores.”

19

3 WN-SRAW Algorithm

Now that we know the problem of all-words sense disambiguation and have some background about

WordNet and the measures of similarity and relatedness, it is time to discuss WN-SRAW approach

for all-words sense disambiguation.

In 2003, Patwardhan et al. [30] proposed a method for lexicalsample disambiguation based on the

measures of semantic similarity and relatedness that are implemented in the WordNet::Similarity

Perl package. The method relies on the available context andstrictly uses information that can be

automatically obtained from the lexical database WordNet,thus requiring no manually annotated

data. This makes it an unsupervised knowledge based approach. In 2005, a generalization of this

method which can be applied for all-words sense disambiguation was suggested by Michelizzi [19].

This thesis is based on the method described by Michelizzi [19].

Before looking at the algorithm, let us first define the basic units of language such as word, term

and sentence as they are used in this chapter.A word is a unit of text in which only alphabetic

characters, numerals and two special characters namely’ and- are allowed.A content word is a

word that is found in WordNet. For example,friend and ice-creamare content words.A term is

two or more words that represent a single meaning. For example, ‘Alan Turing’ and‘White House’

are terms.A sentenceconsists of words and terms and is delimited by a new line character.

WN-SRAW takes a sentence as input and outputs a sense tagged sentence. The input format can

be either raw, wntagged or tagged. The raw format is the most generic format and is used for

disambiguation of a plain text. WordNet tagged (wntagged) input, where a WordNet tag7 is assigned

to each content word is also supported. The tagged format refers to the Penn Treebank tagged8 text.

Though Penn Treebank tagged text is allowed, prior to disambiguation the tags are mapped to the

four WordNet tags9. So in turn tagged text is converted to wntagged text before disambiguation and

is treated as wntagged text thereafter.

Here are examples of each format.

7WordNet tags are n,v,a,r.
8http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html
9Refer Appendix A.1 for the mapping.

20

1. (raw): Lake Superior is the largest of the five Great Lakes of North America.

2. (tagged) : LakeSuperior/NNP is/VBZ the/DT largest/JJS of/IN the/DT five/CD GreatLakes/NNPS

of/IN North America/NNP.

3. (wntagged) : LakeSuperior#n is#v the largest#a of the five#n GreatLakes#n of North America#n10

Given a sentence in any of the above formats, WN-SRAW first converts the input text to lower case

and follows the steps below sequentially.

3.1 Compoundify

If the format is raw, first the punctuation marks are removed and then WN-SRAW will identify

WordNet compounds, which are the terms found in WordNet. WordNet represents compounds

using the ‘’ character. Lake SuperiorandNorth Americarepresent WordNet compounds in the

above example. Compounds have non-compositional meaning.For example,‘White House’ is a

compound which consists of two distinct words, however, thewhole term is recognized as a single

noun sense. If all compounds in a sentence are identified thenit is calleda compound identified

sentence.

If the format is raw, identifying compounds is essential. Ifwords in a compound are considered

separately, then it often becomes impossible to disambiguate. For example, ifred tape, which

meansneedlessly time-consuming procedureis considered as two separate words, disambiguation

becomes impossible because no combination of senses ofred and tape can represent the sense

needlessly time-consuming procedure. Moreover, the algorithm will search for all various senses

of red (7 senses in WordNet) and all various senses oftape (8 senses in WordNet) although it is

guaranteed that the senses chosen would be wrong. In contrast, most compounds are monosemous

and hence disambiguation consists of simply assigning the only available sense to the compound.

In WordNet 3.0, out of the 155,287 unique strings, more than40% (64,331) are compounds. The

longest compound in WordNet 3.0 isprayer of azariah and songof the three children, which con-

sists of 9 words. Since there is no longer compound in WordNet, the compoundify algorithm only

10Since WordNet contains only open class words, words likethe, of are not tagged.

21

looks for compounds of1 < length < 10, which helps improve the efficiency of the algorithm.

Note that for tagged and wntagged format, it is assumed that the text has no punctuation marks and

compounds are already identified as shown in theLakeSuperiorexample above.

WN-SRAW uses WordNet::Tools11 Perl module for compound identification. Algorithm 1 de-

scribes WordNet::Tools’s algorithm to identify compoundsin a sentence. Given a raw format-

ted sentence, compoundify identifies all the compounds and returns a compound identified sen-

tence. For example, given sentenceevariste galois founded modern group theory, the algorithm

returnsevaristegalois founded modern grouptheory. The compounds are found using a greedy

search method. The longest valid compounds in a sentence arechosen. For example, in the

sentenceSir William Walton was a British composer and conductor, there are two compounds,

‘Sir William Walton’ and ‘William Walton’. The longest compound‘Sir William Walton’ will be

chosen.

The compound identified sentence is further used for disambiguation.

3.2 Stop Words Removal

An arbitrary text consists of open class words (nouns, verbs, adjectives and adverbs) and closed class

words (prepositions, determiners, conjunctions, pronouns, etc.). Closed class words (also called as

function words) don’t carry with them much meaning and therefore are not included in WordNet.

We call these wordsstop words. WN-SRAW can only disambiguate content words (i.e. the words

that are defined in WordNet), which is why many stop words are automatically excluded. However,

some words that are typically used as stop words have unusualusages in WordNet. For example,

WordNet defines the most commonly used stop wordsanandwhoas below.

1. an : Associate in Nursing, AN – (an associate degree in nursing)

2. who: World Health Organization, WHO – (a United Nations agency to coordinate international health

activities and to help governments improve health services)

11http://search.cpan.org/ tpederse/WordNet-Similarity-2.05/lib/WordNet/Tools.pm

22

Algorithm 1 Compoundify
1: function Compoundify (sentence) : compound identified sentence

2: MAX COMPOUND SIZE ← 9

3: compound-identified-sentence← sentence

4: first-index← 0

5: last-index← number of terms insentence − 1

6: while first-index < last-index do

7: end-compound-index← first-index + MAX COMPOUND SIZE

8: while first-index < end-compound-index do

9: candidate-compound ← sequence of words incompound-identified-sentence sepa-

rated by ‘ ’ from first-index to end-compound-index

10: if candidate-compound is a valid compound defined in WordNetthen

11: replace respective multiple words incompound-identified-sentence by

candidate-compound

12: Goto 16

13: end if

14: end-compound-index← end-compound-index− 1;

15: end while

16: first-index← end-compound-index + 1;

17: end while

18: returncompound-identified-sentence

19: end function

23

Here is the more complete list of stop words which are almost always used as function words, but

also have WordNet senses associated with more unusual usages: a, an, as, at, by, i, in, it, he, his,

me, oh, ok, or, thou, us, wa, who.

To eliminate the stop words that have unusual senses in WordNet, we employ a stoplist. Astoplist

is a list of stop words. WN-SRAW’s default stoplist includesthe above stop words.

The stop words removal is done immediately after compoundification. This is done for all three

formats. The stoplist is checked for each content word or compound in a compound identified

sentence to see if it is a stop word. All the matching terms aremarked as stop words and are

not further considered for disambiguation. For example, assuming WN-SRAW is using the default

stoplist, after stop words removal, the sentenceThe moviestar married an astronomerwould be

The moviestar married astronomer. Stop words removal is done after compoundification because

some compounds contain stop words, for example the compoundblink of an eyecontains the stop

wordan. The text in which all compounds are identified and stop wordsare removed is further used

by WN-SRAW algorithm.

3.3 WordNet Interface and Lemmatization

WN-SRAW uses WordNet::QueryData12 Perl module as an interface to the WordNet database files.

WordNet::QueryData Perl module allows the user direct access to the full WordNet semantic lexi-

con. It supports all parts-of-speech and access is generally very efficient.

Lemmatization is the process of obtaining the base forms of a word. For example, catch#v is the

lemma ofcatching#v. In a WSD problem, identifying the correct lemma of a word before disam-

biguation is essential. For example, in the sentenceflowersare blooming, if are isn’t lemmatized to

be, then we probably get some funny senses forare like a unit of surface area equal to 100 square

meters. There is no further possibility of correct disambiguationin such a case.

WN-SRAW uses simple lemmatization available within WordNet and QueryData provides an in-

terface to do that. Given a word or word#pos, it provides a list of all alternate forms (alternate

spellings, conjugations, plural/singular forms, etc.). For this, it uses a simple morphological pro-

12http://search.cpan.org/dist/WordNet-QueryData/

24

cessing as provided by WordNet to identify the base form of a word. For example, given the word

looksit will return look#n andlook#v simply as WordNet would return.

3.4 Disambiguation

WN-SRAW processes a text sentence by sentence. It expects one sentence per line and one line per

sentence. The input of the algorithm is a stop words eliminated sentence which contains lemmatized

content words and/or compounds. The distinct units in an input sentence of WN-SRAW will be

referred to astokensor instancesand the unique units in an input sentence of WN-SRAW will be

referred to astypesor word types.

An example of an input sentence is shown below. The input sentence contains 8 tokens or instances

and 8 word types. Henceforth the terms “instance” and “token” will be used interchangeably.

Plain sentence:Richard Phillips Feynman was an American physicist known for ex-

panding the theory of quantum electrodynamics.

WN-SRAW input: richard phillips feynman be american physicist known expand the-

ory quantumelectrodynamics

Each token in the input sentence is disambiguated separately, starting with the first token and work-

ing left to right. At each stage, the token being disambiguated is called thetarget, and the sur-

rounding tokens form thecontext window. The size of the context is determined by the user and

will be referred to aswindow size. A balanced context is chosen according to the window sizen.

A window size ofn means that there aren tokens in the context window, including the target. The

window context is chosen asceil((n− 1)/2) tokens on the left andfloor((n− 1)/2) tokens on the

right of the target, where

ceil(x) = smallest integer not less than x as a real number

floor(x) = largest integer not greater than x as a real number

For example, in the above input sentence, ifknownis the target, then a window size of 3 determines

the context as (physicist, expanding) and a window size of 4 determines context as (american,

25

physicist, expanding). Note that the tokens at the start or end of a sentence will have unbalanced

windows associated with them, since the algorithm does not cross sentence boundaries and treats

each sentence independently. For example, for the targetquantumelectrodynamicswith window

size 3, onlytheorywill be in the context window. If the window size is 2 and the target is the first

token on the left, the first token on the right is considered. In the example above for window size 2

the context for the targetrichard phillips feynmanwill be the tokenbe.

Each target is disambiguated as below.

Supposewt is the target having senses{s1, s2, ..., smt
} andc1, c2, ..., cn are the tokens in a context

window where the window size isn + 1. Assume that each context tokenci hasmi possible senses,

denoted as{s∗i1, s
∗
i2, ..., s

∗
imi
}. The goal of the algorithm is to select one of the senses from the set

{s1, s2, ..., smt
} as the most appropriate sense for the targetwt.

WN-SRAW assigns the most appropriate sense to the target by measuring the semantic related-

ness between the possible senses of the target and the possible senses of each of the tokens in the

context window. Semantic relatedness is computed using therelatedness function,relatedness :

(sk, s
∗
il) → R, wheresk (1 ≤ k ≤ mt) representskth sense of the target ands∗il representslth

sense (1 ≤ l ≤ mi) of the ith (1 ≤ i ≤ n) context token andR is the set of real numbers. The

relatedness function takes as input two senses, and outputs a real number. It is assumed that this

real number is indicative of the degree of semantic similarity between the two input senses. A

larger number denotes high relatedness between the two senses and a smaller number denotes low

relatedness between the senses. Denote byvki the relatedness which gives the maximum value for

(sk, s
∗
il), 1 ≤ l ≤ mi. For each context wordci, this vki is assigned tosk. For eachsk, we sum

these values, givingvk =

n∑

i=1

vki. In other words,vk can be calculated as shown in Equation (14).

Thesk with the greatestvk is considered to be the most appropriate sense of the targetwt.

vk =

n∑

i=1

(max
1≤l≤mi

(sk, s
∗
il)) (14)

The pseudo code of the algorithm is described in Algorithm 2 and Algorithm 3. Ifvki doesn’t meet

a certain threshold13, meaning that the target sense is not sufficiently related tothe given context

13These thresholds can be set using –pairScore. By default it is 0.0.

26

token, then the score is not assigned. Similarly, if the maximum ofvk is below certain threshold14,

then WN-SRAW concludes that there is no sufficient relatedness found with the surrounding context

to disambiguate the target.

Algorithm 2 Word Sense Disambiguation algorithm
1: function disambiguate-all-tokens (input[], n) : disambiguated-input[]

{/*n is the window size andinput[] is a sentence made up of tokens*/}

2: for all tokenswt in input[] do

3: best-sense← disambiguate-single-token (input[], t, n)

4: disambiguated-input[t] = wt with best-sense assigned

5: end for

6: return disambiguated-input[];

7: end function

3.4.1 WN-SRAW as a Complete Bipartite Graph

The algorithm can also be viewed as a weighted complete bipartite graph. A bipartite graph is a

graph whose vertices can be divided into two disjoint setsU andV such that every edge connects a

vertex inU to one inV . A complete bipartite graph is a bipartite graph such that for ∀uǫU , ∀vǫV ,

an edge(u, v) exists.

Supposewt is the target. LetU andV be disjoint sets such thatU = {s1, s2, ..., smt
} is the set of

mt possible senses of tokenwt andV = {(1, c1), (2, c2), ..., (n, cn)} is the set ofn context tokens.

The reason for using ordered pairs for context tokens is thatthey can repeat. For example, when

disambiguatingvisited, in the input sentencequeen egypt visited queen england15, with window

size=5, the context tokenqueenwould appear twice. Assume that each context token(i, ci) hasmi

possible senses, denoted as{s∗i1, s
∗
i2, ..., s

∗
imi
}. The goal is to select one of the senses from the set

{s1, s2, ..., smt
} as the most appropriate sense for the targetwt.

Let E be the set of edges betweenU andV , i.e E = {(u, v) : uǫU, vǫV }. A real valued weight is

14This threshold can be set using –contextScore parameter. Bydefault it is 0.0.
15The original text isThe queen of Egypt visited the queen of England

27

Algorithm 3 Word Sense Disambiguation algorithm
1: function disambiguate-single-token (input[], t, n) : best-sense

{/*wt is thetth token in theinput[]*/}

2: wt ← input[t]

{/*context[] is an array of the context tokens of the current targetwt*/}

3: context[]← ceil((n−1)/2) tokens on the left andfloor((n−1)/2) tokens on the right ofwt

4: for all sensessk of targetwt do

5: vk ← 0

6: for all ci in context[] do

7: for all sj of ci do

8: temp-score[j]

9: end for

10: vki ← highest score in arraytemp-score[]

11: if vki > pair-threshold then

12: vk ← vk + vki

13: end if

14: end for

15: end for

{/*At this point each sensesk of the target has a scorevk assigned to it.*/}

{/*The sensesk with the maximumvk is the winning score*/}

16: winning-score← score which has the maximum valuevk

17: if winning-score > context-threshold then

18: return sk which has the maximum valuevk

19: else

20: return no relatedness with the surrounding context

21: end if

22: end function

28

associated with every edge(u, v) which is calculated using the weight functionW . W is calculated

by taking the maximum of the relatedness scores between sense u of the target and each senses∗il

of the context tokenvǫV as shown is Equation (15).

W (u, v) = max
1≤l≤mi

(relatedness(u, s∗il)) (15)

whererelatedness is the function that takes two senses as input, and outputs a real number as

defined previously. A low value of the weight function indicates that there is no relatedness or

similarity between the sense and the context token. A high weight value means they are strongly

related. Each nodeuǫU is assigned a score by summing the weights associated with its incoming

edges. The sense with the highest score is the winning sense.All tokens are disambiguated one by

one in this fashion.

3.4.2 Time Complexity of the Disambiguation Algorithm

It is interesting to see a WSD system running as a stand alone application. However, it becomes

more useful when integrated in real-world applications such as Machine Translation and Informa-

tion Retrieval. This makes it an intermediate task and henceit is expected to be time-efficient. This

section discusses the time complexity of the algorithm.

Let s be the number of sentences in the input text. Letm be the average number of tokens for this

set of input sentences. Letn + 1 be the window size andSavg be the average number of senses

of polysemous tokens.Savg is calculated from the text to be disambiguated. For example, if the

text has the two sentences below, where the parentheses gives the number of senses in WordNet for

those tokens,Savg is calculates asSavg = 10+12+3+12+52+4

6
= 15.5

king(10) counts(12) money(3)

queen(12) plays(52) flute(5)

A comparison in this context means finding similarity/relatedness between two WordNet concepts.

Let Tsim be the time required for a comparison.

For finding relatedness between each sense of the target and acontext token(Savg × Savg) = S2
avg

comparisons are needed. Now for all context terms the numberof comparisons is at mostn×S2
avg.

29

We need to do these comparisons for all senses of the target. So for Savg senses of the target, the

upper limit on the total number of comparisons is

n× S2
avg × Savg = n× S3

avg (16)

We need to do this for allm terms in the sentence

n× S3
avg ×m (17)

Finally, for s sentences in a text, the upper bound on the total number of comparisons can be given

as,

n× S3
avg ×m× s (18)

and the upper bound on the time required by the algorithm can be described as

n× S3
avg ×m× s× Tsim (19)

Equation (18) gives the upper bound on the total number of comparisons. It assumes that for all

words in the text same number of comparisons are performed. In fact, the border cases will have an

unbalanced window and hence fewer number of comparisons will be performed.

ThoughS3
avg is going to affect the number of comparisons of the algorithm, it is going to be a con-

stant. So from Equation (18), we can say that the complexity is linear ininput size× window size.

That is the time complexity depends upon the size of the text to disambiguate and the window

size. That said, since WN-SRAW doesn’t cross sentence boundaries, the upper bound onn will be

2× average number of content terms in a sentence = 2×m. So the values ofn greater than

this upper bound will not have any substantial effect on the complexity.

30

4 Experimental Data

The performance of all-words sense disambiguation systemsis evaluated using manually sense-

tagged corpora. As noted in the introduction, annotating all words in a text is a hard and time

consuming task. The large number of words to annotate, inconsistencies in the annotation and very

fine distinctions between senses in the sense inventories mean it is also an error prone task. In

order to get accurate annotation, two or more annotators work on the same text. In this process, the

annotators might disagree on certain instances. The agreement between annotators is referred to as

inter-annotator agreement. Where the inter-annotator agreement is high, the accuracyof annotation

is correspondingly high. There are various methods to resolve the disagreement between annotators.

In some methods, a third person looks at points where the annotators disagree and chooses one of

the senses they chose or assigns a totally different sense. Another method lists all the possible

annotations in the sense-tagged corpora.

For example, consider the following senses of the verbdeal, in which WordNet makes a fine dis-

tinction between senses.

1. cover, treat, handle, plow, deal, address – (act on verbally or in some form of artistic expres-

sion; “This book deals with incest”; “The course covered allof Western Civilization”; “The

new book treats the history of China”)

2. consider, take, deal, look at – (take into consideration for exemplifying purposes; “Take the

case of China”; “Consider the following case”)

The senses are very close and for the following sentence bothof the above annotations are appro-

priate for the verbdeal. In such a case, it would be hard for annotators to decide uponthe correct

sense.

The examination asks students todeal with problems in calculus.

The annotators may disagree and the sense-tagged corpus would list both of the above senses for

the verbdeal. The sense-tagged corpora we use follow this method to resolve inter-annotator dis-

31

agreement. While evaluating, we consider our answer correct whenever it matches any of the listed

senses.

The experiments in this thesis were carried mainly on the following corpora.

4.1 SemCor

SemCor [24] is the most widely-used freely available manually sense-tagged corpus. It comprises

around 234,000 semantically annotated tokens (80% Brown corpus, 20% a novel, “The Red Badge

of Courage”). The Brown Corpus was created at Brown University in 1964. It includes news

articles, fiction, religious works, and scientific writings.

In SemCor, all open class words are manually sense-tagged byWordNet 1.6 senses. Since version

1.6, WordNet has undergone many changes and released newer versions. Many senses were added

and others removed in newer versions. This thesis uses WordNet 3.0. So in order to use SemCor,

a mapping from WordNet 1.6 senses to WordNet 3.0 senses is required. We use the version of

SemCor16 that is re-mapped to WordNet 3.0 by Rada Mihalcea17. In this version of SemCor, the

senses that are defined in WordNet 1.6 but are not defined in WordNet 3.0 are assigned sense 0.

Figure 4 shows a sample of SemCor formatted data of the following plain text.

The petition listed the mayor’s occupation as “attorney” and his age as 71.

The lemmas withwnsn > 0 are sense-tagged tokens. As noted before, the input of WN-SRAW

contains only content words and hencethedoesn’t appear in the input text. Here is the reformatted

text that will be input to WN-SRAW system that includes only sense-tagged tokens.

petition#n list#v mayor#n occupation#n attorney#n age#n

In this version of SemCor, there are overall 185,273 open class sense-tagged tokens along with their

context.

16http://www.cs.unt.edu/ rada/downloads.html
17Unless specified otherwise we use SemCor 3.0

32

The petition listed the mayor’s occupation as “attorney” and his age as 71.

</s>

</p>

<p pnum=28>

<s snum=32>

<wf cmd=ignore pos=DT>The</wf>

<wf cmd=done pos=NN lemma=petition wnsn=1 lexsn=1:10:00::>petition</wf>

<wf cmd=done pos=VB lemma=list wnsn=1 lexsn=2:32:00::>listed</wf>

<wf cmd=ignore pos=DT>the</wf>

<wf cmd=done pos=NN lemma=mayor wnsn=1 lexsn=1:18:00::>mayor</wf>

<wf cmd=ignore pos=POS>ś</wf>

<wf cmd=done pos=NN lemma=occupation wnsn=1 lexsn=1:04:00::>occupation</wf>

<wf cmd=ignore pos=IN>as</wf>

<punc>“</punc>

<wf cmd=done pos=NN lemma=attorney wnsn=1 lexsn=1:18:00::>attorney</wf>

<punc>”</punc>

<wf cmd=ignore pos=CC>and</wf>

<wf cmd=ignore pos=PRP$>his</wf>

<wf cmd=done pos=NN lemma=age wnsn=1 lexsn=1:07:00::>age</wf>

<wf cmd=ignore pos=IN>as</wf>

<wf cmd=done pos=CD ot=notag>71</wf>

<punc>.</punc>

</s>

Figure 4: SemCor formatted data

33

corpus nouns verbs adjectives adverbs

SemCor 87,002 (47%) 47,570 (26%) 31,754 (17%) 18,947 (10%)

SENSEVAL -2 1,057 (47%) 509 (23%) 417 (18%) 277 (12%)

SENSEVAL -3 884 (46%) 719 (37%) 322 (17%) 12 (0.6%)

Table 2: The number of tokens broken down by part-of-speech where the token is defined in Word-

Net.

corpus # tokens # word types

SemCor 18,5273 21,513 (12%)

SENSEVAL -2 2,260 1,075 (48%)

SENSEVAL -3 1,937 952 (49%)

Table 3: Overall number of tokens and word types.

corpus nouns (%) verbs (%) adjectives (%) adverbs (%) All (%)

SemCor 18.9 5.2 30.7 39.3 21.32

SENSEVAL -2 22.8 2.3 19.4 37.2 20.54

SENSEVAL -3 19.1 5.3 21.7 100 16.53

Table 4: Percentage of monosemous tokens per part-of-speech.

34

semcor SENSEVAL -2 SENSEVAL -3

be#v (8,400) gene#n (60) be#v (137)

person#n (6,696) cancer#n (54) man#n (17)

not#r (1,703) ringer#n (27) have#v (16)

group#n (1,329) say#v (24) say#v (15)

have#v (1,126) bell#n (22) local#a (13)

say#v (1,005) not#r (21) feel#v (12)

location#n (993) cell#n (21) state#n (12)

make#v (757) copy#n (17) stranger#n (11)

man#n (576) educational#a (16) time#n (11)

see#v (549) know#v (16) legislator#n (11)

know#v (512) find#v (16) voter#n (11)

time#n (511) education#n (15) congressional#a (11)

Table 5: First n most frequent word types where the type frequency for frequently occurring word

types in SemCor> 500.

35

4.2 SENSEVAL /SEM EVAL

SENSEVAL 18(now renamed SEMEVAL) is an international competition on WSD organized by the

Association for Computational Linguistics (ACL)SpecialInterestGroup on theLEX icon (SIGLEX).

The goal of the competition is to evaluate the strengths and weaknesses of various WSD systems

with respect to different words, different varieties of language, and different languages. The review

of the competitions can be found in [28]. The competition includes a number of different tasks, and

the SENSEVAL organization develops a set of test data to use for evaluating the systems. There have

been four competitions held so far. The first one, SENSEVAL -1 took place in 1998 and consisted

of a lexical-sample task. The second competition SENSEVAL -2 took place in 2001 and consisted

of a lexical-sample task, an all-words task and a translation task. SENSEVAL -3 was held in 2004

and consisted in total of 14 tasks including lexical-sampleand all-words tasks. The fourth edition

of SENSEVAL , SENSEVAL -4/SEMEVAL -2007 consisted of total 19 tasks including an all-words

coarse-grained WSD task. The fifth competition is planned for 2010.

There were several different types of data sets created for all-words tasks in these competitions. The

SENSEVAL data19 used in this thesis is the sense annotated data used for the English SENSEVAL

all-words task. The data sets have the same format as of SemCor.

SENSEVAL -2 is a small subset of the Penn Treebank corpus20 and consists of 3 Wall Street Journal

articles. 2,473 of the total 4,873 words are open-class words, and 2,260 of the open-class words are

found in WordNet. Table 2 shows the most frequently occurring word types in this corpus. Looking

at the most frequently occurring word typesgene, cancer, cell, we can guess that the corpus is

medicine related. Still it shares common words likeknow, notandsaywith SemCor.

Like SENSEVAL -2, SENSEVAL -3 also is a small subset of the Penn Treebank corpus and consists

of 3 articles. Two of them are sections of Wall Street Journalarticles and one is a work of fiction

from the Brown corpus. Out of 4,883 words in the set, 2,081 areopen-class words and 1,937 of the

open class words are found in WordNet. The inter-annotator agreement was 72.5% for people with

advanced linguistics degrees. Table 2 demonstrates that SENSEVAL -3 shares a large number of the

18http://www.senseval.org/
19http://www.cs.unt.edu/ rada/downloads.html
20http://www.cis.upenn.edu/ treebank/

36

most frequent tokens with SemCor, e.g.be, man, have, sayandtime.

Table 2 shows the distribution of the open class words in SemCor, SENSEVAL -2 and SENSEVAL -3

data sets by part-of-speech. Only words with valid WordNet senses are included in the table. It can

be seen that SENSEVAL -3 has a negligible percentage of adverbs and a somewhat higher percentage

of verbs. This leads to higher percentage of polysemous tokens in SENSEVAL -3.

Table 3 shows the number of tokens and word types in the data sets. It can also be seen that because

of the size of SemCor the number of word types in SemCor is pretty small (12% of the total SemCor

tokens) compared to the number SENSEVAL -2 and SENSEVAL -3 types (around 48%).

Table 4 shows the proportion of monosemous tokens per part-of-speech. It shows that a significant

percentage of adverbs in SemCor and all adverbs in SENSEVAL -3 are monosemous. However the

overall percentage of monosemous words in SENSEVAL -3 is less.

Table 5 shows the frequently occurring types in the datasets. For SemCor, we created a cut off of fre-

quency= 500. We observed that first 12 frequently occurring word types inSemCor have frequency

> 500. Then we chose first 12 frequently occuring types from SENSEVAL -2 and SENSEVAL -3.

The WN-SRAW system was not evaluated on any data from Senseval-1 since there was no all-words

task. The all-words coarse-grained WSD task data from the SEMEVAL -2007 competition would

provide interesting data. However, this thesis doesn’t useit.

37

5 Experimental Results

This chapter presents an extensive set of results from the experiments carried out on the data intro-

duced in the previous chapter. At first, we discuss the general methodology of experiments and the

baselines considered. Then we present a list of hypotheses and the measures used to evaluate the

performance, followed by detailed discussion of each hypothesis.

The performance of WN-SRAW system is evaluated using sense-tagged corpora. The general

methodology to evaluate results involves three steps. In the first step, the key (the gold standard) is

extracted from the sense-tagged corpus. In the second step,part-of-speech tagged text is extracted

from the same corpus ignoring sense tags. WN-SRAW is then used to disambiguate the extracted

text. Finally, the answers of WN-SRAW are scored against thekey.

We consider two baselines – random baseline and sense1 baseline. The random baseline is the

assignment of a random sense to each instance. It serves as the lower bound of the algorithm.

The random baseline randomly guesses a sense from the set of possible senses for each token and

serves as a sanity check. The random baseline may be viewed asa series of dice throws. For each

instance we have anN -sided die, whereN is the number of senses. Then we assign the sense that

is showed up on the die. This is done after lemmatization which leaves a comparatively small set

of senses from which to choose a random sense. Moreover, for the parts-of-speech which are not

highly polysemous (adjectives and adverbs), since there are not many choices from which to select

a random sense, it is more likely that a randomly chosen senseis correct.

The sense1 baseline assigns sense1 from WordNet to each instance. It is common that dictionary

makers (lexicographers) often try to organize senses so that the more common ones are more visible

or obvious. This is discussed more in Miller, 1994 [23]. Using the same idea, WordNet lists the

senses of a word according to their frequencies which are calculated from SemCor. The senses with

high frequencies appear at the top. For example, for the nounbank, if sloping land besides a body

of watersense occurs 25 times in SemCor, andfinancial institutionsense occurs 20 times, WordNet

will list the sloping landsense first21. In case of WordNet, this most common sense is referred to as

21Some words in WordNet do not have frequencies as they don’t appear in SemCor (e.g.ringer). In that case the senses

are listed in a random order.

38

sense1.

In a text, for many words the distribution of senses is highlyskewed. Supervised methods do very

well at least in part because they can learn the sense distribution from the training data and can

make predictions based on that. Like supervised methods, the sense1 scheme also makes use of the

knowledge of sense distribution of SemCor and this simple idea turns out to be very effective which

makes it hard to outperform the sense1 scheme for all-words sense disambiguation systems. If each

instance in SemCor is assigned sense1, we get a very high accuracy of 75%, which is very hard

to achieve for most of the disambiguation systems. Interestingly, the sense1 scheme also performs

well on SENSEVAL -2 (≈ 66%) and SENSEVAL -3 (≈ 67%). This raises the question – why even

care about other WSD approaches if sense1 scheme performs sowell. An important point to note

here is that the sense1 scheme doesn’t make use of the surrounding context for disambiguation

and simply relies on the statistical information about sense frequencies. Consequently though it

works well for SemCor and corpora containing related topics, it would not generalize well for texts

in other domains. The most common sense of a word depends uponthe domain of a text. For

example, ifbuilding materialsense of the instancecementis common in SemCor, it will be listed

first in WordNet which won’t help while disambiguating a textin dentistry domain. Testing on such

corpora might show the unreliability of sense1 scheme. To make the most frequent sense scheme

work effectively for texts in different domains, it is required that a sense-tagged corpora in that

domain is available. As we noted before, this is an expensiveand time consuming task.

It is important to note that WN-SRAW doesn’t use sense frequency information for disambiguation.

It treats all senses of a word as equally likely. Therefore, WN-SRAW could be easily used for

different domains without requiring any sense-tagged corpora from that domain.

Now that we know the general methodology of experiments and know about the baselines, we will

present a list of hypotheses for which we designed experiments.

1. If the context window around a polysemous target token is expanded, there will be more

related tokens available to measure against that target, which will lead to a more accurate

disambiguation.

2. If an all-words sense disambiguation system is not using any frequency count information,

39

it will show the same performance on instances where sense1 is not correct as on overall

polysemous instances.

3. The degree of difficulty in disambiguating a token is proportional to the number of senses of

that token (polysemy).

4. A significant percentage of word sense disambiguation error is caused by just a few highly

frequent word types.

5. Part-of-speech tagged text will be disambiguated more accurately than raw text.

6. Given any two parts-of-speech, the more polysemous will be less accurately disambiguated.

Figure 5: Instance space of the all-words sense disambiguation, showing proportion of instances in

SemCor. Total Number of instances = 185,273.

Figure 5 shows the instance space of the all-words sense disambiguation problem. As we can see,

for SemCor,21.3% of the instances are monosemous, which are very easy to disambiguate, while

the remaining78.8% are polysemous, which are challenging to disambiguate. Thedifficulty of dis-

ambiguation depends upon where the instance falls in the instance space. Therefore to know where

exactly the error lies, it is required to evaluate an instance based on its level of difficulty. For that, we

40

partition the instance space mainly into two classes. The first class contains monosemous instances

and the second one contains polysemous instances. Again considering the difficulty of outperform-

ing the most frequent sense (sense1 in case of WordNet), we further divide the class of polysemous

instances into two classes – polysemous instances where sense1 is correct and polysemous instances

where sense1 is not correct.

We introduce the following scoring options to evaluate the instances based on their difficulty level.

1. –score poly of the scorer program22 of WN-SRAW system: Disambiguation of a monose-

mous instance involves assignment of the only available sense to the instance. This leads

to very easy disambiguation guaranteeing100% accuracy on those instances. However, un-

fortunately, it is the polysemous instances that occur in a text more often. For example, in

the previous chapter we noted that SemCor and SENSEVAL -2 have around79% polysemous

instances while SENSEVAL -3 has about83% polysemous instances. To see how well an all-

words sense disambiguation system is performing, it is required to see its performance on

only polysemous instances in a text.

The option –score poly of the scorer program of WN-SRAW system allows to evaluate only

polysemous instances in a text.

2. –score s1nc using scorer program23 of WN-SRAW system: As discussed before, sense1 re-

sults are very high for the available sense-tagged corpora.So if the system is assigning sense1

by mistake or as a fall back strategy, it is easy to get misleading results. This option allows to

score only polysemous instances where sense1 is not correctand hence avoids the possibility

of getting misleading results. Other relevance of this scoring option is to show if there is any

sense1 bias associated with a particular similarity/relatednes measure. For example, it is said

that the first gloss in WordNet tends to be longer which could possibly create a sense1 bias

for lesk.

Note that the instances that will be evaluated using this option will be polysemous and will

be contained in the instances evaluated in –score poly option.

22http://search.cpan.org/ tpederse/WordNet-SenseRelate-AllWords-0.19/utils/allwords-scorer2.pl
23http://search.cpan.org/ tpederse/WordNet-SenseRelate-AllWords-0.19/utils/allwords-scorer2.pl

41

3. –usemono option of the WN-SRAW system assigns the only available sense to the monose-

mous instances. As we noted, an arbitrary text contains a significant proportion of monose-

mous instances. Therefore, disambiguating only monosemous instances also results in a re-

spectable accuracy. We used this option to see if the performance of WN-SRAW is only

because of the easy monosemous instances. The trends of the results will be similar to –score

poly, with a little boost in the overall performance becauseof the inclusion of monosemous

instances.

The results are reported usingprecision, recall,and theF-score. Precisionis the number of instances

assigned correct senses divided by the total number of instances attempted by the system, andrecall

is the number of instances assigned correct senses divided by the total number of sense tagged

instances in the corpus. Precision tells how well the systemdoing in theattemptedinstances and

recall tells how well the system is doing overall instances. The F-score combines precision and

recall as shown in equation (20), wherep is precision andr is recall.

F =
1

α1

p + (1− α)1

r

, 0 ≤ α ≤ 1 (20)

The constantα determines how precision and recall should be weighted.α = 0.5 will give an equal

weight top andr, while α > 0.5 would give more weight top. In this thesis same weight top and

r is given and henceF -score is calculated using equation (21).

F =
2pr

p + r
(21)

Sometimes the similarity and relatedness measures are unable to attempt instances because there

is no relatedness found with the surrounding context or there are no instances in the context with

which to find relatedness. This is very common in case of similarity measures because they can only

be applied foris-a relations in WordNet. For example, in the following input sentence, a similarity

measure will not be able to disambiguate the verbeatbecause there is no other verb in the sentence

to find relatedness with24.
24WN-SRAW has an option to coerce the part-of-speech of surrounding words to that of the tar-

get, although we haven’t experimented much with that. http://search.cpan.org/dist/WordNet-SenseRelate-

AllWords/doc/README.pod#Partof SpeechCoercion

42

eat#v dinner#n fancy#a restaurant#n

The instances for which the measure is able to assign answers, is what determines the coverage of

the measure. In general, similarity measures have low coverage because they can only be applied to

is-a hierarchies, more specifically for noun-noun and verb-verbpairs. On the other hand, related-

ness measures can be applied for all parts-of-speech and canexploit all relations, resulting in high

coverage. This relates to the recall concept we introduced,in that recall measures the performance

over all instances.

Now we present our analysis of each hypothesis. Details of each experiment will be discussed as

results of that experiment are presented. Unless specified otherwise, all results in this chapter are

presented in terms of F-score. Precision and recall resultsalong with the timing information25 are

included in Appendix A.3.

25The machine used to run these experiments is a Linux system using kernel 2.6.24. It has 4 Intel(R) Xeon(R) CPU,

2.93GHz processors each with 4 cores, and has a total memory of 3,635,528 KB (≈ 32GB).

43

5.1 Hypothesis 1: If the context window around a polysemous target token is ex-

panded, there will be more related tokens available to measure against that tar-

get, which will lead to a more accurate disambiguation.

Experiment 1: Evaluated only polysemy instances using –score poly optionby expanding win-

dow size. Six similarity measures namely path, wup, lch, res, lin, jcn and two relatedness measures26

lesk and vector as they are implemented in WordNet::Similarity package were used.

Observations and Analysis: The intuition behind this hypothesis is that the words that are far

apart might be strongly related with the target and can give clues for disambiguation. For example,

consider the following sentence withinstrumentas the target.

original: Sitar is a wonderful instrument.

WN-SRAW input (raw format):sitar be wonderfulinstrument

Considering the strong connection betweensitar andinstrument, the algorithm should choosemu-

sical devicesense of the target. But, for a smaller window size, say window=3, sitar won’t be in the

context of the target and therefore similarity and relatedness measures will not be able to find the

intended sense.

On the other hand, for a bigger window size, say, window=7,sitar will be in the context which

would lead to choose themusical devicesense of the target. The intuition is that, expanding window

should increase the precision. In terms of recall, if there are more tokens in the context, the chance

of finding relatedness with at least one them is higher and hence increased window size would lead

to a higher recall.

The results show increase in recall as per our intuition which in turn results in increased F-score,

however, precision doesn’t increase with increased windowsize.

Figures 6, 7 and 8 show F-score results which demonstrate that for all similarity measures, F-score

increases with increased window size. In case of relatedness measures, a very slight increase in F-

score is observed. All three corpora SemCor (Figure 6), SENSEVAL -2 (Figure 7) and SENSEVAL -3

26Due to performance constraints vectorpairs and hso are not used

44

(Figure 8) show similar trend.

The precision results in Figures 9, 10 and 11 show that thoughwe expected precision to increase

with bigger window sizes, it didn’t. In fact for the similarity measures, it dropped down. This might

be because more context words also lead to more noise which can mislead the algorithm.

The recall results in figures 12, 13 and 14 show that recall consistently increased with increased

window size. Especially, expanding window helped in case oflow recall similarity measures.

These results show some disagreements with results reported by Michelizzi [19]. Michelizzi con-

cluded that a small window size tends to result in high precision but low recall. He observed espe-

cially good results for window size 2. This is because for window size=2, Michelizzi assign sense1

to the first instance in a sentence. For example, in the sentence below, if window size=2 and the

target isblue, since there is no word in the left context, Michelizzi assigns sense1 to the target. This

induces huge sense1 bias resulting in good precision for window size = 2.

WN-SRAW input (raw format):blue mountain be look beautiful

Without relying on sense1, in such a case, WN-SRAW considersright context word27. For the above

example, WN-SRAW will havemountainin the context while disambiguating the targetblue.

Conclusion: The hypothesis implies that expanding window context should lead to a more accu-

rate disambiguation but the precision results show the opposite.

27This was changed effective version 0.17 of WordNet::SenseRelate::AllWords

45

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 6: SemCor F-score results with –score poly option. Number of instances = 145,773.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 7: SENSEVAL -2 F-score results with –score poly option. Number of instances =1,796.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 8: SENSEVAL -3 F-score results with –score poly option. Number of instances =1,617.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

pr
ec

is
io

n

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 9: SemCor Precision results with –score poly option.Number of instances = 145,773.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

pr
ec

is
io

n

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 10: SENSEVAL -2 precision results with –score poly option. Number of instances =1,796.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

pr
ec

is
io

n

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 11: SENSEVAL -3 Precision results with –score poly option. Number of instances =1,617.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

re
ca

ll

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 12: SemCor Recall results with –score poly option. Number of instances = 145,773.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

re
ca

ll

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 13: SENSEVAL -2 Recall results with –score poly option. Number of instances =1,796.

49

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

re
ca

ll

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 14: SENSEVAL -3 Recall results with –score poly option. Number of instances =1,617.

50

5.2 Hypothesis 2: If an all-words sense disambiguation system is not using any fre-

quency count information, it will show the same performanceon instances where

sense1 is not correct as on overall polysemous instances.

Experiment 2: We evaluated the polysemy instances where sense1 is not correct using –score

s1nc option by expanding window size. Six similarity measures namely path, wup, lch, res, lin,

jcn and two relatedness measures lesk and vector as they are implemented in WordNet::Similarity

package were used.

Observations and Analysis: As noted before, the sense1 heuristic works pretty well for the cor-

pora used in this thesis. For about76% instances in SemCor sense1 heuristic gives the correct

answer. But what about remaining24% instances?

Unlike sense1 heuristic, WN-SRAW doesn’t rely on frequencycount information. Instead it con-

siders all senses of a word as equally likely. So naturally weexpected that WN-SRAW will give

same performance on the instances where sense1 heuristic doesn’t work as on overall polysemous

instances.

The results in Figure 15, 16 and 17 however show that the results drop down for the instances where

sense1 is not correct. The performance lowers by a large margin compared to the performance of

all polysemous instances. WN-SRAW achieves the best F-score of 0.499 on polysemous instances

while the best F-score of 0.219 for the polysemous instanceswhere sense1 is not correct. This

indicates that if the answer is not sense1, WSD turns out to bea harder problem. These results

also show that the polysemous instances where sense1 is not correct contribute significantly to the

overall error.

The trend of the results is same as that of Experiment 1. All measures other than lesk and vector are

performing worse than the random baseline for smaller window sizes. This is because of the very

low recall of similarity measures. It can be seen that these measures converge to random baseline

for bigger window sizes.

The reason for overall low results is not so clear. But our intuition is that some of the similarity and

relatedness measures (especially lesk) have sense1 bias associated with them. In case of WordNet,

51

generally the first sense refers to the most common sense. It is believed that first senses in WordNet

tend to be longer, which may be because lexicographers try tomake it as clear as possible by putting

as much information they have. This would create a bias for lesk because longer glosses increase

the probability of finding more overlaps.

Conclusion The experimental results do not support the hypothesis.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 15: SemCor results with –score s1nc option. Number ofinstances = 43,730.

52

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 16: SENSEVAL -2 results with –score s1nc option. Number of instances =752.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 17: SENSEVAL -3 results with –score s1nc option. Number of instances =664.

53

5.3 Hypothesis 3: The degree of difficulty in disambiguatinga token is proportional

to the number of senses of that token (polysemy).

Experiment 3: In order to observe the effect of polysemy on disambiguation, the SemCor corpus

is partitioned into n classes, where each class1 ≤ i ≤ n represents the instances havingi possible

senses. We evaluate instances in each class using WN-SRAW system with representative measures

from each category, more specifically with gloss measure lesk, information content based measure

jcn and path-based measure lch. The measures are used with the window sizes that give best results.

We strictly didn’t back off to sense1 in any case because we wanted to see the real effect of polysemy

on the difficulty of disambiguation. The Spearman’s rank correlation coefficient was calculated

between polysemy and F-score using a freely available software R which provides an environment

for statistical computing and graphics28.

Observations and Analysis: In general, it is easy to disambiguate monosemous instances. How-

ever, in an arbitrary text, as noted by Fellbaum [6], a significant proportion of instances are polyse-

mous due to the fact that frequently used types are polysemous. For instance, as shown in Table 6,

the most frequently occurring typesbe#v andmake#v from SemCor have 13 and 49 senses in Word-

Net respectively. To illustrate the proportion of polysemous instances in total number of instances,

in SemCor about78% instances are polysemous.

There are mixed conclusions about polysemy and difficulty ofdisambiguation. Preiss [33] argues

that polysemy is not an ideal measure of difficulty. On the other hand Daelemans [10] concludes

that the fluctuations in accuracy of disambiguation largelydepend on the polysemy and entropy of

the ambiguous words.

Tables 7, 8 and 9 show the precision, recall and F-score of first 25 classes(n = 25) using lesk, jcn

and lch respectively. A high negative correlation of−0.820 for lesk,−0.840 for jcn and−0.721 for

lch demonstrates that the difficulty of disambiguation increases with increased polysemy. This also

confirms the low F-score for verbs which are in general highlypolysemous. The tables also show

that the number of instances decrease with increase in the number of senses except for a few cases.

The reason for more instances for polysemy=13 is that the most frequently occurring word type

28http://www.r-project.org/

54

semcor Polysemy

be#v (8,400) 13

person#n (6,696) 3

not#r (1,703) 1

group#n (1,329) 3

have#v (1,126) 19

say#v (1,005) 11

location#n (993) 4

make#v (757) 49

man#n (576) 11

see#v (549) 24

know#v (512) 11

time#n (511) 10

Table 6: Most frequent types in SemCor where word type frequency > 500. Polysemy represents

the total number of senses in WordNet.

be#v has 13 senses in WordNet. Similarly 19 senses ofhave#v leads to more number of instances

for polysemy=19.

To summarize, we found a high negative correlation between polysemy and F-score suggesting that

polysemy is a measure of difficulty and difficulty of disambiguation increases with increased pol-

ysemy. This confirms the conclusion in Daelemans 2002 [10]. It is important to note here that

Daelemans’s method of all-words sense disambiguation is supervised and uses sense distribution

information. Therefore they conclude that difficulty depends upon polysemy as well as sense dis-

tribution entropy. However, WN-SRAW doesn’t make use of word sense distribution information

for disambiguation and hence the difficulty is independent of the sense distribution entropy except

when used with information content measures. As we noted in background, content based measures

in some sense, use the sense distribution information when used with WordNet. But gloss based

and path based measures do not need any such information and consider all senses of an instance as

equally probable.

55

Conclusion: We found a high negative correlation between polysemy and F-score demonstrating

the hypothesis.

56

Polysemy P R F # instances

1 1.000 1.000 1.000 28,673 (19.67 %)

2 0.677 0.666 0.672 23,417 (16.06 %)

3 0.680 0.673 0.677 25,525 (17.51 %)

4 0.515 0.513 0.514 18,776 (12.88 %)

5 0.473 0.470 0.471 13,210 (9.06 %)

6 0.412 0.410 0.411 9,944 (6.82 %)

7 0.381 0.379 0.380 9,056 (6.21 %)

8 0.363 0.362 0.363 5,123 (3.51 %)

9 0.329 0.328 0.328 4,726 (3.24 %)

10 0.302 0.301 0.302 5,465 (3.75 %)

11 0.351 0.347 0.349 5,437 (3.73 %)

12 0.296 0.296 0.296 2,355 (1.62 %)

13 0.532 0.529 0.530 11,117 (7.63 %)

14 0.325 0.324 0.324 1,502 (1.03 %)

15 0.262 0.260 0.261 873 (0.60 %)

16 0.237 0.236 0.236 1,275 (0.87 %)

17 0.353 0.353 0.353 589 (0.40 %)

18 0.393 0.393 0.393 135 (0.09 %)

19 0.128 0.128 0.128 1,150 (0.79 %)

20 0.207 0.206 0.207 306 (0.21 %)

21 0.323 0.321 0.322 823 (0.56 %)

22 0.324 0.324 0.324 244 (0.17 %)

23 0.176 0.174 0.175 69 (0.05 %)

24 0.098 0.097 0.097 723 (0.50 %)

25 0.119 0.119 0.119 202 (0.14 %)

Table 7: Polysemy results with wntagged format, window=7, measure= lesk, contextScore=0.0,

pairScore=0.0, –score n with lesk stoplist and no forcepos.Total number of instances = 145,773.

Overall P=0.499, R=0.495, F=0.497. Spearman’s rank correlation rho for Polysemy and F = -0.820

57

Polysemy P R F # instances

1 1.000 1.000 1.000 28,673 (19.67 %)

2 0.770 0.441 0.561 23,417 (16.06 %)

3 0.716 0.514 0.598 25,525 (17.51 %)

4 0.603 0.401 0.482 18,776 (12.88 %)

5 0.497 0.368 0.423 13,210 (9.06 %)

6 0.446 0.320 0.373 9,944 (6.82 %)

7 0.425 0.276 0.334 9,056 (6.21 %)

8 0.406 0.325 0.361 5,123 (3.51 %)

9 0.332 0.257 0.290 4,726 (3.24 %)

10 0.338 0.235 0.277 5,465 (3.75 %)

11 0.409 0.327 0.363 5,437 (3.73 %)

12 0.261 0.197 0.224 2,355 (1.62 %)

13 0.352 0.268 0.304 11,117 (7.63 %)

14 0.309 0.243 0.272 1,502 (1.03 %)

15 0.257 0.179 0.211 873 (0.60 %)

16 0.191 0.168 0.179 1,275 (0.87 %)

17 0.267 0.192 0.223 589 (0.40 %)

18 0.505 0.407 0.451 135 (0.09 %)

19 0.260 0.203 0.228 1,150 (0.79 %)

20 0.357 0.324 0.340 306 (0.21 %)

21 0.186 0.090 0.121 823 (0.56 %)

22 0.169 0.143 0.155 244 (0.17 %)

23 0.172 0.145 0.157 69 (0.05 %)

24 0.155 0.130 0.141 723 (0.50 %)

25 0.080 0.054 0.065 202 (0.14 %)

Table 8: Polysemy results with wntagged format, window=15,measure= jcn, contextScore=0.0,

pairScore=0.0, –score n with no measure config, no forcepos and no stoplist. Total number of

instances = 145,773. Overall P=0.528, R=0.323, F=0.401. Spearman’s rank correlation rho for

Polysemy and F = -0.840

58

Polysemy P R F # instances

1 1.000 1.000 1.000 28,673 (19.67 %)

2 0.596 0.342 0.435 23,417 (16.06 %)

3 0.597 0.430 0.500 25,525 (17.51 %)

4 0.433 0.289 0.347 18,776 (12.88 %)

5 0.341 0.254 0.291 13,210 (9.06 %)

6 0.339 0.244 0.284 9,944 (6.82 %)

7 0.284 0.184 0.223 9,056 (6.21 %)

8 0.247 0.198 0.220 5,123 (3.51 %)

9 0.248 0.193 0.217 4,726 (3.24 %)

10 0.283 0.197 0.232 5,465 (3.75 %)

11 0.202 0.162 0.180 5,437 (3.73 %)

12 0.169 0.128 0.146 2,355 (1.62 %)

13 0.458 0.349 0.396 11,117 (7.63 %)

14 0.211 0.166 0.186 1,502 (1.03 %)

15 0.173 0.120 0.142 873 (0.60 %)

16 0.206 0.181 0.193 1,275 (0.87 %)

17 0.186 0.134 0.156 589 (0.40 %)

18 0.092 0.074 0.082 135 (0.09 %)

19 0.390 0.305 0.342 1,150 (0.79 %)

20 0.194 0.176 0.185 306 (0.21 %)

21 0.216 0.104 0.141 823 (0.56 %)

22 0.367 0.311 0.337 244 (0.17 %)

23 0.051 0.043 0.047 69 (0.05 %)

24 0.152 0.129 0.139 723 (0.50 %)

25 0.137 0.094 0.111 202 (0.14 %)

Table 9: Polysemy results with wntagged format, window=15,measure= lch, contextScore=0.0,

pairScore=0.0, –score n with no measure config, no forcepos and no stoplist. Total number of

instances = 145,773. Overall P=0.420, R=0.259, F=0.320. Spearman’s rank correlation rho for

Polysemy and F=-0.721

59

5.4 Hypothesis 4: A significant percentage of word sense disambiguation error is

caused by just a few highly frequent word types.

Experiment 4: To see in which cases the system doesn’t predict the correct answer and whether

the senses assigned are close to the correct sense, we carried experiments with frequently occurring

types. For this, all instances of a most frequently occurring type are evaluated. The experiments

were mainly carried using lesk measure with window size 7, which gives the best overall results.

The measure was configured to use lesk stoplist29.

Observations and Analysis: In general, word types in a coherent text follow Zipfian distribution

as shown in Figure 18. This means that a few word types occur very frequently, while many word

types only occur a few times. Therefore in the problem of all-words sense disambiguation, not all

word types have the same contribution in the overall results. For example, a word that occurs 5

times won’t shift the F-score of the system in any significantway no matter what you do with it,

while one that occurs 9000 times can affect the overall results in a very big way.

More formally, the contribution of each word to the disambiguation can be described as below.

Consider a text withn tokens andt types. Letpi be the precision ofith(1 ≤ i ≤ t) type. Letfi be

the fraction such thatfi = # occurrences of ith type
n . Then the overall precision can be described as

P=
t∑

i=1

pifi. That is, the contribution of theith type to the overall precision is given bypifi. So it is

important to improvepi for greater values offi. In other words, to increase the overall precision of

WSD it is required that the frequently occurring types are disambiguated correctly.

Table 9 gives the precision, recall and F-score of most frequently occurring types in SemCor. It

shows that for some cases WN-SRAW does very well and for others very poorly. For example,

it does pretty well on frequently occurring polysemous nouns person#n, group#n, location#n but

performs very poorly on the frequently occurring verbshave#v, make#v, say#v and see#v. The

noun person, which occurs 6696 times in SemCor, results in a F-score of 0.993 while the verb

make, which occurs 757 times in SemCor gives a very low F-score of 0.085. Again the polysemy

might be playing a role here because frequently occurring nouns in SemCor have in average 6 senses

29Refer lesk stoplist in Appendix A.2

60

 0

 2000

 4000

 6000

 8000

 10000

 1 10 100 1000 10000

of

 ty
pe

s

Frequency of occurence

Figure 18: Word types in SemCor follow Zipfian distribution.Total number of types = 21,513

in contrast with average 21 senses in case of verbs.

We present individual type results using confusion matrices i×j where eachijth entry represents the

count of how many times the actual member of classi was predicted as classj. In other words, the

rows represent the answer key results (the gold standard) while the columns represent WN-SRAW

results. Diagonal entries which represent the correct prediction are displayed in bold. We ignore the

instances having more than one possible annotation in the key. For example, the following SemCor

instancebe (lemma=be), which has two possible annotations 2 and 1 (wnsn=2;1), will be ignored.

This leads to a little difference between the counts in Table9 and the counts mentioned here.

<wf cmd=done rdf=is pos=VB lemma=be wnsn=2;1 lexsn=2:42:06::;2:42:03::>’s<wf>

Table 11, 12 and 13 show the confusion matrices for the verbsay#v from SemCor, SENSEVAL -2

and SENSEVAL -3 respectively. Table 11 shows the skewed sense distribution of this particular word

type where85% of the instances have sense1 as the correct sense. The sense assignment distribution

in the tables shows that most of the times sense1 is confused with sense6 and sense5. For instances,

61

word type P R F #Instances Polysemy

be#v 0.624 0.621 0.623 8,400 (4.5%) 13

person#n 1.000 0.987 0.993 6,696 (3.6%) 3

not#r 1.000 0.984 0.992 1,703 (0.91%) 1

group#n 0.981 0.981 0.981 1,329 (0.71%) 3

have#v 0.124 0.123 0.124 1,126 (0.61%) 19

say#v 0.215 0.210 0.212 1,005 (0.54%) 11

location#n 0.955 0.952 0.952 993(0.0.53%) 4

make#v 0.085 0.085 0.085 757 (0.41%) 49

man#n 0.674 0.672 0.673 576(0.31%) 11

see#v 0.053 0.053 0.053 549 (0.29%) 24

know#v 0.280 0.268 0.274 512 (0.28%) 11

time#n 0.103 0.103 0.103 511 (0.%28) 10

Table 10: Frequently occurring types from SemCor where the instance frequency account for at

least 0.27% of the SemCor data (i.e. instance frequency> 500). Total SemCor instances = 185,273,

measure=lesk, window size=7 and using –word

62

1 2 3 4 5 6 7 8 9 10 11 Key

1 117 38 19 34 147 452 19 0 0 0 3 829

2 21 9 1 6 23 55 4 0 0 0 0 119

3 3 1 0 2 4 6 0 0 0 0 0 16

4 0 0 0 0 0 1 0 0 0 0 0 1

5 0 0 0 2 3 3 0 0 0 0 0 8

6 0 0 0 1 0 0 1 0 0 0 0 2

7 1 0 0 0 0 0 0 0 0 0 0 1

8 1 0 0 0 0 0 0 0 0 0 0 1

Ans 143 48 20 45 177 517 24 0 0 0 3 977

Table 11: Confusion matrix of the verbsay from SemCor measure=lesk with lesk stoplist and

window size=7, P=0.134, R=0.130, F=0.132,say#v has total 11 senses.

1 2 3 4 5 Key

1 1 1 0 0 1 3

2 0 1 0 0 5 6

3 0 0 0 0 1 1

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

7 0 0 0 0 0 0

8 2 2 0 0 6 10

Ans 3 4 0 0 13 20

Table 12: Confusion matrix of the verbsayfrom SENSEVAL -2 measure=lesk and window size=7,

P=0.083, R=0.083, F=0.083,say#v has total 11 senses.

63

1 2 3 4 5 6 Key

1 0 0 0 0 1 1 2

2 2 0 1 0 1 2 6

3 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 1 0 0 0 1 0 2

9 0 0 0 0 0 1 1

Ans 3 0 1 0 3 4 11

Table 13: Confusion matrix of the verbsayfrom SENSEVAL -3 measure=lesk with lesk stoplist and

window size=7, P=0.000, R=0.000, F=0.000,say#v has total 11 senses.

in Table 10, 462 instances have been assigned sense6 where sense1 is the correct sense. In case of

SENSEVAL -3 (Table 13), no prediction was correct among total 10 instances. Again we can see that

64% instances were assigned sense5 or sense6. Here are the threesenses in WordNet.

1. sense1 (1861) state, say, tell – (express in words; “He said that he wanted to marry her”; “tell

me what is bothering you”;“state your opinion”; “state yourname”)

2. sense5 (8) order, tell, enjoin, say – (give instructions to or direct somebody to do something

with authority; ”I said to him to go home”; ”She ordered him todo the shopping”; ”The

mother told the child to get dressed”)

3. sense6 (4) pronounce, articulate, enounce, sound out, enunciate, say – (speak, pronounce, or

utter in a certain way; “She pronounces French words in a funny way”; “I cannot say ‘zip

wire”’; “Can the child sound out this complicated word?”)

Consider the following instance ofsay#v where lesk assigns sense6 instead of sense1.

64

1 2 Key

1 6 15 21

Ans 6 15 21

Table 14: Confusion matrix of the verbringer from SENSEVAL -2 measure=lesk and window

size=7, P=0.222, R=0.222, F=0.222

original: “This is a poor boy’s bill”, said person.

WN-SRAW input:be#v poor#a boy#n bill#n say#v person#n

The main reason of assigning sense6 in this case is say#v#6 finds a strong relatedness with per-

son#n#1 which ishuman beingsense ofperson#n. Since sense6 has wordspronounce, articulate,

enounce, sound out, enunciate,it finds many common words with person#n#1 like nose, mouth,

speak, word etc. We also observed that in SemCor,say#v andperson#n co-occur approximately

450 number of times. This could be the reason why lesk choosessense6 over sense1 for 452 in-

stances.

One would think that these senses might be related strongly which results in confusion of assign-

ment. But lesk relatedness score between say#v#1 and say#v#6, which is 4, doesn’t show strong

relatedness between the two senses as compared with the maximum relatedness score of 27 between

say#v#1 and say#v#8. So in this particular case, we can say that lesk mis-prediction is not just be-

cause of fine distinction between WordNet senses. In fact, insome cases we observed that it predicts

a sense with a completely different meaning.

For example, as shown in Table 14, the results of frequently occurring word typeringer#n in

SENSEVAL -2, show that the algorithm confuses sense1 and sense2 a significant number of times,

even though these are completely different senses of the noun ringer.

1. sense1 toller, bell ringer, ringer – (a person who rings church bells (as for summoning the

congregation))

2. sense2 ringer, dead ringer, clone – (a person who is almostidentical to another)

3. sense3 ringer – (a contestant entered in a competition under false pretenses)

65

4. sense4 ringer – ((horseshoes) the successful throw of a horseshoe or quoit so as to encircle a

stake or peg)

It was also observed that if there are related instances in the context, we disambiguatedringer#n

correctly. For example, in the following case there are instances likebell#n and ring#v in the

context which help to predict the correct sense.

original: But there still are n’t enough ringers to ring more than six ofthe eight bells.

WN-SRAW input:still#r enough#a ringer#n ring#v more#a bell#n30

But in the sentence below, there are no instances in the context which tell about the sense of the

target instanceringer#n. Given only these instances, it would be hard even for human beings to

disambiguate the target instance correctly.

original: Now , only one local ringer remains : 64-year-old Derek Hammond.

WN-SRAW input:now#r only#r local#a ringer#n remain#v

Another example which is very hard for lesk is the nountime. We observed that most of the times

sense5 was assigned in place of sense1.

1. sense1 (219) time, clip – (an instance or single occasion for some event; “this time he suc-

ceeded”; “he called four times”; “he could do ten at a clip”)

2. sense5 (36) time – (the continuum of experience in which events pass from the future through

the present to the past)

For example, in the following sentence, the word time#n is sense tagged as time#n#5 where the

correct tagging should be time#n#1.

Original: New bonds would be issued everytime a portion of the old ones are paid off

by tax authorities.

WN-SRAW input: bond#n issue#v every#a time#n portion#n old#a pay off#v tax#n

authorities#n
30The reason for skipping content words from the original textis that they are not sense tagged in the corpus.

66

1 2 3 4 5 6 7 8 9 10 Key

1 2 1 61 0 121 0 5 0 0 5 195

2 1 8 52 0 81 0 3 2 0 5 152

3 0 3 17 0 53 0 0 0 0 3 76

4 0 0 9 1 24 0 1 0 0 1 36

5 0 1 5 0 26 0 0 0 0 3 35

6 0 3 1 0 0 0 0 0 0 2 6

7 0 0 2 0 5 0 0 0 0 0 7

8 0 0 0 0 3 0 0 1 0 0 4

9 0 0 0 0 1 0 0 0 0 0 1

Ans 3 16 147 1 314 0 9 3 0 19 512

Table 15: Confusion matrix of the nountime from SemCor measure=lesk with lesk stoplist and

window size=7, P=0.106, R=0.106, F=0.106,time#n has total 10 senses.

Because of the wordcontinuumin the definition oftime#n#5, there is a strong relatedness found

betweentime#n#5 andportion#n#1 which results in choosing sense5 over sense1.

In order to see how much the first 12 most frequently occurringword types contribute to the overall

error, we evaluated polysemous instances in SemCor by excluding the frequently occurring and

poorly performing word types31 have#v, make#v, time#v, know#v, see#v and say#v . We used

lesk with window size 7 which gives the best performance. Theresults showed that the F-score

increased from 0.497 (all instances) to 0.510 (excluding poorly performing instances). We also

evaluated polysemous instances in SemCor by assigning the correct sense (from the key) to the

above poorly performing word types which increased F-scorefrom 0.497 to 0.547.

In both cases, the reason F-score didn’t increase a great deal may be because, as shown in Figure

17, the overall proportion of the instances of frequently occurring word types is not that significant

compared to the total instances of the word types that occur only a few times.

31This can be done using –exceptword option of the scorer program of WN-SRAW.

67

Conclusion: The experimental evidence supports the hypothesis.

68

5.5 Hypothesis 5: Part-of-speech tagged text will be disambiguated more accurately.

Experiment 15: To see if knowing parts-of-speech information for raw text is helpful, we carried

out experiments with tagged and raw text. The experiments were mainly carried out on SemCor.

SemCor is parts-of-speech tagged, so it is required to extract raw text ignoring parts-of-speech

information. In SemCor, WordNet compounds are already identified and in the experiment we use

them as they are. The first part of the experiment includes extracting raw text by ignoring parts-of-

speech tags. A key file is also extracted for evaluating the disambiguation results. The extracted

raw text is then disambiguated by disabling compoundify32 and using lesk measure. The results are

evaluated against the extracted SemCor key. We used window size of 5 since with this context size

lesk performs quite well without taking too long33.

In the second part, we extract plain text from SemCor which contains content words as well as func-

tion words34. Then the plain text is part-of-speech tagged using a general purpose freely available

tagger, the Brill tagger35 [2]. The Brill tagger is used with the default settings and Penn Treebank

tags are assigned to the plain text. Later these tags are mapped to the WordNet tags36. Only content

words from this part-of-speech tagged text are extracted since for disambiguation we are only inter-

ested in content words. We observed the part-of-speech tagging accuracy of92.11% on the content

words. Considering the state of the art part-of-speech accuracy of around97%, the reason for the

observed low accuracy is that the frequently occurring functions words such asthe, an, awere not

evaluated. The mapped Brill tagged text is then disambiguated as a wntagged formatted text.

Observations and Analysis: In case of raw format, it is crucial that the method assigns the cor-

rect part-of-speech tags to the instances. If the part-of-speech tag assignment is not correct then

while finding relatedness, WN-SRAW won’t be looking at the correct part-of-speech tag and hence

it won’t be able to do WSD correctly. In such cases, there is nofurther chance to improve the

32WN-SRAW provides an option to disable compoundifying via –nocompoundify flag. This tells WN-SRAW not to

identify any other compounds. If this option is not used, thealgorithm identifies compounds which are not there in the

key. We observed this for the compoundbe well.
33Refer Table 31 in Appendix A.3
34Function words such asthe, an, ofare immensely important for part-of-speech tagging.
35http://duluthted.googlepages.com/RULEBASED TAGGER V.1.14.tar.Z
36WordNet supports only four tags n, v, a, r. Refer Appendix A.1for the mapping.

69

disambiguation. For example, in the following sentence if the system identifies the wordhandas a

noun instead of a verb, there is no further possibility of correct disambiguation.

Hand me the spoon.

Using part-of-speech tagged text can improve the performance of the algorithm in terms of speed

and precision. A part-of-speech tagged word will have fewerpossible senses than its raw version.

For example, the wordlook has 14 senses butlook#n has only 4 senses. Hence part-of-speech

tagging will reduce the average number of senses in the corpus (Savg in equation (5) of Chapter 3)

which will result in improved performance in terms of time.

Table 16 shows the comparison of tagged and raw text experiments which reveal that part-of-speech

tagging is helpful for all parts-of-speech and improves theoverall performance by5.9%. Tagged

text performs especially well for adjectives and adverbs. We can see an improvement of9.3% in

case of adjectives and14.6% for adverbs. This might be because for raw text, as shown in Table 18,

lesk tends to mis-tag many adjectives as nouns. As nouns havevery rich hierarchical structure in

WordNet, it might be possible that the measure is finding morerelatedness with noun form of those

instances. For example, in the following sentence, lesk is more likely to chooseblue#n#2 (which

in fact should beblue#a#1) which isblue clothingbecause of the context worddress.

Theblue dress was pretty.

For nouns we can see an improvement of2.7% and7.3% for verbs. Table 18 shows that91.5% of

the total nouns were recognized correctly indicating that the algorithm did not have much trouble

while assigning part-of-speech tags to nouns. It didn’t perform that well on verbs predicting21%

of the verbs incorrectly. Out of21% of incorrectly tagged verbs,19.8% of verbs were tagged as

nouns. The algorithm couldn’t recognize adverbs and adjectives around33% of the total number

of instances. We can see that25% of adverbs were tagged as adjectives and 9% as nouns. This

is reflected in the low precision for adverbs in case of raw format. Assignment of20% of verbs

and 21% of adjectives to nouns also explain lower precision for verbs and adjectives in case of

raw format. In case of Brill tagged text (Table 17), we can seethe similar trend. Most error is in

predicting verbs and adjectives. Many times verbs were tagged as nouns and adverbs as adjectives.

70

POS annotated Brill tagged raw

Nouns

P 0.544 0.535 0.504

R 0.539 0.525 0.501

F 0.542 0.530 0.503

Verbs

P 0.398 0.389 0.313

R 0.391 0.380 0.310

F 0.394 0.384 0.311

Adjectives

P 0.582 0.541 0.422

R 0.574 0.487 0.420

F 0.578 0.513 0.421

Adverbs

P 0.473 0.436 0.283

R 0.454 0.418 0.279

F 0.464 0.427 0.281

All

P 0.502 0.484 0.419

R 0.494 0.469 0.416

F 0.498 0.476 0.417

Table 16: Tagged and raw format experiments. Measure used islesk with window=5 with lesk

stoplist, –nocompoundify, –score poly. 135,572 attemptedout of 143,431 total instances for Brill

tagged text and 139,753 attempted out of 143,431 total instances for raw text. The POS annotated

text is the part of speech annotated SemCor text (# instances = 145,773).

Note that the number of instances in case of Brill tagged textis less than in raw text. This is because

for some words, the Brill tagger assigns a part-of-speech tag where word#pos is not defined in

WordNet.

71

Noun Verb Adj. Adv. key

Noun 82,703 470 875 99 84,147

Verb 1,014 44,362 36 7 45,419

Adj. 1,273 120 25,341 559 27,293

Adv. 194 17 734 14,706 15,651

Ans. 85,184 44,969 26,986 14,706 172,510

Table 17: SemCor Brill tagged text confusion matrix. Includes only the instances where word#pos

of the Brill tagged text is defined in the WordNet

Noun Verb Adj. Adv. Key

Noun 78,561 6,245 1,002 48 85,856

Verb 9,300 37,199 373 6 46,878

Adj 6,762 3,166 21,220 227 31,375

Adv 1,595 365 3,591 12,274 17,825

Ans 96,218 46,975 26,186 12,274 181,934

Table 18: SemCor raw text confusion matrix. Includes only the attempted instances, i.e the instances

where the relatedness is found with the surrounding instances using lesk.

To summarize, the results show that using part-of-speech taggers before WSD is helpful. It improves

performance in terms of F-score. The overall F-score was improved by5.9%. Using part-of-speech

tagged text was especially useful for adjectives and adverbs. We saw an improvement of9.3% in

case of adjectives and14.6% for adverbs. For nouns the improvement was2.7% and7.3% for verbs.

Conclusion: The experimental results show that knowing part-of-speechinformation helps in dis-

ambiguation, in support of the hypothesis.

72

corpus nouns verbs adjectives adverbs

SemCor 5.40 (0.544) 11.31 (0.390) 5.31 (0.582) 4.03 (0.469)

SENSEVAL -2 5.24 (0.520) 10.49 (0.303) 4.36 (0.570) 4.51 (0.509)

SENSEVAL -3 6.22 (0.460) 12.14 (0.335) 4.63 (0.482) −

Table 19: Average polysemy per part-of-speech for polysemous instances. The parenthesis show

lesk F-score for the part-of-speech.

5.6 Hypothesis 6: Given any two parts-of-speech, the more polysemous will be less

accurately disambiguated.

Experiment 6: First average polysemy per part-of-speech is calculated. Then polysemous in-

stances are evaluated for each part-of-speech using –scorepoly.

Observations and Analysis: Not all parts-of-speech have the same degree of polysemy. For

example, words likeaccuratelyor aloud don’t have as many interpretations as the wordsseeor

makehave. In general, adverbs and adjectives are less polysemous than verbs and nouns.

Table 19 shows the average polysemy per part-of-speech37. Now, according to Hypothesis 3, the

degree of difficulty in disambiguating a word is directly proportional to the polysemy. Therefore,

we expect to get best F-score for adverbs and adjectives followed by nouns and finally the least

F-score for verbs.

Figures 20 to 31 show the parts-of-speech results for polysemous instances38. F-scores in these

Figures and Table 19 reveal that, the system gets best results for adjectives, followed by nouns and

then adverbs. The system gets worst results for verbs. All pairs follow the hypothesis except for

the noun-adverb pair. This indicates that polysemy is not the only thing that counts for difficulty

and there are some other factors as well which affect the overall performance. Our intuition here

is that this might be because of the structure of WordNet39. As we noted in background, theis-a

hierarchy for nouns is a distinguishing characteristic of WordNet. The noun hierarchy is deep and

37All adverbs in SENSEVAL -3 are monosemous resulting in no entry for SENSEVAL -3 adverbs in Table 19.
38The reason for no results in Figure 31 is that SENSEVAL -3 doesn’t have any polysemous adverbs.
39This intuition is invalid for vector measure as it doesn’t use WordNet structure to find relatedness.

73

rich with relations. Adverbs are not arranged in hierarchies. They have relations like antonymy

and pertainymy, however, these relation links are very sparse. The reason for adjectives performing

better than adverbs might be that the average polysemy of adverbs and adjectives is very close. In

fact for SENSEVAL -2 average polysemy of adjectives is less than adverbs. Moreover, adjectives

have relatively more relations than adverbs. There are attribute relation links between adjectives

and nouns. This might be the explanation of the low results for less polysemous adverbs.

The is-a hierarchies for verbs in WordNet are many and shallow. Figure 16 shows an example of

how shallow verb hierarchies are. The most specific verbscamperis just three edges away from the

most general verblocomote. There are other relations for verbs such as derived-from, hyponym and

entailment for verbs. But they are not as rich as noun relations. Our intuition is that high polysemy

and the WordNet structure for verbs make it hardest to disambiguate, giving the lowest F-score.

{travel, go, move, locomote}

{travel rapidly, speed, hurry, zip}

{run}

{scurry, scamper, skitter, scuttle}

Figure 19: An illustration of verb hierarchy in WordNet

Conclusion: The hypothesis implies that adverbs will be more accurate than nouns but the evi-

dence says the opposite.

74

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 20: SemCor noun results with –score poly option.

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 21: SENSEVAL -2 noun results with –score poly option.

75

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 22: SENSEVAL -3 noun results with –score poly option.

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 23: SemCor verb results with –score poly option.

76

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 24: SENSEVAL -2 verb results with –score poly option.

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 25: SENSEVAL -3 verb results with –score poly option.

77

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 26: SemCor adjective results with –score poly option.

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 27: SENSEVAL -2 adjective results with –score poly s1nc option.

78

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 28: SENSEVAL -3 adjective results with –score poly option.

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 29: SemCor adverb results with –score poly option.

79

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 30: SENSEVAL -2 adverb results with –score poly option.

 0

 0.2

 0.4

 0.6

 0.8

 1

random path lch wup res lin jcn lesk vector sense1

F
-s

co
re

measures

win3
win4
win5
win6
win7

win15

Figure 31: SENSEVAL -3 adverb results with –score poly option.

80

5.7 Other Observations

In a coherent text, not all instances are polysemous. It alsocontains easy to disambiguate monose-

mous instances. As we noted in Chapter 4, the corpora we are using have around20% monosemous

instances. The disambiguation of a monosemous instance involves assigning the only available

sense to the instance. This naturally boosts the overall performance because of the significant pro-

portion of monosemous instances.

As shown in Figures 32, 33 and 34, when monosemous instances are assigned the only available

sense, similar trend as of Experiment 1 was observed with thedifference that monosemous instances

boost the overall F-score. The results also demonstrate thepercentage of monosemous words in all

three corpora. Similar to Experiment 1, the best performingmeasures are lesk and vector.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 32: SemCor results with –usemono option. Number of instances = 185273.

81

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 33: SENSEVAL -2 results with -usemono option. Number of instances =2260.

 0

 0.2

 0.4

 0.6

 0.8

 1

3 4 5 6 7 15

F
-s

co
re

window size

path
lch

wup
res
lin
jcn

lesk
vector

random
sense1

Figure 34: SENSEVAL -3 results with –usemono option. Number of instances =1937.

82

In 2001, Budanitsky and Hirst [3] report that jcn measure gives best results in the correction of word

spelling errors compared to the measures proposed by lch, lin, res, hso while, in 2005, Pedersen [31]

found that the extended measure of gloss overlap (lesk) together with JiangConrath (jcn) measure

and the gloss vector (vector) measure outperforms the othermeasures in the disambiguation of noun

instances of SENSEVAL -2 lexical sample data.

The summary of best performing measures for all-words sensedisambiguation problem using WN-

SRAW system is shown in Tables 20, 21 and 22. We observed that among the measures we used,

overall lesk and vector performed best. For verbs vctor15 gave the best results. This might be

because of the fuzziness of this measure and its ability to find hidden semantic similarity. For

adverbs and adjectives lesk6/7/15 performed better than other measures by a large margin. As we

noted, relations for adverbs and adjectives are very sparseand hence to find relatedness for these

parts-of-speech, it is required to exploit all possible relations exhaustively. This is exactly what lesk

does.

Other than these experiments, we also carried experiments with different values forcontext-threshold

andpair-threshold40. No significant improvement with a particular threshold value was observed.

Higher threshold values result in lower recall which results in overall lower F-score.

40This can be done using –contextScore and –pairScore options.

83

POS SemCor SENSEVAL -2 SENSEVAL -3

Nouns jcn15(0.574) vector15(0.547) lesk15(0.481)

Verbs vector15(0.410) vector15(0.342) vector15(0.387)

Adj. lesk7(0.582) lesk6(0.597) lesk6(0.494)

Adv. lesk7(0.469) lesk7(0.509) -

Table 20: Best performing measures for polysemous instances (–score poly option), subscript

denotes the window size and the parenthesis denotes F-score

POS SemCor SENSEVAL -2 SENSEVAL -3

Nouns lin15(0.269) vector15(0.398) lin15(0.296)

Verbs lesk5(0.149) vector15(0.203) vector5(0.170)

Adj. lesk5(0.308) lesk6(0.368) lesk15(0.312)

Adv. lesk15(0.289) lesk6(0.343) -

Table 21: Best performing measures for instances where sense1 is not correct (–score s1nc option),

subscript denotes the window size and the parenthesis denotes F-score

POS SemCor SENSEVAL -2 SENSEVAL -3

Nouns jcn15(0.658) vector15(648) lesk15(0.481)

Verbs vector15(0.440) vector15(0.358) vector15(0.387)

Adj. lesk7(0.708) lesk6(0.676) lesk6(0.494)

Adv. lesk7(0.681) lesk6(0.689) allall(1.000a)

Table 22: Best performing measures for monosemous and polysemous instances (–usemono option),

subscript denotes the window size and the parenthesis denotes F-score

84

6 Related Work

Word Sense Disambiguation is a central problem in Natural Language Processing and has a long

history of research. A variety of approaches including supervised, unsupervised, knowledge based

and combination approaches have been tried. This chapter gives overview of some of the prominent

approaches.

6.1 Miller, et al., 1994

Miller, et al. [23] was the first to explain how to determine the most frequent sense heuristic (sense1

scheme of WN-SRAW) which is still hard to beat for most of the WSD systems. This paper proposes

benchmarks for WSD systems. A semantic concordance41 [24] that combines passages from the

Brown corpus with the WordNet lexical database [6] was used to explore three different heuristics

for word sense disambiguation baselines.

This paper argues that the lower bound of75% of a WSD system suggested by Gale, Church and

Yarowsky [7] is plausible but there is no clear method described to find this lower bound. In their

paper, they start with a lowest lower bound which is the proportion of monosemous words in the

text corpus.

In the guessing heuristic, if the word is monosemous then theavailable sense is assigned to it. For

all polysemous words, a random sense fromn possible WordNet senses is chosen with a probability

1/n. They applied this on 103 passages from the Brown corpus and observed an accuracy of45%

on 101,284 words and26.8% on 76,067 polysemous words. This gives a baseline for a Word Sense

Disambiguation system.

The second heuristic is the most frequent sense heuristic inwhich semantic concordance is used

to determine which sense occurred most often. They used the version of the sense-tagged corpus

[24] that was available in August 1993. In the training phase, the sense frequencies are estimated

for open class words broken down by part-of-speech. For example, the frequencies of all 14 senses

{s1, s2, ..., s14} of the wordlookwith possible part-of-speech tagspos = {n, v} would be tabulated

41This is 1.6 version of SemCor we use.

85

according to how frequently look#pos#si occurs in the corpus. It was observed that polysemous

words occur frequently enough and can provide a good estimates on a relatively smaller sample size.

In the testing phase, if the word is monosemous then it is assigned the only available sense. For all

polysemous words, if the word is found in the training set, then the most frequent sense according

to the semantic concordance is assigned to it. Ifm > 1 senses have the same frequency then a sense

among thesem senses is randomly selected with probability1/m. If the word is polysemous and

does not occur in the training corpus then a random sense is chosen as described in the guessing

heuristic. They tested this heuristic on a new passage from the Brown Corpus42 and observed

the accuracy of62.5% for all words and50.8% for only polysemous words which was lower than

expected. They checked if the passage they chose is unusual in some ways. To test with some other

data, they tried leave-one-out method on the sense-tagged corpus and observed increased accuracy

of 66.9% on all words and56.4% on only polysemous words. It was also observed that assigning

random senses using guessing heuristic, reduced the overall performance.

The third heuristic described is to use the prior occurrences of words together in the same sentence.

The co-occurrence matrices of the senses of the words are calculated. In addition to the most

frequent sense information, the semantic concordance alsokeeps the information about the senses

that tend to occur together in the same sentence. Using this information co-occurrence matrices

are created. An entry in a co-occurrence matrix represents aword sense and the other word it co-

occur with in any sentence. In this heuristic, if the word is monosemous then the available sense

is assigned to it. Then for all polysemous words, the co-occurrence matrix is checked to see which

sense from the training corpus is more likely to occur with the surrounding words in the test sentence

and the sense with the highest frequency is assigned. If morethan one senses co-occur the one with

the maximum frequency in the training corpus is chosen by breaking the ties with a random choice.

If the polysemous word doesn’t occur in the training corpus with the words in the test sentence then

the most frequent sense heuristic is used to estimate the sense. Excluding the words which have

been assigned a sense using guessing heuristic, the resultsof 68.6% on all words and57.7% on

polysemous words have been reported. These results are a little less than the most frequent sense

heuristic.
42passage P7, an excerpt from a novel that was classified by Francis and Kucera [4] as ”Imaginative Prose: Romance

and Love Story”

86

The experiments demonstrated that a considerable improvement could be achieved by having the

knowledge of sense frequencies. The authors expect that given a large semantic concordance, the

co-occurrence heuristic would do better since it will capture the topical context. The authors discuss

how representative these results are. These results are restricted to the Brown corpus which contains

a wide selection of general English text. But in a restricteddomain of discourse, most frequent sense

heuristic would do much better. They also discuss how the most frequent sense heuristic would be

affected by the fine distinctions made by the reference lexicon. Finally the authors discuss how

these heuristics should be used. These heuristics do not consider the local context which might be

useful for WSD. So given a system that exploits the local context, these heuristics could be used as

a fall back strategy when the local identification fails.

6.2 Mihalcea and Faruque, 2004

The SENSELEANER system, presented by Mihalcea and Faruque [20], implementsa new minimally

supervised method for disambiguating all content words in atext using WordNet. The goal of this

system is to use as little training data as possible and at thesame time generalize the learning

function well so that it can handle all content words in a text.

The system is trained on SemCor. For the words that do not occur in the training corpus, information

is drawn from the WordNet. The algorithm has three steps. In the preprocessing step, the text is

tokenized and annotated with part-of-speech before building models. Then the compounds and

named entities are identified.

The second step is the semantic language model learning step. A separate training data set is build

for each part-of-speech in SemCor. For each content word in the training set, a feature vector is

created. The class label of each feature vector is a word and its sense. Different types of features are

considered for each part-of-speech. If the word is a noun, the first noun, verb, or adjective before

the target noun, within a window of at most five words to the left and its part-of-speech are used

as features. For verbs, the first word before and the first wordafter the target verb and its part-of-

speech are used as features. In case of adjectives, two different modes are used. In the first mode,

the first noun after the target adjective, within a window of at most five words is used and in the

other model the first word before and first word after the adjective and its part-of-speech is used.

87

Then using the Timbl memory based learning algorithm [10], ageneral semantic language model

is learned for each part-of-speech using the above features. To annotate new text, similar feature

vectors are created for all the content words. A class (i.e. aword and its sense) is predicted for each

vector. If the predicted word matches with the target word then the predicted sense is assigned to

the target word. Otherwise no sense is assigned to the word inthis stage and the word is left for

annotation in later stage. Note that although general models are built for each part-of-speech, they

can’t be used to disambiguate the words which are unknown to the training models.

The third step is the semantic generalization step which is especially helpful to disambiguate the

unseen words. The syntactic dependencies along with the conceptual hierarchy of a word in Word-

Net are used in this step. The raw text from the training set isextracted and is parsed using the

Link parser [42]. All the dependency pairs are stored. The part-of-speech and sense information

to each open word in the dependency pair is added. A feature vector is created using the words in

the dependency pair, their part-of-speech, and the references to all hypernym synsets in WordNet

related to that dependency pair in case of verbs and nouns. This is used to generalize the learning

which helps in disambiguating unknown words. For each dependency pair a positive feature vector

is created for all the senses that appear in the training set and negative for all others. In test phase,

the dependency pairs are extracted again using the Link parser. Then feature vectors are created for

each dependency pair which consists of the combination of all senses of each of the word in the

dependency pair. Then each feature vector is labeled positive or negative by using Timbl memory

based learner [10] and the previously learned models.

The SENSELEANER system achieved an average accuracy of64.6% in the SENSEVAL -3 English

all words task. This is a significant improvement over the most frequent sense baseline of60.9%.

Similar to WN-SRAW, verbs were observed to be the most difficult word class.

Compared to WN-SRAW system this system is supervised and needs manually annotated train-

ing data. WN-SRAW uses only relatedness measures for disambiguation in contrast with SENSE-

LEANER system that uses parsing and co-occurrences.

88

6.3 Navigli and Lapata, 2007

Navigli and Lapata [26] propose an unsupervised graph basedalgorithm for Word Sense Disam-

biguation which uses knowledge from a reference lexicon. The graph connectivity measures are

well studied and have been considered for studying the structure of hyperlink environment and in

social network analysis. In this paper the measures of graphconnectivity have been compared and

contrasted on the basis of how well the measures perform on the Word Sense Disambiguation task.

A sense inventory is used as background knowledge. They use WordNet and its enriched version

[25]. However they claim that the method is independent of the reference lexicon. The disam-

biguation is done in a sentence by sentence fashion. Given a sentence, a graphG : V → E is

created using nodes representing all the senses of words in that sentence. The graph is edgeless in

the beginning. Then for each nodevǫV , the WordNet graph is searched in a depth first manner for

the remainingV − {v} nodes. If any of the remaining nodes is found without going too deep, all

the intermediate nodes along with the connecting edges fromthe WordNet graph are copied into

G. That is the subgraph of the WordNet graph which is relevantfor disambiguating the sentence is

considered. After creating the graph, the important node among the other possible nodes represent-

ing senses is identified by using graph connectivity measures. The connectivity measures can be

either local or global. In local connectivity measures, each node is ranked according to the chosen

connectivity measure and the top ranked sense is chosen for each word in the sentence. In case

of global connectivity measures, each interpretation of the sentence is scored individually and the

interpretation with highest score is chosen.

Various local and global connectivity measures that can be used to decide theimportant node in

order to assign a sense have been described. These are independent of the adopted reference lexicon

and the graph construction algorithm. The in-degree measure measures the importance of vertexv

by its degree while in eigenvector based measures, each connection has a weight associated with

it and the contribution of each node connecting tov is determined by the corresponding weight.

For example, PageRank measure determines the importance ofa nodev recursively based on a

Markov chain model. In case of KPP a vertexv is considered important if it is relatively close

to all other vertices. The betweenness measure considers a node important if it is involved in a

large number of paths compared to the total set of paths. In case of Maxflow measure, more the

89

flow conveyed from the source to the sink, the more relevant the sink is. Three global connectivity

measures which consider the structure of the graph as a wholerather than the individual nodes are

described. Compactness measure represents the extent of cross referencing in a graph. In graph

entropy measure, the entropy of graph G is calculated as

H(G) = −
∑

vǫV

p(v) log(p(v))

wherep(v) is the vertex probability determined by the degree distribution. Edge density measure

calculates the edge density as the ratio of edges in a graph over the number of edges of a complete

graph.

To test the performance of disambiguation, the experimentswere carried using two different knowl-

edge sources and two different corpora. To contrast and compare different connectivity measures,

SemCor and SENSEVAL -3 have been used as the test corpora and WordNet as the sense inventory.

They also carried experiments using extended WordNet [25] and observed a little improvement in

the performance. To avoid combinatorial explosion in case of global connectivity measures, they

used simulated annealing heuristics to explore the hypothesis space of interpretations. Random

sense baseline is used as a lower bound and most frequent sense baseline is used as an upper bound.

They report the best results of31.8% on polysemous words in SemCor using WordNet and 40.5%

using extended WordNet. WN-SRAW gives the best result of49.7% on polysemous words in the

same setting using WordNet. On SENSEVAL -3 with extended WordNet and considering polyse-

mous as well as monosemous words, F-score of61.9% on nouns,62.8% on adjectives and36.1%

on verbs have been reported. WN-SRAW results are not comparable with these results because the

experiments differ in the reference lexicon they use.

The experiments indicated that local measures perform better than the global measures and KPP

yield the best performance in all cases. They also observed alarge improvement in the performance

when enriched WordNet with thousands of relatedness edges was used. InDegree and PageRank

performed comparable to KPP with enriched WordNet. Finallythey mention combining contrasting

connectivity measures in order to improve overall performance.

90

6.4 Preiss, et al., 2009

As we have seen before, the most frequent sense (MFS) baseline is very hard to beat for most of the

Word Sense Disambiguation systems. Preiss et al. [34] focuson refining the most frequent sense

baseline by improving every stage of disambiguation such aslemmatization and part-of-speech

tagging. The proposed supervised system uses a ranking algorithm and a Wikipedia Similarity

measure. The system chooses an alternative answer when highconfidence is observed. The MFS

refining system thus benefits from a very low recall but high precision WSD system.

They start with a MFS baseline which has a F-score of58.4% on SENSEVAL -3. At first the system

is refined using the method of determining predominant sense. In 2007, McCarthy et al. [18]

observed that for nouns and adjectives that occur in SemCor fewer than 5 times, the automatically

determined predominant sense outperforms MFS baseline. For such words Preiss et al. switch to

the sense determined by predominant sense method. This method uses an automatically created

thesaurus [15] and scores a sense for a word by weighting normalized semantic similarity scores

by the distributional similarity43 scores for the neighbors of the word in a thesaurus constructed

via distributional similarity. For every word, the predominant sense is chosen which maximizes

the score. For the verbs that occur fewer than 5 times in SemCor, subcategorization similarity is

employed rather than Lesk similarity. Combining MFS, the predominant sense method and the

subcategorization method, the F-score was improved from58.4% to 58.6%.

The performance of MFS baseline also depends upon the accuracy of the lemmatizer and part-of-

speech tagger employed. They found that without any lemmatizing of the test input, the maximum

F-scoreof a basic MFS system was in mid-50’s and with a perfect lemmatized input it was in min-

60’s. They evaluated the performance of three different lemmatizers, the Lemmatizing backend of

the XTAG project (XTAG Research Group, 2001), Celex (Baayenet al., 1995), and the Lemmatizing

component of an enhanced TBL tagger [2] on SENSEVAL -3, and found that a simple voting system

performs better than any of the individual systems. They also observed that hyphenated words were

a problem for lemmatizers and removing such words increasedthe accuracy by0.9%. They also

evaluated the accuracy of 3 different part-of-speech taggers on SENSEVAL -3 task and observed that

a simple voting achieves highest accuracy.

43They use the lesk similarity measure as implemented by the WordNet::Similarity package [32]

91

The MFS baseline may be different for different parts-of-speech. To avoid having explicit features

for each part-of-speech, they implemented the “feature-focus” algorithm as described in [16]. This

algorithm allows to explore large feature space efficiently. It can be used as a high-precision classi-

fier which returns an answer only when a predictive feature that strongly predicts a particular sense

is observed. It learns category indices by learning a weighted bipartite graph. The space and time

efficiency is achieved by aggressively pruning edges. Though the large scale and multi class features

might not be relevant in case of WSD, more features can be explored using this approach without

building huge models. In this paper they use Semcor-3 and SENSEVAL English Lexical Sample

data as training data and trained a sparse category index classifier with the following features: us-

ing words, lemmas and part-of-speech as tokens. The conjunction of the preceding and following

unigrams and bigrams and all lemmas to the left and right in the sentence with decayed activation

are used. The experiments were carried out on SENSEVAL test sets. The results are not much better

than MFS baseline. They believe that the training set size iscrucial and they would like to try much

larger data set.

The other approach Preiss et al. use for WSD is using Wikipedia. The approach presented uses the

article names and link structure within Wikipedia to find articles that are most related to a WordNet

sense or context. For mapping the sense inventory to Wikipedia, they search for content words of

the sense or context words in the article titles. If it is found, they use that article, and if it is not

found, then the substrings are searched in the article names. The Green method as described in [27]

is used to determine the importance of one node over others. The importance is determined by a

measure based on the link structure within a graph. It modelsa random walk with certain constraints

for the walker and gives the scores based on how many times a certain node was visited. The Green

method produces a vector containing scores for all of the articles weighting their similarity to the

initial graph nodes. The vectors are compared using the cosine of the angle between the two vectors.

Using this method they got a precision of25% and recall of0.5% on non-monosemous words.

Preiss et al. evaluated how the systems are complementing each other using the formula in equation

(9) and found that though the individual recall is very low, the systems complement each other well.

1−
|wrong in si and sj|

|wrong in sj|
(22)

92

A number of combining techniques were investigated. They observed that combining using simple

voting doesn’t show improvement in the MFS baseline (58.6%). Better results of58.9% were

observed when simple stacking was used.

6.5 Guo and Diab, 2009

Guo and Diab [8] suggest a modification to the unsupervised graph-based in-degree algorithm of

[41] for disambiguating all content words in a text. The modifications include using JCN measure

instead of LCH to find similarity between verb-verb pairs, augmenting the basic Lesk similarity

measure and augmenting WordNet synsets with SemCor examples. They report the highest state-

of-the-art result of62.7% on SENSEVAL -2 using WordNet 1.7.1.

The algorithm explained in [8] requires part-of-speech tagged input. They start with the in-degree

graph-based algorithm suggested by [41]. The in-degree algorithm presents the problem as a

weighted graph with senses as nodes and similarity between senses as weights on edges. The In-

degree measures the importance of a vertexv by summing the weights of the edges that are incident

on it. The sense with the maximum in-degree is chosen as the correct sense. In the original algo-

rithm suggested by [41], Guo and Diab explored the best similarity measure for each part-of-speech.

They suggest using JCN for noun pairs, LCH for verb pairs and Lesk within adjectives and adverbs

and across different parts-of-speech pairs. The authors’ method differs in that it uses JCN instead

of LCH for verb to verb similarity calculation based on the empirical observation on SENSEVAL -3

data.

The other modification is the extension of similarity measures used. They take their cue from the

extended Lesk measure as explained by [32]. Guo and Diab’s method differs in the following way.

The original extended Lesk measure mainly uses this for finding similarity based on Lesk [14].

The authors employ this for other similarity measures as well. The other difference is they do not

expand the target word that is to be disambiguated but only expand the neighboring words. They

experimented with expanding the target word and observed that the unreliability of some of the

relations is detrimental to the algorithm’s performance.

The third modification is augmenting WordNet synsets with SemCor examples. Since Lesk measure

93

finds the overlap between the glosses, it is heavily dependent on the length of the gloss, i.e. longer

the gloss, there is a high probability of more overlaps. Someof the synsets in WordNet have very

brief glosses which leads to very few or no matches with the surrounding words. The idea is to

augment such glosses with SemCor examples. They set a cap of 30 addition examples per synset. A

total of 26875 synsets in WordNet 1.7.1 and a total of 25940 synsets in Wordnet 3.0 are augmented

with SemCor examples.

The experiments were carried on three English All Words datasets, namely SENSEVAL -2, SENSEVAL -

3 and SEMEVAL. The Penn Treebank tags in the test data have been used. Guo and Diab did

experiments with three different versions of WordNet, 1.7.1 for ease of comparison with previous

systems, 2.1 for SEMEVAL data and 3.0 to see if the performance hold across different WordNet

versions. For evaluation, the scorer2 C program has been used. The authors mainly consider the

results of [41] as their baseline. The authors claim that their algorithm is unsupervised though they

use SemCor to augment WordNet because they don’t use any annotated data.

Guo and Diab observed how independent modification and a combination of modifications con-

tributes to the improvement. Using JCN for verb pairs instead of LCH outperformed across all data

sets. Using SemCor expansions impacted more in case of SENSEVAL -2 and SEMEVAL data set.

They suspect this might be because of the high number of polysemous words in case of Senseval3.

They also observed that combining Semcor expansion with Expanded Lesk yielded best results for

SENSEVAL -2 They observed no huge difference across different WordNet versions though they saw

WordNet 3.0 yielding a slight higher results. In part-of-speech results, they observed that expand-

ing Lesk had only impact on nouns while all parts-of-speech except for nouns were benefitted from

SemCor expansion. They also observed that verbs and adverbswere benefitted by a combination of

expanded Lesk and expanded SemCor.

The authors discuss that the cases of meronymy were hard for their system to capture. The lack

of a method to help identify multiwords also contributed to the error. Finally the authors mention

that exploring the incorporation of multiword chunks, document level lexical chains and syntactic

features in the modeling of the Lesk overlap measure.

94

6.6 Schwartz and Gomez, 2009

Schwartz and Gomez [40] propose a word sense disambiguationmethod for all words using web

selectors44. In particular they start with the method suggested to disambiguate nouns using web

selectors [39] and generalize it to for other parts-of-speech. The experiments show that the context

selectors may assist target selectors in case of nouns and verbs.

As we have discussed several times, the main difficulty in Word Sense Disambiguation is limited

annotated training data. One approach for this is gatheringmore data from the web by searching for

usages of monosemous relatives [21]. The other is by limiting the pre-chosen relatives/substitutes

by context. Similar to this approach, Schwartz and Gomez also use context in the web search but

uses a wildcard in the search rather than incorporate a knowledge-base to construct queries with

pre-chosen relatives. The later half of the algorithm uses aknowledge-base through similarity and

relatedness measures. The difference between this work andnoun disambiguation work explained

in [39] is the inclusion of selectors for adverbs.

The algorithm runs in two steps, acquisition of selectors and application of selectors. The first step

of the acquisition is to construct a query with the target word replaced with a wildcard character. The

words under the same part-of-speech in WordNet are matched.Then, the search query is truncated

until sufficient selectors are obtained or the query size becomes too small. Assuming that the results

obtained from the larger queries subsume the results obtained from smaller queries, the results from

larger queries are removed. To find similarity and relatedness of the target word with the selectors,

WordNet::Similarity package45 [32] configured with WordNet 2.1 has been used. An information

content measure proposed by Resnik [38] was used for target selectors of nouns and verbs and

adapted Lesk algorithm [1] was used for adjectives and adverbs. The maximum similarity and

relatedness between a wordct and a selectorws is calculated using the formula based on Resnik’s

word similarity [38]

maxsr(ct, ws) = max
csǫws

[meas(ct, cs)]

wherecs is a sense of the selector and meas is a similarity or relatedness measure.

44Selectors are words which may take the place of another givenword within its local context.
45http://search.cpan.org/dist/WordNet-Similarity/

95

The general approach of disambiguation is to find the sense ofa target word which is most similar

to all target selectors and most related to the context selectors. Target selectors are the selectors of

the word being disambiguated and context selectors are the selectors of other words in the sentence.

In other words, target selectors are similar and context selectors are related. For each selectorws,

the probability of that selector appearing in a web queryq is calculated. Then the similarity and

relatedness of each sense of the target word is found with each selector. The similarity and related-

ness value from selectors is scaled by the ratio of web query length to the original length because

the accuracy becomes weaker with a shorter query size. To getthe combined Similarity/Relatedness

for a given target word sense they aggregate the normalized sums from all types of selectors.

The experiments were run on the SemEval07 task7: coarse-grained English all-words46. The system

runs on fine-grained senses but is evaluated by checking if the predicted fine-grained sense maps to

the correct coarse-grained sense. The observed F-score of76.02% show that this system performed

better than the median system in the SemEval07 task. The results are just below the top unsupervised

system UPV-WSD [5]. The part-of-speech results indicate that they performed quite well on adverbs

and nouns and achieved noun results above MFS baseline.

Schwartz and Gomez then analyze selector acquisition. Theyobserved that the overall percentage

for which the selectors were acquired was low because it was unable to find text on the web matching

local context. They observed that most selectors came from shorter queries and an average web

query to pick up a selector of 6.7 words. As one shortens the query to receive more quantity the

quality goes down. They refer this as thequality selector sparsityproblem.

They also explored the influence of selector types. It was observed that noun and verb sense dis-

ambiguation benefited from all types of context selectors. Noun context selectors were helpful for

adjective and adverb disambiguation. They didn’t see any clear trends in case of other context se-

lectors. They also found that the best results occurred withscale values above 1, which indicates

that context selectors should be given more influence.

Finally Schwartz and Gomez conclude that in order to overcome the quality selector sparsity prob-

lem, automatic Alternative Query Construction might be useful. They also talk about refining simi-

larity and relatedness measures for adverbs and adjectivesin order to improve the results.

46http://nlp.cs.swarthmore.edu/semeval/tasks/index.php

96

7 Conclusions

The thesis starts by formalizing the algorithm of Michelizzi [19] for all-words sense disambigua-

tion in mathematical and graph theoretic notations. The time complexity of the algorithm is also

examined.

The thesis tries to resolve previous mixed conclusions about polysemy and the difficulty of disam-

biguation. Preiss [33] argues that polysemy is not an ideal measure of difficulty. On the other hand

Daelemans [10] concludes that the fluctuations in accuracy of disambiguation largely depend on

the polysemy and entropy of the ambiguous words. In this thesis we further present results on the

relation of polysemy to the difficulty of disambiguation. Wefound a high negative correlation be-

tween polysemy and F-score suggesting that polysemy is a good measure of difficulty, the difficulty

of disambiguation increasing with increased polysemy. This confirms the conclusion in Daelemans

2002 [10]. It is important to note the difference between Daelemans’s method and WN-SRAW. The

former method is supervised and the latter is unsupervised.WN-SRAW doesn’t make use of word

sense distribution information for disambiguation and hence in most of the cases difficulty doesn’t

depend upon the sense distribution entropy.

Not all words in a text occur with the same frequency. Words likehaveandbeoccur more frequently

than words likemetamorphosis. In order to improve overall disambiguation we need in particular

to see if the most frequently occurring words are disambiguated correctly. This thesis provides

the disambiguation results of frequently occurring words and presents our analysis of the difficulty

in disambiguating some of these frequently occurring words. The overall results indicate that a

significant percentage of word sense disambiguation error is caused by just a few highly frequent

word types.

This thesis also examines to what degree the errors in parts-of-speech contribute to the overall

disambiguation error. To this end, the tagged and raw text experiments were carried out. The text

was part-of-speech-tagged using the widely used Brill tagger. The results show that using part-of-

speech taggers before WSD is helpful. It improves performance in terms of F-score as well as time.

The overall F-score was improved by 5.9%. Using part-of-speech-tagged text was especially useful

for adjectives and adverbs. We saw an improvement of 9.3% in case of adjectives and 14.6% for

97

adverbs. For nouns the improvement was 2.7% and for verbs 7.3%.

To summarize, the experimental results provide evidence infavor of the following hypotheses.

1. The degree of difficulty in disambiguating a word is proportional to the number of senses of

that word (polysemy).

2. A significant percentage of word sense disambiguation error is caused by just a few highly

frequent word types.

3. Part-of-speech tagged text is disambiguated more accurately than raw text.

Inspired by the question raised by George Miller [22], asking how much context is required for

WSD, we evaluate our algorithm with different context sizesin order to determine the effects of

expanding the context. To better determine sources of error, we score the results in different ways.

The results revealed that expanding the context window around a polysemous target word improves

the recall (coverage) significantly but lowers the precision, suggesting that expanding the context

may add significant noise.

WN-SRAW being unsupervised, it doesn’t use any sense distribution information. It treats all senses

of a word as equally likely. Therefore we expected that it would yield similar results for instances

where sense1 in WordNet is not the correct sense, as for thoseinstances in which sense1 is correct.

However, our results show that if sense1 in WordNet is not thecorrect sense, disambiguation be-

comes harder. We speculate that this might be because of a sense1 bias associated with some of the

similarity and relatedness measures. The other possibility is that these instances simply have an un-

expected sense as a correct answer, such that the context is relatively unhelpful for disambiguation.

We also observed that given any two parts-of-speech, the more polysemous will be less accurately

disambiguated, except for the case of noun and adverb. We speculate that this might be because the

WordNet structure for adverbs is not very rich.

The experiments withcontext-threshold andpair-threshold show that no significant improve-

ment with a particular threshold value can be achieved. Higher threshold values result in lower

recall which results in overall lower F-score.

98

For our experimental results, overalllesk7 andvector15 performed best. The vector measure per-

formed especially well for verbs and and the lesk measure performed best for adjectives and adverbs.

The information content measure jcn performed best for nouns.

To summarize briefly, this research presents an extensive set of experimental results on issues central

to the future direction of WSD, together with our related observations.

99

8 Future Work

The underlying hypothesis of the method used in this thesis is that surrounding words tell us about

the intended meaning of a word. Thus for an accurate disambiguation, selecting the appropriate

context is crucial. That said, choosing the appropriate context that gives the best clues for disam-

biguation is a hard task. WN-SRAW allows for the selection ofa balanced context around the target

word. But that doesn’t always lead to a successful disambiguation. Varying the context window

according to the situation may lead to more accurate disambiguation and is certainly an issue to be

further examined.

For example, in the first sentence shown below, the context wordsdinnerandravioli give important

clues for disambiguation, and are also very close to the target wordsquash. In this case a window

size 5 would lead to correct disambiguation ofsquash. On the other hand, in the second sentence

the relevant context wordsplayer andbasketballare far from the target word. To have the relevant

words in the context a very big window size has to be used. A window size of 21 would have the

relevant words in the context, however, it may also add significant noise.

I atesquashravioli for dinner in the restaurant by the lake.

Thebasketball player, who had been feeling very sick before, shot theball into the net

for the victory.

Avoiding context words that might add noise and including words that are relevant to the target

would help in improving disambiguation accuracy. Therefore flexible context selection according

to the situation may allow us to take full advantage of similarity and relatedness measures and thus

would help in disambiguation.

It would also be interesting to experiment with left and right context in order to know which of them

has greater influence on disambiguation. It is possible thatthe importance of context depends upon

the part-of-speech of the target. As shown in the example below, for adjectives the right context

would give more clues for disambiguation.

The blue dress was pretty.

100

In general it would be useful to know which context is useful for which part-of-speech. This would

in turn help in selecting context according to the part-of-speech for better disambiguation. To know

which context influences the disambiguation results would also guide us in choosing the context in

case of unbalanced windows.

The WN-SRAW algorithm throws out syntax and relies completely on semantics for disambigua-

tion. The input of WN-SRAW contains only content words and doesn’t contain function words.

Completely throwing away the syntax sometimes makes the problem even harder.

For example, in the sentence below, ifin is thrown away as a function wordinterestwould be

assigned thebanking interestsense.

Original: I have an interest in investment banking.

WN-SRAW input:have interest investment bank

Incorporating the notion of syntax in WN-SRAW would definitely help to improve disambiguation.

There is room to make the algorithm more efficient. This can bedone in various ways. In a coherent

text, it is likely that the same word pairs appear a number of times. Instead of scoring it every time

it occurs, it would be helpful to cache the pairs along with their similarity scores. For example, in

a short excerpt below, the pairjury#n andsay#n occurs 3 times and caching the scores of this pair

could make the algorithm more efficient.

jury #n far#r say#v term#n end#n presentment#n group#n have#v overall#a

charge#n election#n deserve#v praise#n thanks#n location#n manner#n election#n

conduct#v september#n october#n term#n jury #n charge#v location#n person#n

investigate#v report#n possible#a irregularity#n hard-fought#a primary#n win#v

person#n only#r relative#a handful#n report#n receive#v jury #n say#v consider#v

widespread#a interest#n election#n number#n voter#n size#n city#n jury #n say#v

find#v georgia#n registration#n election#n law#n be#v outmoded#a inadequate#a

often#r ambiguous#a

Figure 35: An excerpt from SemCor reformatted text.

Disambiguation using WN-SRAW can easily be done in parallel. Since WN-SRAW doesn’t cross

sentence boundaries and disambiguates text based on its local context, the input data can be par-

101

titioned on sentence level where each processor would get its share of sentences. The results of

disambiguation can be combined easily because there is no dependence between sentences. This

will help for lesk and vector measures especially when used with bigger window sizes.

The graph formulation of the algorithm may also allow us to use some of the classic graph theoretic

algorithms which could help improve efficiency.

In general polysemy means more noise but at the same time it increases the possibility of finding

some relatedness with the surrounding context. Monosemousinstances are hard for similarity and

relatedness measures, in that they are the worst case for finding relatedness because there is only one

sense with which to find relatedness. It’s relatively likelytherefore that the method won’t be able to

find any relatedness with the surrounding context, resulting in low recall. To probe the performance

of the measures, and as a matter of scientific curiosity, it would be interesting to see how well the

measures perform only on monosemous instances.

Our results show that if sense1 in WordNet is not the correct answer, disambiguation becomes

harder. Our intuition here is that this might be because of a sense1 bias associated with some of

the similarity and relatedness measures. It is believed (without any experimental evidence) that first

gloss in WordNet tends to be longer, increasing the probability of finding more overlaps in case of

lesk. It can be easily verified by counting the number of content words in each gloss.

From the experimental results, it is known that some measures work better for certain parts-of-

speech than for others. In particular, for verbs vector15 gave the best results and for adverbs and

adjectives lesk6/7/15 performed better than other measures by a large margin. A method that com-

bines the best performing measures based on part-of-speechmay be a natural direction in which to

improve the overall performance.

We mainly focussed on lesk in the analysis of experimental results. Considering the best perfor-

mance of vector measure, especially for verbs, it would be useful to experiment more with vector

measure. The advantage of the vector measure over lesk is that vector goes beyond exact string

matching and makes real use of context, without relying on WordNet structure to find relatedness.

We carried some experiments to see how much error part-of-speech tagging contribute to the overall

error. For that we used the freely available Brill Tagger. Itwould be interesting to see the effect

102

of using other part-of-speech taggers. We use simple lemmatization techniques, as provided by

WordNet. Using sophisticated lemmatization techniques might also help improve overall results.

Finally it would be interesting to see the results using the resources such as extended WordNet [25].

103

A Appendix

A.1 Penn Treebank tags to WordNet tags mapping

JJ → ‘a′

JJR→ ‘a′

JJS → ‘a′

CD → ‘a′

RB → ‘r′

RBR→ ‘r′

RBS → ‘r′

RP → ‘r′

WRB → CLOSED

CC → CLOSED

IN → ‘r′

DT → CLOSED

PDT → CLOSED

CC → CLOSED

PRP$→ CLOSED

PRP → CLOSED

WDT → CLOSED

′WP$′ → CLOSED

NN → ‘n′

NNS → ‘n′

NNP → ‘n′

NNPS → ‘n′

PRP → CLOSED

WP → CLOSED

EX → CLOSED

V BP → ‘v′

V B → ‘v′

V BD → ‘v′

V BG→ ‘v′

V BN → ‘v′

104

V BZ → ‘v′

V BP → ‘v′

MD → ‘v′

TO→ CLOSED

POS → ‘undef ′

UH → CLOSED

.→ ‘undef ′

:→ ‘undef ′

,→ ‘undef ′

→ ‘undef ′

$→ ‘undef ′

(→ ‘undef ′

)→ ‘undef ′

”→ ‘undef ′

FW → NOINFO

SY M → ‘undef ′

LS → ‘undef ′

A.2 lesk and vector stoplist

a

aboard

about

above

across

after

against

all

along

alongside

although

amid

amidst

105

among

amongst

an

and

another

anti

any

anybody

anyone

anything

around

as

astride

at

aught

bar

barring

be

because

before

behind

below

beneath

beside

besides

between

beyond

both

but

by

circa

concerning

considering

despite

106

down

during

each

either

enough

everybody

everyone

except

excepting

excluding

few

fewer

following

for

form

from

having

he

her

hers

herself

him

himself

his

hisself

i

idem

if

ilk

in

including

inside

into

is

107

it

its

itself

like

many

me

mine

minus

more

most

myself

naught

near

neither

nobody

none

nor

nothing

notwithstanding

of

off

on

oneself

onto

opposite

or

other

otherwise

our

ourself

ourselves

outside

over

own

108

past

pending

per

plus

regarding

round

save

self

several

she

since

so

some

somebody

someone

something

somewhat

such

suchlike

sundry

than

that

the

thee

theirs

them

themselves

there

they

thine

this

thou

though

through

109

throughout

thyself

till

to

tother

toward

towards

twain

under

underneath

unless

unlike

until

up

upon

us

various

versus

via

vis-a-vis

we

what

whatall

whatever

whatsoever

when

whereas

wherewith

wherewithal

which

whichever

whichsoever

while

who

110

whoever

whom

whomever

whomso

whomsoever

whose

whosoever

with

within

without

worth

ye

yet

yon

yonder

you

you-all

yours

yourself

yourselves

A.3 Result Tables

A.3.1 SemCor Tables

111

measure P R F Att(%) Time

path .472 .168 .248 35.68 02:47:51

lch .472 .168 .248 35.68 03:34:01

wup .427 .153 .225 35.68 03:15:04

res .395 .122 .187 3.98 02:51:50

lin .497 .147 .227 29.56 03:02:08

jcn .586 .207 .306 35.39 03:11:21

lesk .498 .478 .488 95.90 08:33:20

vector .467 .465 .466 99.58 12:20:44

random .237 .237 .237 100.00 00:01:11

sense1 .707 .707 .707 100.00 00:01:50

Table 23: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector, no forcepos. # tokens = 145,773. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .207 .070 .105 34.05 02:35:22

lch .207 .071 .105 34.05 03:47:50

wup .209 .071 .106 34.05 03:24:05

res .194 .056 .086 28.68 02:37:41

lin .231 .063 .099 27.37 02:58:05

jcn .201 .068 .102 33.80 03:15:28

lesk .220 .212 .216 96.67 07:37:00

vector .220 .219 .220 99.54 10:54:00

random .172 .172 .172 100.00 00:00:59

sense1 .000 .000 .000 100.00 00:01:33

Table 24: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’ is ‘Attempted’.

112

measure P R F Att(%) Time

path .679 .325 .440 47.92 03:27:26

lch .679 .325 .440 47.92 04:47:52

wup .653 .313 .423 47.92 04:20:08

res .658 .290 .403 44.13 03:26:18

lin .721 .309 .433 42.93 03:56:37

jcn .748 .357 .483 47.64 04:07:32

lesk .600 .579 .589 96.58 07:49:28

vector .571 .569 .570 99.65 11:22:33

random .387 .387 .387 100.00 00:00:56

sense1 .764 .764 .764 100.00 00:01:30

Table 25: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

measure P R F Att(%) Time

path .693 .693 .693 100.00 00:56:36

lch .693 .693 .693 100.00 01:36:23

wup .680 .680 .680 100.00 01:23:32

res .682 .682 .682 100.00 00:57:38

lin .710 .710 .710 100.00 01:12:36

jcn .726 .726 .726 100.00 01:20:06

lesk .606 .606 .606 100.00 08:42:49

vector .572 .572 .572 100.00 12:20:07

random .387 .387 .387 100.00 00:01:02

sense1 .764 .764 .764 100.00 00:01:33

Table 26: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

113

measure P R F Att(%) Time

path .428 .193 .266 45.15 01:43:27

lch .429 .194 .267 45.15 02:24:07

wup .388 .175 .241 45.15 02:36:56

res .360 .142 .203 39.34 01:44:27

lin .452 .169 .246 37.36 01:56:23

jcn .537 .240 .331 44.59 02:01:28

lesk .498 .487 .492 97.69 09:44:47

vector .473 .471 .472 99.58 12:46:22

random .236 .236 .236 100.00 00:00:59

sense1 .704 .704 .704 100.00 00:01:31

Table 27: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector, no forcepos. # tokens = 145,773. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .206 .092 .127 44.37 01:50:16

lch .206 .092 .127 44.37 03:50:02

wup .208 .092 .128 44.37 04:03:02

res .192 .072 .105 37.59 01:52:47

lin .237 .085 .125 35.88 02:49:28

jcn .220 .097 .134 44.01 02:58:52

lesk .220 .215 .217 98.08 11:12:52

vector .221 .220 .221 99.55 11:47:51

random .175 .175 .175 100.00 00:01:00

sense1 .000 .000 .000 100.00 00:01:33

Table 28: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’ is ‘Attempted’.

114

measure P R F Att(%) Time

path .629 .351 .451 55.90 01:38:15

lch .629 .352 .451 55.90 02:18:48

wup .603 .337 .432 55.90 02:32:42

res .607 .310 .410 51.003 01:39:39

lin .670 .331 .443 49.43 01:50:58

jcn .701 .389 .500 55.44 01:58:10

lesk .599 .587 .593 98.05 09:29:51

vector .576 .574 .575 99.65 10:36:50

random .389 .389 .389 100.00 00:01:01

sense1 .764 .764 .764 100.00 00:01:32

Table 29: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

measure P R F Att(%) Time

path .662 .662 .662 100.00 05:50:49

lch .662 .662 .662 100.00 07:29:24

wup .647 .647 .647 100.00 07:26:47

res .652 .652 .652 100.00 05:59:51

lin .686 .686 .686 100.00 05:57:53

jcn .703 .703 .703 100.00 06:53:59

lesk .602 .602 .602 100.00 12:29:00

vector .576 .576 .576 100.00 13:31:42

random .386 .386 .386 100.00 00:00:57

sense1 .764 .764 .764 100.00 00:01:30

Table 30: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

115

measure P R F Att(%) Time

path .428 .225 .295 52.69 01:58:58

lch .429 .226 .296 52.69 03:21:59

wup .388 .205 .268 52.69 03:00:30

res .353 .162 .223 46.01 02:01:45

lin .448 .197 .273 43.91 02:35:51

jcn .536 .280 .367 52.13 02:40:01

lesk .502 .494 .498 98.48 09:45:05

vector .479 .477 .478 99.59 15:08:09

random .236 .236 .236 100.00 00:01:00

sense1 .707 .707 .707 100.00 00:01:32

Table 31: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector, no forcepos. # tokens = 145,773. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .205 .107 .140 52.19 03:26:22

lch .205 .107 .141 52.19 04:58:35

wup .205 .107 .140 52.19 04:29:45

res .189 .084 .116 44.30 03:27:56

lin .233 .099 .139 42.41 04:10:57

jcn .212 .110 .145 51.80 04:10:10

lesk .220 .217 .218 98.98 11:26:06

vector .221 .220 .221 99.56 14:42:47

random .174 .174 .174 100.00 00:01:06

sense1 .000 .000 .000 100.00 00:01:38

Table 32: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’ is ‘Attempted’.

116

measure P R F Att(%) Time

path .609 .377 .466 61.94 01:59:41

lch .610 .378 .466 61.94 03:22:43

wup .582 .361 .445 61.94 02:56:56

res .579 .326 .417 56.35 02:00:59

lin .647 .354 .457 54.64 02:34:18

jcn .685 .421 .522 61.50 02:34:46

lesk .599 .592 .595 98.95 10:06:28

vector .581 .579 .580 99.66 13:00:18

random .387 .387 .387 100.00 00:00:56

sense1 .764 .764 .764 100.00 00:01:29

Table 33: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

measure P R F Att(%) Time

path .645 .645 .645 100.00 01:59:30

lch .645 .645 .645 100.00 03:19:17

wup .628 .628 .628 100.00 02:55:34

res .631 .631 .631 100.00 02:01:44

lin .671 .671 .671 100.00 02:33:05

jcn .692 .692 .692 100.00 02:33:36

lesk .600 .600 .600 100.00 10:06:07

vector .581 .581 .581 100.00 13:32:29

random .387 .387 .387 100.00 00:00:57

sense1 .764 .764 .764 100.00 00:01:29

Table 34: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

117

measure P R F Att(%) Time

path .420 .241 .306 57.38 06:42:37

lch .420 .241 .306 57.38 08:35:51

wup .381 .219 .278 57.38 08:15:27

res .341 .172 .228 5.33 06:57:42

lin .439 .212 .286 48.20 07:18:20

jcn .529 .301 .383 56.92 07:38:43

lesk .501 .495 .498 98.82 12:49:41

vector .482 .480 .481 99.59 16:30:26

random .236 .236 .236 100.00 00:01:12

sense1 .707 .707 .707 100.00 00:01:46

Table 35: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector, no forcepos. # tokens = 145,773. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .203 .118 .149 57.86 02:52:44

lch .203 .117 .149 57.86 04:20:06

wup .202 .117 .148 57.86 04:15:22

res .187 .092 .124 49.42 02:54:58

lin .231 .110 .149 47.49 03:28:46

jcn .213 .122 .155 57.57 03:32:27

lesk .218 .216 .217 99.14 13:36:46

vector .220 .219 .219 99.56 14:59:18

random .174 .174 .174 100.00 00:01:05

sense1 .000 .000 .000 100.00 00:01:37

Table 36: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’ is ‘Attempted’.

118

measure P R F Att(%) Time

path .592 .390 .470 65.74 06:37:08

lch .593 .390 .470 65.74 08:32:58

wup .566 .372 .449 65.74 08:09:10

res .557 .333 .417 59.81 06:46:38

lin .629 .365 .462 58.08 07:14:50

jcn .670 .438 .530 65.37 07:39:39

lesk .598 .593 .595 99.17 14:55:28

vector .583 .581 .582 99.66 16:49:48

random .388 .388 .388 100.00 00:01:04

sense1 .764 .764 .764 100.00 00:01:38

Table 37: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

measure P R F Att(%) Time

path .633 .633 .633 100.00 07:50:31

lch .633 .633 .633 100.00 09:59:32

wup .615 .615 .615 100.00 09:20:20

res .616 .616 .616 100.00 08:00:33

lin .661 .661 .661 100.00 08:32:45

jcn .684 .684 .684 100.00 08:55:21

lesk .599 .599 .599 100.00 15:37:23

vector .583 .583 .583 100.00 17:22:29

random .388 .388 .388 100.00 00:00:56

sense1 .764 .764 .764 100.00 00:01:30

Table 38: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

119

measure P R F Att(%) Time

path .419 .258 .319 61.54 06:18:01

lch .420 .259 .320 61.54 08:34:33

wup .381 .234 .290 61.54 07:46:31

res .334 .181 .235 54.16 06:19:09

lin .436 .227 .298 52.02 07:15:51

jcn .528 .323 .401 61.12 07:25:06

lesk .501 .496 .499 99.08 13:25:58

vector .486 .484 .485 99.59 20:13:56

random .236 .236 .236 100.00 00:01:13

sense1 .707 .707 .707 100.00 00:01:43

Table 39: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector, no forcepos. # tokens = 145,773. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .203 .127 .156 62.49 02:54:06

lch .202 .126 .155 62.49 05:07:20

wup .201 .125 .154 62.49 04:23:08

res .186 .100 .130 53.54 02:55:15

lin .229 .118 .156 51.57 03:47:56

jcn .213 .132 .163 62.17 03:48:47

lesk .218 .217 .217 99.27 14:16:12

vector .219 .219 .219 99.56 18:16:50

random .175 .175 .175 100.00 00:01:00

sense1 .000 .000 .000 100.00 00:01:32

Table 40: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’ is ‘Attempted’.

120

measure P R F Att(%) Time

path .584 .403 .477 69.12 03:02:45

lch .584 .404 .478 69.12 04:57:20

wup .557 .385 .455 69.12 04:24:47

res .542 .341 .418 62.89 03:05:22

lin .617 .378 .469 61.15 03:53:35

jcn .663 .456 .540 68.78 03:51:52

lesk .597 .593 .595 99.33 14:23:47

vector .586 .584 .585 99.66 20:36:28

random .387 .387 .387 100.00 00:00:57

sense1 .764 .764 .764 100.00 00:01:29

Table 41: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

measure P R F Att(%) Time

path .624 .624 .624 100.00 08:20:08

lch .625 .625 .625 100.00 10:31:27

wup .605 .605 .605 100.00 09:36:49

res .603 .603 .603 100.00 08:29:14

lin .652 .652 .652 100.00 08:55:22

jcn .679 .679 .679 100.00 09:20:05

lesk .598 .598 .598 100.00 16:14:43

vector .586 .586 .586 100.00 20:07:15

random .387 .387 .387 100.00 00:01:06

sense1 .764 .764 .764 100.00 00:01:37

Table 42: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector, no forcepos.# tokens = 185,273. ‘Att’ is ‘At-

tempted’.

121

measure P R F Att(%) Time

path .405 .285 .335 7.32 13:41:09

lch .408 .287 .337 7.32 18:35:59

wup .374 .263 .309 7.32 16:48:03

res .302 .192 .235 63.57 13:58:16

lin .423 .261 .323 61.77 15:55:35

jcn .516 .362 .426 7.12 16:24:24

lesk .498 .495 .496 99.33 27:31:56

vector .495 .493 .494 99.59 70:09:24

random .236 .236 .236 100.00 00:01:12

sense1 .707 .707 .707 100.00 00:01:52

Table 43: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector, no forcepos. # tokens = 145,773. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .201 .147 .170 73.41 07:55:14

lch .198 .146 .168 73.41 11:57:42

wup .198 .145 .168 73.41 10:23:42

res .183 .119 .144 65.01 07:59:34

lin .227 .143 .176 63.17 09:36:08

jcn .210 .154 .178 73.23 09:43:03

lesk .216 .214 .215 99.39 30:33:21

vector .217 .216 .217 99.56 67:57:55

random .177 .177 .177 100.00 00:01:03

sense1 .000 .000 .000 100.00 00:01:36

Table 44: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector, no forcepos.# tokens = 43,730. ‘Att’ is ‘Attempted’.

122

measure P R F Att(%) Time

path .558 .425 .482 76.20 13:55:10

lch .559 .426 .484 76.20 18:20:41

wup .535 .408 .463 76.20 16:37:35

res .497 .350 .411 7.49 14:00:15

lin .587 .405 .480 69.00 15:49:18

jcn .640 .487 .553 76.04 16:22:36

lesk .595 .592 .594 99.49 31:27:55

vector .593 .591 .592 99.66 68:36:04

random .389 .389 .389 100.00 00:01:14

sense1 .764 .764 .764 100.00 00:01:49

Table 45: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector, no forcepos. # tokens = 185,273. ‘Att’ is

‘Attempted’.

measure P R F Att(%) Time

path .601 .601 .601 100.00 10:15:40

lch .602 .602 .602 100.00 14:28:01

wup .583 .583 .583 100.00 12:47:43

res .563 .563 .563 100.00 10:19:37

lin .628 .628 .628 100.00 11:56:38

jcn .664 .664 .664 100.00 12:08:43

lesk .596 .596 .596 100.00 31:32:26

vector .594 .594 .594 100.00 71:40:55

random .388 .388 .388 100.00 00:01:02

sense1 .764 .764 .764 100.00 00:01:35

Table 46: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector, no forcepos. # tokens = 185,273. ‘Att’ is ‘At-

tempted’.

123

Nouns Verbs Adjectives Adverbs

mea P R F P R F P R F P R F

path .486 .284 .359 .420 .109 .173 .000 .000 .000 .000 .000 .000

lch .486 .284 .359 .420 .109 .174 .000 .000 .000 .000 .000 .000

wup .446 .261 .329 .361 .094 .149 .000 .000 .000 .000 .000 .000

res .431 .239 .307 .179 .027 .047 .000 .000 .000 .000 .000 .000

lin .538 .287 .375 .231 .032 .055 .000 .000 .000 .000 .000 .000

jcn .629 .364 .461 .432 .112 .178 .000 .000 .000 .000 .000 .000

lesk .540 .523 .531 .396 .379 .387 .572 .547 .559 .487 .442 .464

vector .510 .509 .509 .379 .376 .377 .526 .525 .525 .425 .424 .424

random .262 .262 .262 .155 .155 .155 .274 .274 .274 .318 .318 .318

sense1 .749 .749 .749 .593 .593 .593 .778 .778 .778 .743 .743 .743

Table 47: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .243 .142 .179 .126 .032 .051 .000 .000 .000 .000 .000 .000

lch .243 .142 .179 .127 .032 .051 .000 .000 .000 .000 .000 .000

wup .242 .142 .179 .133 .034 .054 .000 .000 .000 .000 .000 .000

res .214 .119 .153 .121 .019 .032 .000 .000 .000 .000 .000 .000

lin .254 .136 .177 .145 .020 .036 .000 .000 .000 .000 .000 .000

jcn .229 .133 .168 .140 .035 .056 .000 .000 .000 .000 .000 .000

lesk .258 .252 .255 .150 .145 .148 .307 .296 .301 .275 .252 .263

vector .264 .263 .264 .147 .146 .147 .298 .298 .298 .279 .277 .278

random .195 .195 .195 .125 .125 .125 .222 .222 .222 .252 .252 .252

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 48: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector and no forcepos.

124

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .622 .411 .495 .518 .155 .238 1.00 .307 .470 1.00 .393 .564

lch .622 .410 .494 .519 .155 .238 1.00 .307 .470 1.00 .393 .564

wup .594 .392 .472 .471 .140 .216 1.00 .307 .470 1.00 .393 .564

res .594 .378 .462 .402 .079 .131 1.00 .307 .470 1.00 .393 .564

lin .674 .416 .515 .455 .082 .139 1.00 .307 .470 1.00 .393 .564

jcn .727 .476 .575 .528 .157 .242 1.00 .307 .470 1.00 .393 .564

lesk .630 .614 .622 .431 .412 .421 .708 .686 .697 .702 .662 .682

vector .604 .602 .603 .411 .408 .410 .671 .671 .671 .652 .651 .652

random .400 .400 .400 .204 .204 .204 .500 .500 .500 .590 .590 .590

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 49: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .672 .672 .672 .570 .570 .570 .846 .846 .846 .843 .843 .843

lch .672 .672 .672 .570 .570 .570 .846 .846 .846 .843 .843 .843

wup .653 .653 .653 .555 .555 .555 .846 .846 .846 .843 .843 .843

res .655 .655 .655 .558 .558 .558 .846 .846 .846 .843 .843 .843

lin .708 .708 .708 .572 .572 .572 .846 .846 .846 .843 .843 .843

jcn .741 .741 .741 .573 .573 .573 .846 .846 .846 .843 .843 .843

lesk .635 .635 .635 .442 .442 .442 .712 .712 .712 .706 .706 .706

vector .604 .604 .604 .413 .413 .413 .672 .672 .672 .652 .652 .652

random .402 .402 .402 .204 .204 .204 .501 .501 .501 .591 .591 .591

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 50: SemCor results with wntagged format, window=3, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector and no forcepos.

125

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .441 .313 .366 .388 .147 .213 .000 .000 .000 .000 .000 .000

lch .442 .314 .367 .388 .147 .213 .000 .000 .000 .000 .000 .000

wup .406 .288 .337 .331 .126 .182 .000 .000 .000 .000 .000 .000

res .401 .272 .324 .164 .038 .062 .000 .000 .000 .000 .000 .000

lin .500 .326 .394 .208 .043 .072 .000 .000 .000 .000 .000 .000

jcn .583 .408 .480 .398 .150 .218 .000 .000 .000 .000 .000 .000

lesk .541 .532 .536 .393 .382 .388 .574 .561 .567 .483 .455 .469

vector .518 .516 .517 .384 .381 .383 .529 .528 .529 .425 .424 .424

random .262 .262 .262 .152 .152 .152 .274 .274 .274 .322 .322 .322

sense1 .746 .746 .746 .590 .590 .590 .774 .774 .774 .742 .742 .742

Table 51: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .249 .178 .207 .129 .048 .070 .000 .000 .000 .000 .000 .000

lch .248 .177 .207 .129 .048 .070 .000 .000 .000 .000 .000 .000

wup .245 .175 .204 .140 .052 .076 .000 .000 .000 .000 .000 .000

res .218 .150 .178 .120 .029 .046 .000 .000 .000 .000 .000 .000

lin .267 .178 .213 .149 .032 .053 .000 .000 .000 .000 .000 .000

jcn .249 .176 .206 .167 .062 .091 .000 .000 .000 .000 .000 .000

lesk .258 .256 .257 .149 .145 .147 .308 .303 .305 .278 .262 .270

vector .267 .266 .266 .146 .145 .145 .302 .301 .302 .280 .278 .279

random .193 .193 .193 .127 .127 .127 .235 .235 .235 .267 .267 .267

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 52: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector and no forcepos.

126

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .580 .444 .503 .469 .194 .275 1.00 .307 .470 1.00 .393 .564

lch .581 .445 .504 .469 .194 .275 1.00 .307 .470 1.00 .393 .564

wup .554 .425 .481 .420 .174 .246 1.00 .307 .470 1.00 .393 .564

res .557 .413 .474 .331 .089 .141 1.00 .307 .470 1.00 .393 .564

lin .634 .456 .531 .380 .094 .151 1.00 .307 .470 1.00 .393 .564

jcn .690 .523 .595 .478 .197 .279 1.00 .307 .470 1.00 .393 .564

lesk .630 .622 .626 .429 .417 .423 .708 .697 .703 .696 .670 .683

vector .610 .608 .609 .417 .413 .415 .674 .673 .673 .652 .651 .652

random .403 .403 .403 .206 .206 .206 .502 .502 .502 .591 .591 .591

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 53: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .621 .621 .621 .540 .540 .540 .846 .846 .846 .843 .843 .843

lch .622 .622 .622 .540 .540 .540 .846 .846 .846 .843 .843 .843

wup .602 .602 .602 .520 .520 .520 .846 .846 .846 .843 .843 .843

res .609 .609 .609 .527 .527 .527 .846 .846 .846 .843 .843 .843

lin .670 .670 .670 .546 .546 .546 .846 .846 .846 .843 .843 .843

jcn .707 .707 .707 .544 .544 .544 .846 .846 .846 .843 .843 .843

lesk .633 .633 .633 .436 .436 .436 .710 .710 .710 .698 .698 .698

vector .610 .610 .610 .418 .418 .418 .674 .674 .674 .652 .652 .652

random .400 .400 .400 .204 .204 .204 .502 .502 .502 .588 .588 .588

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 54: SemCor results with wntagged format, window=4, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector and no forcepos.

127

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .438 .353 .391 .399 .192 .259 .000 .000 .000 .000 .000 .000

lch .439 .353 .392 .400 .192 .259 .000 .000 .000 .000 .000 .000

wup .406 .326 .362 .340 .164 .221 .000 .000 .000 .000 .000 .000

res .399 .309 .348 .163 .049 .075 .000 .000 .000 .000 .000 .000

lin .501 .375 .429 .210 .057 .090 .000 .000 .000 .000 .000 .000

jcn .585 .465 .518 .404 .193 .261 .000 .000 .000 .000 .000 .000

lesk .544 .539 .542 .398 .391 .394 .582 .574 .578 .473 .454 .464

vector .523 .521 .522 .394 .391 .392 .533 .533 .533 .425 .424 .425

random .258 .258 .258 .155 .155 .155 .279 .279 .279 .324 .324 .324

sense1 .749 .749 .749 .593 .593 .593 .778 .778 .778 .743 .743 .743

Table 55: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .249 .201 .222 .132 .062 .085 .000 .000 .000 .000 .000 .000

lch .249 .201 .222 .133 .063 .085 .000 .000 .000 .000 .000 .000

wup .243 .196 .217 .141 .067 .090 .000 .000 .000 .000 .000 .000

res .217 .170 .191 .120 .037 .056 .000 .000 .000 .000 .000 .000

lin .266 .202 .230 .146 .042 .065 .000 .000 .000 .000 .000 .000

jcn .247 .198 .220 .155 .073 .099 .000 .000 .000 .000 .000 .000

lesk .257 .255 .256 .150 .148 .149 .309 .307 .308 .281 .272 .276

vector .269 .268 .268 .146 .145 .146 .297 .296 .297 .272 .271 .272

random .190 .190 .190 .130 .130 .130 .223 .223 .223 .260 .260 .260

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 56: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector and no forcepos.

128

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .566 .477 .518 .463 .236 .313 1.00 .307 .470 1.00 .393 .564

lch .567 .477 .518 .463 .236 .313 1.00 .307 .470 1.00 .393 .564

wup .541 .456 .495 .412 .210 .278 1.00 .307 .470 1.00 .393 .564

res .540 .442 .486 .298 .100 .150 1.00 .307 .470 1.00 .393 .564

lin .623 .496 .552 .349 .108 .164 1.00 .307 .470 1.00 .393 .564

jcn .683 .570 .621 .469 .238 .316 1.00 .307 .470 1.00 .393 .564

lesk .630 .625 .628 .431 .424 .428 .709 .703 .706 .688 .675 .681

vector .614 .613 .613 .426 .422 .424 .677 .676 .676 .653 .651 .652

random .402 .402 .402 .205 .205 .205 .499 .499 .499 .594 .594 .594

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 57: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .595 .595 .595 .523 .523 .523 .846 .846 .846 .843 .843 .843

lch .595 .595 .595 .523 .523 .523 .846 .846 .846 .843 .843 .843

wup .574 .574 .574 .497 .497 .497 .846 .846 .846 .843 .843 .843

res .579 .579 .579 .499 .499 .499 .846 .846 .846 .843 .843 .843

lin .650 .650 .650 .524 .524 .524 .846 .846 .846 .843 .843 .843

jcn .694 .694 .694 .526 .526 .526 .846 .846 .846 .843 .843 .843

lesk .632 .632 .632 .435 .435 .435 .710 .710 .710 .688 .688 .688

vector .615 .615 .615 .427 .427 .427 .677 .677 .677 .652 .652 .652

random .403 .403 .403 .203 .203 .203 .499 .499 .499 .589 .589 .589

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 58: SemCor results with wntagged format, window=5, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector and no forcepos.

129

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .430 .367 .396 .394 .221 .283 .000 .000 .000 .000 .000 .000

lch .431 .368 .397 .395 .221 .283 .000 .000 .000 .000 .000 .000

wup .401 .342 .369 .333 .187 .239 .000 .000 .000 .000 .000 .000

res .390 .323 .353 .160 .058 .085 .000 .000 .000 .000 .000 .000

lin .497 .400 .443 .208 .068 .103 .000 .000 .000 .000 .000 .000

jcn .581 .491 .532 .399 .223 .286 .000 .000 .000 .000 .000 .000

lesk .545 .541 .543 .395 .389 .392 .583 .578 .580 .474 .460 .467

vector .526 .525 .525 .398 .394 .396 .536 .536 .536 .423 .422 .422

random .261 .261 .261 .155 .155 .155 .276 .276 .276 .316 .316 .316

sense1 .749 .749 .749 .593 .593 .593 .778 .778 .778 .743 .743 .743

Table 59: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .248 .214 .230 .136 .075 .097 .000 .000 .000 .000 .000 .000

lch .247 .213 .229 .136 .075 .097 .000 .000 .000 .000 .000 .000

wup .242 .210 .225 .140 .077 .100 .000 .000 .000 .000 .000 .000

res .218 .184 .200 .118 .044 .064 .000 .000 .000 .000 .000 .000

lin .268 .221 .242 .147 .050 .075 .000 .000 .000 .000 .000 .000

jcn .251 .216 .232 .155 .085 .110 .000 .000 .000 .000 .000 .000

lesk .256 .255 .255 .148 .146 .147 .307 .305 .306 .283 .276 .280

vector .266 .266 .266 .147 .146 .147 .291 .290 .291 .274 .272 .273

random .194 .194 .194 .127 .127 .127 .230 .230 .230 .258 .258 .258

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 60: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector and no forcepos.

130

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .553 .488 .519 .449 .263 .331 1.00 .307 .470 1.00 .393 .564

lch .554 .489 .519 .449 .263 .332 1.00 .307 .470 1.00 .393 .564

wup .531 .468 .498 .395 .231 .292 1.00 .307 .470 1.00 .393 .564

res .526 .453 .487 .277 .109 .156 1.00 .307 .470 1.00 .393 .564

lin .613 .516 .560 .326 .118 .173 1.00 .307 .470 1.00 .393 .564

jcn .674 .590 .629 .453 .264 .334 1.00 .307 .470 1.00 .393 .564

lesk .630 .627 .629 .428 .422 .425 .709 .705 .707 .686 .676 .681

vector .617 .615 .616 .429 .426 .427 .679 .678 .678 .651 .650 .651

random .402 .402 .402 .207 .207 .207 .502 .502 .502 .589 .589 .589

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 61: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .578 .578 .578 .506 .506 .506 .846 .846 .846 .843 .843 .843

lch .579 .579 .579 .506 .506 .506 .846 .846 .846 .843 .843 .843

wup .558 .558 .558 .475 .475 .475 .846 .846 .846 .843 .843 .843

res .560 .560 .560 .475 .475 .475 .846 .846 .846 .843 .843 .843

lin .638 .638 .638 .505 .505 .505 .846 .846 .846 .843 .843 .843

jcn .686 .686 .686 .510 .510 .510 .846 .846 .846 .843 .843 .843

lesk .632 .632 .632 .431 .431 .431 .710 .710 .710 .686 .686 .686

vector .617 .617 .617 .430 .430 .430 .679 .679 .679 .651 .651 .651

random .402 .402 .402 .205 .205 .205 .504 .504 .504 .591 .591 .591

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 62: SemCor results with wntagged format, window=6, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector and no forcepos.

131

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .431 .386 .407 .392 .247 .303 .000 .000 .000 .000 .000 .000

lch .432 .387 .408 .393 .248 .304 .000 .000 .000 .000 .000 .000

wup .401 .360 .379 .333 .210 .258 .000 .000 .000 .000 .000 .000

res .386 .337 .360 .158 .066 .093 .000 .000 .000 .000 .000 .000

lin .499 .425 .459 .207 .079 .114 .000 .000 .000 .000 .000 .000

jcn .586 .521 .551 .396 .249 .306 .000 .000 .000 .000 .000 .000

lesk .545 .542 .544 .393 .388 .390 .584 .581 .582 .474 .464 .469

vector .530 .528 .529 .402 .399 .401 .542 .541 .542 .422 .420 .421

random .260 .260 .260 .155 .155 .155 .278 .278 .278 .321 .321 .321

sense1 .749 .749 .749 .593 .593 .593 .778 .778 .778 .743 .743 .743

Table 63: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .252 .227 .239 .135 .084 .104 .000 .000 .000 .000 .000 .000

lch .250 .225 .237 .134 .084 .104 .000 .000 .000 .000 .000 .000

wup .245 .221 .232 .140 .087 .107 .000 .000 .000 .000 .000 .000

res .223 .197 .209 .115 .049 .069 .000 .000 .000 .000 .000 .000

lin .269 .234 .250 .145 .058 .083 .000 .000 .000 .000 .000 .000

jcn .253 .227 .239 .158 .098 .121 .000 .000 .000 .000 .000 .000

lesk .256 .255 .256 .147 .145 .146 .303 .302 .303 .292 .287 .289

vector .266 .265 .266 .148 .147 .148 .283 .283 .283 .274 .272 .273

random .193 .193 .193 .127 .127 .127 .230 .230 .230 .265 .265 .265

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 64: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

s1nc with measure config for lesk and vector and no forcepos.

132

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .548 .503 .525 .443 .289 .350 1.00 .307 .470 1.00 .393 .564

lch .549 .504 .526 .444 .289 .350 1.00 .307 .470 1.00 .393 .564

wup .525 .482 .503 .391 .255 .308 1.00 .307 .470 1.00 .393 .564

res .517 .465 .489 .262 .116 .161 1.00 .307 .470 1.00 .393 .564

lin .609 .536 .570 .314 .128 .182 1.00 .307 .470 1.00 .393 .564

jcn .673 .614 .642 .448 .291 .353 1.00 .307 .470 1.00 .393 .564

lesk .631 .628 .629 .426 .421 .424 .709 .706 .708 .684 .677 .681

vector .619 .618 .618 .433 .430 .431 .683 .682 .682 .650 .649 .650

random .402 .402 .402 .204 .204 .204 .500 .500 .500 .589 .589 .589

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 65: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .567 .567 .567 .493 .493 .493 .846 .846 .846 .843 .843 .843

lch .568 .568 .568 .494 .494 .494 .846 .846 .846 .843 .843 .843

wup .545 .545 .545 .459 .459 .459 .846 .846 .846 .843 .843 .843

res .543 .543 .543 .454 .454 .454 .846 .846 .846 .843 .843 .843

lin .629 .629 .629 .488 .488 .488 .846 .846 .846 .843 .843 .843

jcn .682 .682 .682 .497 .497 .497 .846 .846 .846 .843 .843 .843

lesk .632 .632 .632 .429 .429 .429 .710 .710 .710 .685 .685 .685

vector .620 .620 .620 .434 .434 .434 .683 .683 .683 .650 .650 .650

random .401 .401 .401 .203 .203 .203 .504 .504 .504 .590 .590 .590

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 66: SemCor results with wntagged format, window=7, contextScore=0.0, pairScore=0.0, –

backoff with measure config for lesk and vector and no forcepos.

133

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .419 .401 .409 .380 .316 .345 .000 .000 .000 .000 .000 .000

lch .421 .403 .412 .383 .318 .347 .000 .000 .000 .000 .000 .000

wup .400 .383 .392 .324 .269 .294 .000 .000 .000 .000 .000 .000

res .361 .342 .351 .155 .095 .118 .000 .000 .000 .000 .000 .000

lin .503 .472 .487 .210 .120 .153 .000 .000 .000 .000 .000 .000

jcn .588 .561 .574 .382 .316 .346 .000 .000 .000 .000 .000 .000

lesk .545 .543 .544 .386 .382 .384 .581 .580 .580 .466 .461 .464

vector .540 .538 .539 .412 .409 .410 .553 .553 .553 .421 .419 .420

random .258 .258 .258 .154 .154 .154 .282 .282 .282 .317 .317 .317

sense1 .749 .749 .749 .593 .593 .593 .778 .778 .778 .743 .743 .743

Table 67: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .254 .245 .249 .141 .117 .127 .000 .000 .000 .000 .000 .000

lch .250 .240 .245 .141 .117 .128 .000 .000 .000 .000 .000 .000

wup .248 .239 .243 .143 .118 .129 .000 .000 .000 .000 .000 .000

res .230 .219 .224 .116 .074 .090 .000 .000 .000 .000 .000 .000

lin .277 .262 .269 .151 .090 .113 .000 .000 .000 .000 .000 .000

jcn .259 .248 .253 .156 .129 .141 .000 .000 .000 .000 .000 .000

lesk .255 .254 .254 .144 .142 .143 .297 .297 .297 .291 .288 .289

vector .265 .264 .264 .144 .143 .143 .281 .281 .281 .279 .277 .278

random .196 .196 .196 .134 .134 .134 .221 .221 .221 .264 .264 .264

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 68: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–s1nc with measure config for lesk and vector and no forcepos.

134

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .533 .515 .524 .420 .352 .383 1.00 .307 .470 1.00 .393 .564

lch .535 .517 .525 .422 .354 .385 1.00 .307 .470 1.00 .393 .564

wup .519 .501 .510 .368 .309 .336 1.00 .307 .470 1.00 .393 .564

res .489 .469 .479 .230 .145 .178 1.00 .307 .470 1.00 .393 .564

lin .605 .574 .589 .284 .167 .210 1.00 .307 .470 1.00 .393 .564

jcn .670 .646 .658 .423 .354 .386 1.00 .307 .470 1.00 .393 .564

lesk .630 .628 .629 .421 .416 .419 .707 .706 .707 .679 .675 .677

vector .628 .626 .627 .442 .438 .440 .690 .690 .690 .650 .649 .649

random .404 .404 .404 .206 .206 .206 .503 .503 .503 .590 .590 .590

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 69: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .542 .542 .542 .448 .448 .448 .846 .846 .846 .843 .843 .843

lch .543 .543 .543 .450 .450 .450 .846 .846 .846 .843 .843 .843

wup .528 .528 .528 .405 .405 .405 .846 .846 .846 .843 .843 .843

res .502 .502 .502 .374 .374 .374 .846 .846 .846 .843 .843 .843

lin .614 .614 .614 .425 .425 .425 .846 .846 .846 .843 .843 .843

jcn .675 .675 .675 .452 .452 .452 .846 .846 .846 .843 .843 .843

lesk .631 .631 .631 .423 .423 .423 .707 .707 .707 .679 .679 .679

vector .628 .628 .628 .443 .443 .443 .691 .691 .691 .649 .649 .649

random .402 .402 .402 .205 .205 .205 .499 .499 .499 .590 .590 .590

sense1 .798 .798 .798 .616 .616 .616 .846 .846 .846 .843 .843 .843

Table 70: SemCor results with wntagged format, window=15, contextScore=0.0, pairScore=0.0,

–backoff with measure config for lesk and vector and no forcepos.

135

A.3.2 SENSEVAL -2 Tables

136

measure P R F Att(%) Time

path .360 .114 .173 31.74 00:00:42

lch .361 .115 .174 31.74 00:01:48

wup .339 .107 .163 31.74 00:01:17

res .320 .087 .137 27.12 00:00:42

lin .425 .089 .147 2.82 00:00:54

jcn .509 .140 .220 27.56 00:01:11

lesk .458 .435 .447 94.99 00:04:31

vector .446 .445 .446 99.78 00:05:12

random .246 .246 .246 100.00 00:00:09

sense1 .588 .588 .588 100.00 00:00:09

Table 71: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .268 .085 .129 31.78 00:00:42

lch .272 .086 .131 31.78 00:01:08

wup .259 .082 .125 31.78 00:01:00

res .226 .060 .095 26.46 00:00:43

lin .232 .047 .078 2.08 00:00:53

jcn .165 .044 .069 26.60 00:00:59

lesk .253 .242 .247 95.74 00:03:07

vector .292 .291 .291 99.87 00:04:20

random .210 .210 .210 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:09

Table 72: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’.

137

measure P R F Att(%) Time

path .629 .280 .388 44.56 00:02:57

lch .630 .281 .388 44.56 00:04:53

wup .617 .275 .380 44.56 00:03:56

res .635 .261 .370 41.002 00:03:00

lin .732 .262 .386 35.80 00:03:23

jcn .732 .301 .426 41.11 00:04:13

lesk .563 .539 .551 95.84 00:06:28

vector .547 .546 .546 99.82 00:06:18

random .411 .411 .411 100.00 00:00:09

sense1 .665 .665 .665 100.00 00:00:10

Table 73: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .610 .610 .610 100.00 00:00:42

lch .610 .610 .610 100.00 00:01:07

wup .604 .604 .604 100.00 00:01:00

res .607 .607 .607 100.00 00:00:43

lin .638 .638 .638 100.00 00:00:53

jcn .647 .647 .647 100.00 00:00:57

lesk .574 .574 .574 100.00 00:03:04

vector .554 .554 .554 100.00 00:04:10

random .413 .413 .413 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:08

Table 74: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

138

measure P R F Att(%) Time

path .351 .143 .203 4.76 00:03:47

lch .355 .145 .206 4.76 00:04:33

wup .337 .138 .195 4.76 00:04:34

res .328 .115 .171 35.13 00:03:50

lin .414 .114 .179 27.56 00:03:59

jcn .470 .167 .247 35.52 00:04:22

lesk .459 .448 .453 97.55 00:06:35

vector .438 .437 .438 99.78 00:06:22

random .239 .239 .239 100.00 00:00:08

sense1 .585 .585 .585 100.00 00:00:09

Table 75: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .272 .110 .157 4.56 00:01:13

lch .279 .113 .161 4.56 00:01:40

wup .262 .106 .151 4.56 00:01:49

res .230 .078 .117 34.18 00:01:13

lin .230 .061 .097 26.60 00:01:23

jcn .208 .072 .107 34.57 00:01:29

lesk .278 .271 .274 97.74 00:04:51

vector .296 .295 .295 99.87 00:05:00

random .206 .206 .206 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:09

Table 76: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’.

139

measure P R F Att(%) Time

path .590 .309 .405 52.35 00:03:59

lch .593 .310 .407 52.35 00:04:27

wup .582 .305 .400 52.35 00:04:27

res .604 .288 .390 47.65 00:03:53

lin .688 .285 .403 41.37 00:03:55

jcn .681 .326 .441 47.83 00:04:16

lesk .568 .557 .562 97.96 00:06:26

vector .547 .546 .547 99.82 00:06:04

random .395 .395 .395 100.00 00:00:09

sense1 .665 .665 .665 100.00 00:00:09

Table 77: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .591 .591 .591 100.00 00:01:17

lch .592 .592 .592 100.00 00:01:44

wup .585 .585 .585 100.00 00:01:55

res .592 .592 .592 100.00 00:01:17

lin .627 .627 .627 100.00 00:01:26

jcn .631 .631 .631 100.00 00:01:36

lesk .578 .578 .578 100.00 00:04:53

vector .555 .555 .555 100.00 00:05:06

random .408 .408 .408 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:08

Table 78: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

140

measure P R F Att(%) Time

path .352 .167 .227 47.49 00:03:27

lch .355 .169 .229 47.49 00:04:20

wup .335 .159 .216 47.49 00:04:00

res .321 .131 .186 4.76 00:03:33

lin .389 .127 .191 32.63 00:03:46

jcn .474 .200 .282 42.32 00:04:06

lesk .468 .462 .465 98.83 00:06:02

vector .461 .460 .461 99.78 00:06:42

random .266 .266 .266 100.00 00:00:09

sense1 .588 .588 .588 100.00 00:00:10

Table 79: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .250 .117 .159 46.81 00:03:22

lch .253 .118 .161 46.81 00:04:13

wup .244 .114 .156 46.81 00:03:58

res .207 .081 .117 39.23 00:03:24

lin .207 .066 .101 32.18 00:03:43

jcn .201 .085 .120 42.29 00:04:02

lesk .278 .275 .277 99.07 00:06:01

vector .304 .303 .303 99.87 00:06:35

random .203 .203 .203 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:09

Table 80: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’.

141

measure P R F Att(%) Time

path .568 .329 .416 57.88 00:03:22

lch .570 .330 .418 57.88 00:04:17

wup .557 .322 .408 57.88 00:03:50

res .575 .300 .395 52.21 00:03:25

lin .651 .297 .408 45.58 00:03:36

jcn .663 .356 .463 53.67 00:03:52

lesk .574 .568 .571 99.03 00:06:03

vector .566 .565 .566 99.82 00:06:27

random .405 .405 .405 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:09

Table 81: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .575 .575 .575 100.00 00:01:25

lch .577 .577 .577 100.00 00:02:12

wup .569 .569 .569 100.00 00:02:00

res .576 .576 .576 100.00 00:01:23

lin .615 .615 .615 100.00 00:01:46

jcn .628 .628 .628 100.00 00:01:54

lesk .575 .575 .575 100.00 00:04:56

vector .566 .566 .566 100.00 00:06:04

random .407 .407 .407 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:09

Table 82: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

142

measure P R F Att(%) Time

path .346 .182 .239 52.67 00:04:04

lch .349 .184 .241 52.67 00:05:01

wup .319 .168 .220 52.67 00:04:50

res .321 .146 .201 45.43 00:04:02

lin .398 .151 .219 37.92 00:04:16

jcn .475 .228 .308 47.94 00:04:43

lesk .474 .469 .471 98.94 00:07:28

vector .459 .458 .459 99.78 00:07:44

random .239 .239 .239 100.00 00:00:08

sense1 .588 .588 .588 100.00 00:00:09

Table 83: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .239 .126 .165 52.93 00:01:52

lch .244 .129 .169 52.93 00:02:43

wup .231 .122 .160 52.93 00:02:46

res .205 .092 .127 44.81 00:01:53

lin .211 .081 .117 38.43 00:02:10

jcn .203 .100 .134 49.07 00:02:22

lesk .290 .287 .288 99.20 00:06:24

vector .296 .295 .295 99.87 00:07:04

random .202 .202 .202 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:09

Table 84: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’.

143

measure P R F Att(%) Time

path .551 .342 .422 62.12 00:03:59

lch .551 .342 .422 62.12 00:04:50

wup .531 .330 .407 62.12 00:04:44

res .558 .313 .401 56.02 00:04:01

lin .632 .314 .420 49.69 00:04:08

jcn .649 .378 .478 58.23 00:04:30

lesk .579 .573 .576 99.12 00:07:15

vector .564 .563 .564 99.82 00:07:33

random .404 .404 .404 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:09

Table 85: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .566 .566 .566 100.00 00:04:56

lch .568 .568 .568 100.00 00:06:35

wup .554 .554 .554 100.00 00:06:18

res .569 .569 .569 100.00 00:05:06

lin .612 .612 .612 100.00 00:05:14

jcn .628 .628 .628 100.00 00:06:10

lesk .580 .580 .580 100.00 00:08:09

vector .565 .565 .565 100.00 00:08:35

random .415 .415 .415 100.00 00:00:09

sense1 .667 .667 .667 100.00 00:00:09

Table 86: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

144

measure P R F Att(%) Time

path .364 .207 .263 56.79 00:01:58

lch .364 .207 .263 56.79 00:03:15

wup .330 .188 .239 56.79 00:02:56

res .342 .167 .224 48.83 00:01:58

lin .401 .164 .233 4.81 00:02:32

jcn .474 .246 .324 51.78 00:02:47

lesk .472 .468 .470 99.22 00:06:36

vector .464 .463 .464 99.78 00:08:02

random .259 .259 .259 100.00 00:00:08

sense1 .588 .588 .588 100.00 00:00:09

Table 87: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .256 .146 .186 57.18 00:01:56

lch .256 .146 .186 57.18 00:03:16

wup .244 .140 .178 57.18 00:02:54

res .223 .106 .144 47.74 00:01:57

lin .220 .092 .129 41.76 00:02:32

jcn .207 .110 .144 53.32 00:02:42

lesk .278 .277 .277 99.60 00:07:19

vector .294 .294 .294 99.87 00:08:43

random .194 .194 .194 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:08

Table 88: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’.

145

measure P R F Att(%) Time

path .554 .362 .438 65.22 00:01:55

lch .554 .361 .437 65.22 00:03:06

wup .529 .345 .418 65.22 00:02:48

res .559 .328 .414 58.72 00:01:53

lin .622 .324 .426 52.12 00:02:24

jcn .645 .394 .489 61.15 00:02:39

lesk .576 .573 .574 99.38 00:06:31

vector .568 .567 .568 99.82 00:07:52

random .407 .407 .407 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:08

Table 89: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .566 .566 .566 100.00 00:05:34

lch .566 .566 .566 100.00 00:07:02

wup .550 .550 .550 100.00 00:06:26

res .568 .568 .568 100.00 00:05:43

lin .610 .610 .610 100.00 00:06:02

jcn .625 .625 .625 100.00 00:06:33

lesk .577 .577 .577 100.00 00:08:12

vector .569 .569 .569 100.00 00:09:31

random .412 .412 .412 100.00 00:00:10

sense1 .667 .667 .667 100.00 00:00:09

Table 90: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

146

measure P R F Att(%) Time

path .340 .226 .271 66.37 00:03:32

lch .338 .224 .270 66.37 00:06:04

wup .315 .209 .251 66.37 00:05:16

res .299 .176 .222 58.85 00:03:41

lin .375 .196 .257 52.28 00:04:42

jcn .464 .291 .357 62.69 00:05:10

lesk .470 .468 .469 99.55 00:13:16

vector .488 .487 .487 99.78 00:27:33

random .247 .247 .247 100.00 00:00:08

sense1 .588 .588 .588 100.00 00:00:08

Table 91: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,796.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .227 .158 .186 69.81 00:05:31

lch .229 .160 .188 69.81 00:07:58

wup .211 .148 .174 69.81 00:07:02

res .182 .112 .138 61.30 00:05:31

lin .193 .109 .139 56.38 00:06:23

jcn .192 .129 .154 67.02 00:07:01

lesk .284 .283 .283 99.87 00:14:00

vector .305 .305 .305 99.87 00:28:18

random .197 .197 .197 100.00 00:00:09

sense1 .000 .000 .000 100.00 00:00:09

Table 92: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 752. ‘Att’ is

‘Attempted’.

147

measure P R F Att(%) Time

path .515 .376 .435 73.01 00:03:27

lch .515 .376 .435 73.01 00:05:51

wup .496 .362 .419 73.01 00:05:13

res .502 .335 .401 66.68 00:03:26

lin .572 .350 .435 61.28 00:04:26

jcn .613 .429 .505 69.96 00:04:51

lesk .575 .573 .574 99.65 00:12:43

vector .586 .585 .586 99.82 00:26:08

random .408 .408 .408 100.00 00:00:08

sense1 .667 .667 .667 100.00 00:00:08

Table 93: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .546 .546 .546 100.00 00:03:30

lch .546 .546 .546 100.00 00:06:00

wup .532 .532 .532 100.00 00:05:15

res .539 .539 .539 100.00 00:03:31

lin .593 .593 .593 100.00 00:04:36

jcn .619 .619 .619 100.00 00:05:09

lesk .577 .577 .577 100.00 00:13:21

vector .587 .587 .587 100.00 00:28:01

random .405 .405 .405 100.00 00:00:09

sense1 .667 .667 .667 100.00 00:00:09

Table 94: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 2,260.

‘Att’ is ‘Attempted’.

148

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .355 .199 .255 .379 .091 .147 .000 .000 .000 .000 .000 .000

lch .357 .200 .256 .379 .091 .147 .000 .000 .000 .000 .000 .000

wup .337 .189 .242 .345 .083 .134 .000 .000 .000 .000 .000 .000

res .337 .176 .232 .206 .027 .048 .000 .000 .000 .000 .000 .000

lin .448 .181 .258 .261 .025 .046 .000 .000 .000 .000 .000 .000

jcn .543 .255 .347 .395 .094 .151 .000 .000 .000 .000 .000 .000

lesk .498 .482 .490 .302 .287 .294 .575 .529 .551 .487 .450 .468

vector .477 .476 .476 .305 .304 .304 .595 .595 .595 .412 .409 .411

random .242 .242 .242 .183 .183 .183 .330 .330 .330 .281 .281 .281

sense1 .634 .634 .634 .422 .422 .422 .661 .661 .661 .696 .696 .696

Table 95: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .305 .177 .224 .169 .038 .063 .000 .000 .000 .000 .000 .000

lch .310 .181 .228 .169 .038 .063 .000 .000 .000 .000 .000 .000

wup .305 .177 .224 .138 .031 .051 .000 .000 .000 .000 .000 .000

res .264 .144 .186 .056 .007 .012 .000 .000 .000 .000 .000 .000

lin .256 .107 .151 .115 .010 .019 .000 .000 .000 .000 .000 .000

jcn .204 .094 .128 .079 .017 .029 .000 .000 .000 .000 .000 .000

lesk .321 .308 .314 .163 .157 .160 .290 .272 .281 .280 .264 .272

vector .348 .348 .348 .200 .199 .200 .360 .360 .360 .321 .321 .321

random .217 .217 .217 .147 .147 .147 .316 .316 .316 .283 .283 .283

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 96: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

149

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .567 .371 .449 .432 .112 .178 1.00 .194 .325 1.00 .372 .542

lch .569 .372 .450 .432 .112 .178 1.00 .194 .325 1.00 .372 .542

wup .556 .363 .439 .402 .104 .165 1.00 .194 .325 1.00 .372 .542

res .570 .360 .441 .329 .049 .085 1.00 .194 .325 1.00 .372 .542

lin .677 .362 .472 .424 .049 .088 1.00 .194 .325 1.00 .372 .542

jcn .713 .415 .525 .442 .112 .179 1.00 .194 .325 1.00 .372 .542

lesk .610 .594 .602 .326 .310 .318 .650 .607 .628 .687 .650 .668

vector .591 .590 .591 .318 .316 .317 .659 .659 .659 .627 .625 .626

random .443 .443 .443 .200 .200 .200 .477 .477 .477 .578 .578 .578

sense1 .715 .715 .715 .436 .436 .436 .719 .719 .719 .809 .809 .809

Table 97: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .603 .603 .603 .420 .420 .420 .727 .727 .727 .809 .809 .809

lch .604 .604 .604 .420 .420 .420 .727 .727 .727 .809 .809 .809

wup .595 .595 .595 .411 .411 .411 .727 .727 .727 .809 .809 .809

res .604 .604 .604 .407 .407 .407 .727 .727 .727 .809 .809 .809

lin .664 .664 .664 .420 .420 .420 .727 .727 .727 .809 .809 .809

jcn .682 .682 .682 .422 .422 .422 .727 .727 .727 .809 .809 .809

lesk .615 .615 .615 .342 .342 .342 .671 .671 .671 .697 .697 .697

vector .596 .596 .596 .324 .324 .324 .674 .674 .674 .632 .632 .632

random .438 .438 .438 .212 .212 .212 .487 .487 .487 .574 .574 .574

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 98: SENSEVAL -2 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

150

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .351 .247 .290 .350 .119 .177 .000 .000 .000 .000 .000 .000

lch .357 .250 .294 .350 .119 .177 .000 .000 .000 .000 .000 .000

wup .348 .244 .287 .301 .102 .152 .000 .000 .000 .000 .000 .000

res .356 .238 .285 .157 .029 .049 .000 .000 .000 .000 .000 .000

lin .453 .240 .314 .154 .021 .037 .000 .000 .000 .000 .000 .000

jcn .517 .305 .383 .331 .110 .165 .000 .000 .000 .000 .000 .000

lesk .500 .492 .496 .292 .285 .288 .570 .550 .560 .518 .497 .507

vector .477 .476 .476 .305 .304 .304 .556 .556 .556 .400 .398 .399

random .258 .258 .258 .177 .177 .177 .273 .273 .273 .263 .263 .263

sense1 .631 .631 .631 .420 .420 .420 .652 .652 .652 .696 .696 .696

Table 99: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .330 .237 .276 .133 .042 .064 .000 .000 .000 .000 .000 .000

lch .340 .244 .284 .133 .042 .064 .000 .000 .000 .000 .000 .000

wup .330 .237 .276 .100 .031 .048 .000 .000 .000 .000 .000 .000

res .272 .187 .222 .059 .010 .018 .000 .000 .000 .000 .000 .000

lin .268 .147 .190 .056 .007 .012 .000 .000 .000 .000 .000 .000

jcn .254 .147 .186 .115 .035 .054 .000 .000 .000 .000 .000 .000

lesk .348 .341 .345 .168 .164 .166 .345 .333 .339 .327 .321 .324

vector .368 .368 .368 .207 .206 .207 .325 .325 .325 .302 .302 .302

random .197 .197 .197 .161 .161 .161 .325 .325 .325 .245 .245 .245

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 100: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

151

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .538 .417 .470 .406 .143 .212 1.00 .194 .325 1.00 .372 .542

lch .542 .420 .473 .406 .143 .212 1.00 .194 .325 1.00 .372 .542

wup .538 .417 .470 .356 .126 .186 1.00 .194 .325 1.00 .372 .542

res .558 .417 .478 .252 .051 .085 1.00 .194 .325 1.00 .372 .542

lin .649 .412 .504 .291 .045 .078 1.00 .194 .325 1.00 .372 .542

jcn .675 .460 .547 .373 .130 .192 1.00 .194 .325 1.00 .372 .542

lesk .617 .609 .613 .320 .312 .316 .658 .638 .648 .703 .682 .692

vector .596 .595 .595 .325 .324 .325 .643 .643 .643 .627 .625 .626

random .409 .409 .409 .204 .204 .204 .472 .472 .472 .574 .574 .574

sense1 .715 .715 .715 .436 .436 .436 .719 .719 .719 .809 .809 .809

Table 101: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .571 .571 .571 .401 .401 .401 .727 .727 .727 .809 .809 .809

lch .574 .574 .574 .401 .401 .401 .727 .727 .727 .809 .809 .809

wup .569 .569 .569 .383 .383 .383 .727 .727 .727 .809 .809 .809

res .580 .580 .580 .387 .387 .387 .727 .727 .727 .809 .809 .809

lin .650 .650 .650 .399 .399 .399 .727 .727 .727 .809 .809 .809

jcn .661 .661 .661 .393 .393 .393 .727 .727 .727 .809 .809 .809

lesk .623 .623 .623 .330 .330 .330 .681 .681 .681 .711 .711 .711

vector .601 .601 .601 .330 .330 .330 .662 .662 .662 .632 .632 .632

random .441 .441 .441 .196 .196 .196 .487 .487 .487 .552 .552 .552

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 102: SENSEVAL -2 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

152

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .349 .279 .310 .359 .154 .215 .000 .000 .000 .000 .000 .000

lch .354 .282 .314 .359 .154 .215 .000 .000 .000 .000 .000 .000

wup .345 .275 .306 .306 .131 .183 .000 .000 .000 .000 .000 .000

res .355 .271 .308 .133 .031 .051 .000 .000 .000 .000 .000 .000

lin .431 .268 .330 .134 .023 .039 .000 .000 .000 .000 .000 .000

jcn .513 .353 .418 .365 .154 .216 .000 .000 .000 .000 .000 .000

lesk .517 .515 .516 .297 .293 .295 .582 .568 .574 .491 .480 .485

vector .511 .510 .511 .305 .304 .304 .592 .592 .592 .412 .409 .411

random .287 .287 .287 .160 .160 .160 .363 .363 .363 .275 .275 .275

sense1 .634 .634 .634 .422 .422 .422 .661 .661 .661 .696 .696 .696

Table 103: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .307 .247 .274 .126 .049 .071 .000 .000 .000 .000 .000 .000

lch .311 .251 .278 .126 .049 .071 .000 .000 .000 .000 .000 .000

wup .311 .251 .278 .099 .038 .055 .000 .000 .000 .000 .000 .000

res .250 .194 .218 .048 .010 .017 .000 .000 .000 .000 .000 .000

lin .244 .161 .194 .044 .007 .012 .000 .000 .000 .000 .000 .000

jcn .244 .171 .201 .119 .045 .066 .000 .000 .000 .000 .000 .000

lesk .366 .365 .365 .155 .154 .155 .330 .325 .327 .327 .321 .324

vector .385 .385 .385 .204 .203 .203 .351 .351 .351 .283 .283 .283

random .221 .221 .221 .157 .157 .157 .237 .237 .237 .283 .283 .283

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 104: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

153

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .524 .445 .481 .392 .175 .242 1.00 .194 .325 1.00 .372 .542

lch .527 .447 .484 .392 .175 .242 1.00 .194 .325 1.00 .372 .542

wup .521 .442 .478 .339 .151 .209 1.00 .194 .325 1.00 .372 .542

res .539 .443 .486 .213 .053 .085 1.00 .194 .325 1.00 .372 .542

lin .617 .438 .512 .253 .047 .079 1.00 .194 .325 1.00 .372 .542

jcn .658 .500 .569 .404 .179 .248 1.00 .194 .325 1.00 .372 .542

lesk .629 .627 .628 .324 .320 .322 .665 .652 .659 .684 .671 .678

vector .622 .622 .622 .325 .324 .325 .671 .671 .671 .634 .632 .633

random .434 .434 .434 .206 .206 .206 .460 .460 .460 .574 .574 .574

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 105: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .545 .545 .545 .387 .387 .387 .727 .727 .727 .809 .809 .809

lch .548 .548 .548 .387 .387 .387 .727 .727 .727 .809 .809 .809

wup .542 .542 .542 .363 .363 .363 .727 .727 .727 .809 .809 .809

res .557 .557 .557 .363 .363 .363 .727 .727 .727 .809 .809 .809

lin .630 .630 .630 .385 .385 .385 .727 .727 .727 .809 .809 .809

jcn .657 .657 .657 .391 .391 .391 .727 .727 .727 .809 .809 .809

lesk .629 .629 .629 .326 .326 .326 .667 .667 .667 .686 .686 .686

vector .623 .623 .623 .326 .326 .326 .671 .671 .671 .635 .635 .635

random .430 .430 .430 .181 .181 .181 .499 .499 .499 .596 .596 .596

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 106: SENSEVAL -2 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

154

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .347 .298 .321 .341 .177 .233 .000 .000 .000 .000 .000 .000

lch .352 .302 .325 .341 .177 .233 .000 .000 .000 .000 .000 .000

wup .334 .287 .309 .277 .143 .189 .000 .000 .000 .000 .000 .000

res .359 .297 .325 .146 .044 .067 .000 .000 .000 .000 .000 .000

lin .448 .314 .370 .143 .033 .054 .000 .000 .000 .000 .000 .000

jcn .525 .398 .453 .350 .179 .237 .000 .000 .000 .000 .000 .000

lesk .514 .512 .513 .305 .301 .303 .602 .592 .597 .509 .497 .503

vector .512 .512 .512 .292 .291 .292 .595 .595 .595 .412 .409 .411

random .228 .228 .228 .162 .162 .162 .333 .333 .333 .327 .327 .327

sense1 .634 .634 .634 .422 .422 .422 .661 .661 .661 .696 .696 .696

Table 107: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .304 .264 .283 .116 .056 .075 .000 .000 .000 .000 .000 .000

lch .312 .271 .290 .116 .056 .075 .000 .000 .000 .000 .000 .000

wup .308 .268 .286 .087 .042 .057 .000 .000 .000 .000 .000 .000

res .249 .211 .228 .071 .021 .032 .000 .000 .000 .000 .000 .000

lin .258 .191 .219 .059 .014 .023 .000 .000 .000 .000 .000 .000

jcn .253 .197 .222 .118 .056 .076 .000 .000 .000 .000 .000 .000

lesk .362 .361 .362 .170 .168 .169 .372 .368 .370 .346 .340 .343

vector .385 .385 .385 .182 .182 .182 .351 .351 .351 .283 .283 .283

random .237 .237 .237 .157 .157 .157 .228 .228 .228 .189 .189 .189

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 108: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

155

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .515 .463 .488 .369 .196 .256 1.00 .194 .325 1.00 .372 .542

lch .516 .464 .489 .369 .196 .256 1.00 .194 .325 1.00 .372 .542

wup .504 .452 .477 .306 .163 .213 1.00 .194 .325 1.00 .372 .542

res .531 .464 .495 .208 .065 .099 1.00 .194 .325 1.00 .372 .542

lin .611 .470 .532 .230 .057 .091 1.00 .194 .325 1.00 .372 .542

jcn .658 .537 .592 .379 .200 .262 1.00 .194 .325 1.00 .372 .542

lesk .626 .624 .625 .332 .328 .330 .681 .671 .676 .695 .682 .689

vector .623 .623 .623 .314 .312 .313 .674 .674 .674 .634 .632 .633

random .427 .427 .427 .216 .216 .216 .460 .460 .460 .574 .574 .574

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 109: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .531 .531 .531 .377 .377 .377 .727 .727 .727 .809 .809 .809

lch .534 .534 .534 .377 .377 .377 .727 .727 .727 .809 .809 .809

wup .521 .521 .521 .344 .344 .344 .727 .727 .727 .809 .809 .809

res .546 .546 .546 .356 .356 .356 .727 .727 .727 .809 .809 .809

lin .627 .627 .627 .381 .381 .381 .727 .727 .727 .809 .809 .809

jcn .659 .659 .659 .383 .383 .383 .727 .727 .727 .809 .809 .809

lesk .626 .626 .626 .334 .334 .334 .683 .683 .683 .697 .697 .697

vector .623 .623 .623 .314 .314 .314 .674 .674 .674 .635 .635 .635

random .437 .437 .437 .220 .220 .220 .477 .477 .477 .592 .592 .592

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 110: SENSEVAL -2 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

156

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .377 .339 .357 .331 .200 .249 .000 .000 .000 .000 .000 .000

lch .377 .339 .357 .331 .200 .249 .000 .000 .000 .000 .000 .000

wup .358 .322 .339 .262 .158 .197 .000 .000 .000 .000 .000 .000

res .393 .342 .365 .134 .048 .070 .000 .000 .000 .000 .000 .000

lin .463 .340 .392 .131 .037 .058 .000 .000 .000 .000 .000 .000

jcn .532 .424 .472 .343 .202 .254 .000 .000 .000 .000 .000 .000

lesk .520 .519 .520 .305 .301 .303 .573 .568 .570 .515 .503 .509

vector .521 .520 .521 .309 .308 .308 .577 .577 .577 .412 .409 .411

random .268 .268 .268 .173 .173 .173 .357 .357 .357 .269 .269 .269

sense1 .634 .634 .634 .422 .422 .422 .661 .661 .661 .696 .696 .696

Table 111: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .351 .314 .332 .099 .056 .071 .000 .000 .000 .000 .000 .000

lch .351 .314 .332 .099 .056 .071 .000 .000 .000 .000 .000 .000

wup .347 .311 .328 .074 .042 .054 .000 .000 .000 .000 .000 .000

res .284 .247 .264 .061 .021 .031 .000 .000 .000 .000 .000 .000

lin .284 .221 .249 .037 .010 .016 .000 .000 .000 .000 .000 .000

jcn .275 .224 .247 .102 .056 .072 .000 .000 .000 .000 .000 .000

lesk .359 .358 .358 .176 .175 .175 .316 .316 .316 .283 .283 .283

vector .395 .395 .395 .186 .185 .186 .298 .298 .298 .302 .302 .302

random .221 .221 .221 .161 .161 .161 .211 .211 .211 .189 .189 .189

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 112: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

157

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .531 .491 .510 .365 .224 .278 1.00 .194 .325 1.00 .372 .542

lch .530 .490 .509 .365 .224 .278 1.00 .194 .325 1.00 .372 .542

wup .514 .476 .494 .298 .183 .227 1.00 .194 .325 1.00 .372 .542

res .548 .495 .520 .186 .069 .100 1.00 .194 .325 1.00 .372 .542

lin .615 .490 .546 .204 .061 .094 1.00 .194 .325 1.00 .372 .542

jcn .664 .560 .607 .376 .226 .282 1.00 .194 .325 1.00 .372 .542

lesk .631 .630 .631 .331 .328 .330 .657 .652 .655 .692 .682 .687

vector .630 .629 .629 .329 .328 .329 .659 .659 .659 .634 .632 .633

random .434 .434 .434 .208 .208 .208 .475 .475 .475 .563 .563 .563

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 113: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .538 .538 .538 .361 .361 .361 .727 .727 .727 .809 .809 .809

lch .538 .538 .538 .361 .361 .361 .727 .727 .727 .809 .809 .809

wup .524 .524 .524 .320 .320 .320 .727 .727 .727 .809 .809 .809

res .556 .556 .556 .330 .330 .330 .727 .727 .727 .809 .809 .809

lin .632 .632 .632 .361 .361 .361 .727 .727 .727 .809 .809 .809

jcn .659 .659 .659 .369 .369 .369 .727 .727 .727 .809 .809 .809

lesk .631 .631 .631 .334 .334 .334 .659 .659 .659 .697 .697 .697

vector .630 .630 .630 .330 .330 .330 .659 .659 .659 .635 .635 .635

random .432 .432 .432 .218 .218 .218 .492 .492 .492 .567 .567 .567

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 114: SENSEVAL -2 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

158

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .366 .351 .358 .291 .249 .268 .000 .000 .000 .000 .000 .000

lch .363 .349 .356 .291 .249 .268 .000 .000 .000 .000 .000 .000

wup .356 .342 .348 .237 .204 .219 .000 .000 .000 .000 .000 .000

res .359 .338 .348 .143 .087 .109 .000 .000 .000 .000 .000 .000

lin .455 .383 .416 .161 .085 .111 .000 .000 .000 .000 .000 .000

jcn .549 .485 .515 .315 .268 .290 .000 .000 .000 .000 .000 .000

lesk .537 .536 .537 .282 .281 .282 .584 .583 .583 .458 .450 .454

vector .547 .546 .547 .342 .341 .342 .595 .595 .595 .406 .404 .405

random .239 .239 .239 .175 .175 .175 .336 .336 .336 .310 .310 .310

sense1 .634 .634 .634 .422 .422 .422 .661 .661 .661 .696 .696 .696

Table 115: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .340 .324 .332 .092 .077 .084 .000 .000 .000 .000 .000 .000

lch .344 .328 .336 .092 .077 .084 .000 .000 .000 .000 .000 .000

wup .323 .308 .315 .079 .066 .072 .000 .000 .000 .000 .000 .000

res .245 .231 .238 .084 .052 .065 .000 .000 .000 .000 .000 .000

lin .273 .237 .254 .067 .038 .049 .000 .000 .000 .000 .000 .000

jcn .282 .251 .265 .092 .077 .084 .000 .000 .000 .000 .000 .000

lesk .388 .388 .388 .158 .157 .158 .342 .342 .342 .245 .245 .245

vector .398 .398 .398 .204 .203 .203 .307 .307 .307 .321 .321 .321

random .211 .211 .211 .136 .136 .136 .263 .263 .263 .302 .302 .302

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 116: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

159

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .516 .501 .508 .311 .267 .287 1.00 .194 .325 1.00 .372 .542

lch .515 .500 .507 .313 .269 .289 1.00 .194 .325 1.00 .372 .542

wup .508 .494 .501 .258 .222 .239 1.00 .194 .325 1.00 .372 .542

res .511 .489 .500 .177 .108 .134 1.00 .194 .325 1.00 .372 .542

lin .595 .523 .557 .202 .108 .141 1.00 .194 .325 1.00 .372 .542

jcn .663 .604 .632 .338 .289 .311 1.00 .194 .325 1.00 .372 .542

lesk .644 .643 .644 .312 .310 .311 .666 .664 .665 .661 .653 .657

vector .649 .648 .648 .359 .358 .358 .674 .674 .674 .634 .632 .633

random .431 .431 .431 .208 .208 .208 .499 .499 .499 .549 .549 .549

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 117: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

A.3.3 SENSEVAL -3 Tables

160

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .518 .518 .518 .316 .316 .316 .727 .727 .727 .809 .809 .809

lch .516 .516 .516 .318 .318 .318 .727 .727 .727 .809 .809 .809

wup .509 .509 .509 .271 .271 .271 .727 .727 .727 .809 .809 .809

res .517 .517 .517 .287 .287 .287 .727 .727 .727 .809 .809 .809

lin .608 .608 .608 .334 .334 .334 .727 .727 .727 .809 .809 .809

jcn .661 .661 .661 .338 .338 .338 .727 .727 .727 .809 .809 .809

lesk .644 .644 .644 .314 .314 .314 .667 .667 .667 .664 .664 .664

vector .649 .649 .649 .360 .360 .360 .674 .674 .674 .635 .635 .635

random .419 .419 .419 .250 .250 .250 .439 .439 .439 .585 .585 .585

sense1 .717 .717 .717 .438 .438 .438 .727 .727 .727 .809 .809 .809

Table 118: SENSEVAL -2 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

161

measure P R F Att(%) Time

path .394 .155 .222 39.27 00:03:10

lch .394 .155 .222 39.27 00:05:25

wup .365 .143 .206 39.27 00:04:41

res .301 .097 .147 32.22 00:03:18

lin .388 .114 .177 29.50 00:03:53

jcn .481 .184 .266 38.22 00:04:29

lesk .421 .401 .411 95.30 00:06:38

vector .405 .401 .403 98.89 00:08:26

random .205 .205 .205 100.00 00:00:09

sense1 .602 .602 .602 100.00 00:00:09

Table 119: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

162

measure P R F Att(%) Time

path .394 .155 .222 39.27 00:03:10

lch .394 .155 .222 39.27 00:05:25

wup .365 .143 .206 39.27 00:04:41

res .301 .097 .147 32.22 00:03:18

lin .388 .114 .177 29.50 00:03:53

jcn .481 .184 .266 38.22 00:04:29

lesk .421 .401 .411 95.30 00:06:38

vector .405 .401 .403 98.89 00:08:26

random .205 .205 .205 100.00 00:00:09

sense1 .602 .602 .602 100.00 00:00:09

Table 120: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .165 .060 .088 36.45 00:01:08

lch .165 .060 .088 36.45 00:01:46

wup .190 .069 .102 36.45 00:01:37

res .129 .038 .058 29.22 00:01:08

lin .197 .053 .083 26.81 00:01:25

jcn .174 .062 .091 35.54 00:01:26

lesk .220 .212 .216 96.54 00:04:24

vector .210 .208 .209 99.10 00:07:06

random .184 .184 .184 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:09

Table 121: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’.

163

measure P R F Att(%) Time

path .571 .275 .371 48.12 00:03:47

lch .572 .275 .372 48.12 00:04:54

wup .558 .268 .362 48.12 00:04:38

res .547 .230 .324 41.97 00:03:45

lin .619 .246 .352 39.70 00:04:12

jcn .642 .305 .413 47.44 00:04:32

lesk .510 .489 .499 95.97 00:06:33

vector .495 .490 .492 99.02 00:08:17

random .331 .331 .331 100.00 00:00:10

sense1 .657 .657 .657 100.00 00:00:10

Table 122: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .577 .577 .577 100.00 00:01:20

lch .577 .577 .577 100.00 00:01:58

wup .568 .568 .568 100.00 00:01:48

res .568 .568 .568 100.00 00:01:19

lin .598 .598 .598 100.00 00:01:37

jcn .609 .609 .609 100.00 00:01:39

lesk .518 .518 .518 100.00 00:04:31

vector .497 .497 .497 100.00 00:07:11

random .321 .321 .321 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 123: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

164

measure P R F Att(%) Time

path .377 .196 .258 51.95 00:01:57

lch .380 .197 .260 51.95 00:02:50

wup .340 .177 .233 51.95 00:03:11

res .295 .127 .177 42.98 00:02:00

lin .362 .143 .205 39.52 00:02:12

jcn .445 .224 .299 5.40 00:02:13

lesk .431 .417 .424 96.85 00:07:06

vector .412 .407 .409 98.89 00:08:23

random .206 .206 .206 100.00 00:00:08

sense1 .602 .602 .602 100.00 00:00:08

Table 124: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .225 .117 .154 52.26 00:01:59

lch .225 .117 .154 52.26 00:02:40

wup .225 .117 .154 52.26 00:02:58

res .168 .072 .101 43.07 00:02:00

lin .208 .081 .117 39.16 00:02:10

jcn .193 .098 .130 5.60 00:02:14

lesk .221 .215 .218 97.59 00:06:59

vector .225 .223 .224 99.10 00:08:06

random .173 .173 .173 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:09

Table 125: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’.

165

measure P R F Att(%) Time

path .532 .314 .395 59.11 00:04:30

lch .535 .316 .398 59.11 00:05:14

wup .507 .299 .376 59.11 00:05:24

res .503 .257 .340 51.16 00:04:36

lin .561 .270 .364 48.17 00:04:32

jcn .589 .342 .433 58.03 00:04:54

lesk .517 .503 .510 97.32 00:08:17

vector .500 .495 .498 99.02 00:09:11

random .334 .334 .334 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 126: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .559 .559 .559 100.00 00:01:55

lch .560 .560 .560 100.00 00:02:42

wup .543 .543 .543 100.00 00:02:59

res .549 .549 .549 100.00 00:02:00

lin .579 .579 .579 100.00 00:02:13

jcn .593 .593 .593 100.00 00:02:18

lesk .521 .521 .521 100.00 00:07:03

vector .502 .502 .502 100.00 00:08:05

random .334 .334 .334 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 127: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

166

measure P R F Att(%) Time

path .380 .234 .290 61.66 00:02:09

lch .381 .235 .291 61.66 00:03:30

wup .345 .213 .263 61.66 00:03:12

res .299 .154 .203 51.45 00:02:10

lin .368 .174 .237 47.43 00:02:49

jcn .450 .270 .338 6.11 00:02:44

lesk .432 .424 .428 98.14 00:07:19

vector .423 .419 .421 98.89 00:09:41

random .214 .214 .214 100.00 00:00:08

sense1 .602 .602 .602 100.00 00:00:09

Table 128: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .235 .143 .178 6.84 00:02:06

lch .238 .145 .180 6.84 00:03:27

wup .233 .142 .176 6.84 00:03:09

res .183 .093 .124 5.90 00:02:08

lin .241 .113 .154 46.84 00:02:45

jcn .203 .120 .151 59.49 00:02:44

lesk .205 .202 .203 98.64 00:07:14

vector .223 .221 .222 99.10 00:09:20

random .191 .191 .191 100.00 00:00:09

sense1 .000 .000 .000 100.00 00:00:09

Table 129: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’.

167

measure P R F Att(%) Time

path .514 .348 .415 67.73 00:04:50

lch .515 .349 .416 67.73 00:06:53

wup .487 .330 .393 67.73 00:06:15

res .480 .281 .354 58.49 00:04:59

lin .539 .295 .381 54.83 00:05:49

jcn .574 .380 .458 66.29 00:06:08

lesk .516 .507 .512 98.40 00:08:49

vector .510 .505 .507 99.02 00:10:51

random .337 .337 .337 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 130: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .539 .539 .539 100.00 00:02:09

lch .539 .539 .539 100.00 00:03:31

wup .521 .521 .521 100.00 00:03:12

res .528 .528 .528 100.00 00:02:13

lin .566 .566 .566 100.00 00:02:50

jcn .580 .580 .580 100.00 00:02:47

lesk .519 .519 .519 100.00 00:07:24

vector .512 .512 .512 100.00 00:09:47

random .318 .318 .318 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 131: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

168

measure P R F Att(%) Time

path .373 .247 .297 66.17 00:02:44

lch .374 .247 .298 66.17 00:04:10

wup .337 .223 .269 66.17 00:04:09

res .280 .156 .201 55.91 00:02:48

lin .355 .184 .243 51.95 00:03:21

jcn .453 .294 .356 64.81 00:03:23

lesk .425 .417 .421 98.33 00:09:30

vector .421 .416 .419 98.89 00:11:52

random .205 .205 .205 100.00 00:00:08

sense1 .602 .602 .602 100.00 00:00:08

Table 132: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .223 .148 .178 66.27 00:07:15

lch .223 .148 .178 66.27 00:09:03

wup .214 .142 .170 66.27 00:08:35

res .173 .098 .125 56.48 00:07:23

lin .235 .125 .163 53.16 00:07:28

jcn .206 .136 .164 65.66 00:08:07

lesk .209 .206 .208 98.64 00:11:33

vector .219 .217 .218 99.10 00:12:32

random .176 .176 .176 100.00 00:00:09

sense1 .000 .000 .000 100.00 00:00:09

Table 133: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’.

169

measure P R F Att(%) Time

path .501 .359 .419 71.66 00:05:58

lch .503 .360 .420 71.66 00:07:18

wup .473 .339 .395 71.66 00:07:08

res .456 .285 .351 62.47 00:06:05

lin .521 .307 .386 58.91 00:06:23

jcn .570 .402 .471 7.42 00:06:32

lesk .510 .502 .506 98.55 00:10:47

vector .507 .502 .504 99.02 00:12:19

random .337 .337 .337 100.00 00:00:09

sense1 .657 .657 .657 100.00 00:00:09

Table 134: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 1937.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .528 .528 .528 100.00 00:02:45

lch .528 .528 .528 100.00 00:04:08

wup .509 .509 .509 100.00 00:04:09

res .511 .511 .511 100.00 00:02:47

lin .557 .557 .557 100.00 00:03:25

jcn .580 .580 .580 100.00 00:03:23

lesk .512 .512 .512 100.00 00:09:26

vector .509 .509 .509 100.00 00:11:05

random .338 .338 .338 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 135: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

170

measure P R F Att(%) Time

path .360 .252 .297 7.07 00:02:56

lch .365 .255 .300 7.07 00:04:59

wup .319 .223 .263 7.07 00:04:18

res .267 .161 .201 6.11 00:03:00

lin .341 .190 .244 55.84 00:03:51

jcn .440 .304 .359 68.95 00:03:52

lesk .422 .415 .418 98.33 00:10:00

vector .425 .421 .423 98.89 00:13:39

random .207 .207 .207 100.00 00:00:10

sense1 .602 .602 .602 100.00 00:00:10

Table 136: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .208 .146 .172 7.18 00:07:36

lch .212 .149 .175 7.18 00:09:15

wup .208 .146 .172 7.18 00:08:46

res .161 .098 .122 6.69 00:07:37

lin .217 .123 .157 56.93 00:08:02

jcn .193 .134 .158 69.43 00:08:32

lesk .206 .203 .205 98.64 00:11:47

vector .220 .218 .219 99.10 00:16:43

random .173 .173 .173 100.00 00:00:09

sense1 .000 .000 .000 100.00 00:00:10

Table 137: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’.

171

measure P R F Att(%) Time

path .485 .364 .416 75.06 00:02:50

lch .488 .367 .419 75.06 00:04:43

wup .451 .339 .387 75.06 00:04:12

res .437 .288 .347 65.88 00:02:55

lin .502 .312 .385 62.05 00:03:42

jcn .555 .409 .471 73.83 00:03:41

lesk .508 .500 .504 98.55 00:09:59

vector .510 .505 .508 99.02 00:13:46

random .323 .323 .323 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 138: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .513 .513 .513 100.00 00:02:57

lch .516 .516 .516 100.00 00:04:50

wup .490 .490 .490 100.00 00:04:16

res .494 .494 .494 100.00 00:02:56

lin .543 .543 .543 100.00 00:03:45

jcn .566 .566 .566 100.00 00:03:46

lesk .510 .510 .510 100.00 00:10:05

vector .512 .512 .512 100.00 00:13:58

random .329 .329 .329 100.00 00:00:09

sense1 .657 .657 .657 100.00 00:00:09

Table 139: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

172

measure P R F Att(%) Time

path .352 .267 .304 75.82 00:04:34

lch .355 .269 .306 75.82 00:07:54

wup .304 .231 .262 75.82 00:07:03

res .275 .186 .222 67.59 00:04:36

lin .344 .220 .268 64.07 00:06:11

jcn .430 .323 .369 75.08 00:06:02

lesk .421 .414 .417 98.52 00:19:16

vector .440 .435 .438 98.89 00:55:48

random .208 .208 .208 100.00 00:00:09

sense1 .602 .602 .602 100.00 00:00:09

Table 140: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector, no forcepos.# tokens = 1,617.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .219 .167 .190 76.20 00:04:24

lch .221 .169 .191 76.20 00:07:44

wup .200 .152 .173 76.20 00:06:44

res .187 .125 .150 66.72 00:04:32

lin .225 .142 .174 62.80 00:06:00

jcn .202 .152 .174 75.30 00:05:58

lesk .214 .211 .212 98.64 00:18:53

vector .214 .212 .213 99.10 00:54:01

random .184 .184 .184 100.00 00:00:08

sense1 .000 .000 .000 100.00 00:00:08

Table 141: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vector, no forcepos.# tokens = 664. ‘Att’ is

‘Attempted’.

173

measure P R F Att(%) Time

path .475 .380 .422 8.02 00:07:13

lch .478 .383 .425 8.02 00:10:15

wup .438 .351 .389 8.02 00:09:17

res .428 .309 .359 72.28 00:07:20

lin .488 .337 .398 68.97 00:08:38

jcn .540 .428 .478 79.19 00:08:44

lesk .507 .500 .504 98.71 00:19:34

vector .525 .519 .522 99.02 00:55:29

random .343 .343 .343 100.00 00:00:08

sense1 .657 .657 .657 100.00 00:00:09

Table 142: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

measure P R F Att(%) Time

path .498 .498 .498 100.00 00:04:31

lch .500 .500 .500 100.00 00:07:52

wup .469 .469 .469 100.00 00:06:49

res .472 .472 .472 100.00 00:04:39

lin .519 .519 .519 100.00 00:06:06

jcn .551 .551 .551 100.00 00:05:58

lesk .509 .509 .509 100.00 00:19:22

vector .526 .526 .526 100.00 00:53:33

random .320 .320 .320 100.00 00:00:09

sense1 .657 .657 .657 100.00 00:00:09

Table 143: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector, no forcepos.# tokens = 1,937.

‘Att’ is ‘Attempted’.

174

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .367 .191 .251 .432 .175 .249 .000 .000 .000 .000 .000 .000

lch .367 .191 .251 .432 .175 .249 .000 .000 .000 .000 .000 .000

wup .358 .187 .246 .375 .152 .216 .000 .000 .000 .000 .000 .000

res .376 .185 .248 .147 .038 .061 .000 .000 .000 .000 .000 .000

lin .489 .219 .303 .184 .044 .072 .000 .000 .000 .000 .000 .000

jcn .548 .272 .364 .390 .158 .225 .000 .000 .000 .000 .000 .000

lesk .455 .442 .449 .366 .345 .355 .464 .433 .448 .000 .000 .000

vector .435 .434 .434 .354 .346 .350 .452 .448 .450 .000 .000 .000

random .235 .235 .235 .147 .147 .147 .270 .270 .270 .000 .000 .000

sense1 .660 .660 .660 .528 .528 .528 .627 .627 .627 .000 .000 .000

Table 144: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .195 .095 .127 .137 .052 .075 .000 .000 .000 .000 .000 .000

lch .195 .095 .127 .137 .052 .075 .000 .000 .000 .000 .000 .000

wup .229 .111 .150 .153 .058 .084 .000 .000 .000 .000 .000 .000

res .159 .074 .101 .086 .021 .034 .000 .000 .000 .000 .000 .000

lin .260 .111 .156 .108 .024 .040 .000 .000 .000 .000 .000 .000

jcn .241 .111 .152 .113 .043 .062 .000 .000 .000 .000 .000 .000

lesk .296 .292 .294 .158 .150 .154 .233 .223 .228 .000 .000 .000

vector .272 .272 .272 .143 .141 .142 .277 .277 .277 .000 .000 .000

random .189 .189 .189 .144 .144 .144 .309 .309 .309 .000 .000 .000

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 145: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

175

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .551 .334 .416 .492 .216 .300 1.00 .217 .357 1.00 1.00 1.00

lch .553 .335 .417 .492 .216 .300 1.00 .217 .357 1.00 1.00 1.00

wup .555 .336 .419 .448 .196 .273 1.00 .217 .357 1.00 1.00 1.00

res .573 .337 .425 .308 .090 .140 1.00 .217 .357 1.00 1.00 1.00

lin .665 .368 .473 .348 .096 .150 1.00 .217 .357 1.00 1.00 1.00

jcn .690 .407 .512 .470 .206 .286 1.00 .217 .357 1.00 1.00 1.00

lesk .562 .550 .556 .400 .377 .388 .587 .556 .571 1.00 1.00 1.00

vector .545 .544 .544 .388 .380 .384 .572 .568 .570 1.00 1.00 1.00

random .389 .389 .389 .196 .196 .196 .447 .447 .447 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 146: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .592 .592 .592 .494 .494 .494 .708 .708 .708 1.00 1.00 1.00

lch .592 .592 .592 .494 .494 .494 .708 .708 .708 1.00 1.00 1.00

wup .588 .588 .588 .474 .474 .474 .708 .708 .708 1.00 1.00 1.00

res .604 .604 .604 .453 .453 .453 .708 .708 .708 1.00 1.00 1.00

lin .658 .658 .658 .467 .467 .467 .708 .708 .708 1.00 1.00 1.00

jcn .671 .671 .671 .483 .483 .483 .708 .708 .708 1.00 1.00 1.00

lesk .569 .569 .569 .412 .412 .412 .596 .596 .596 1.00 1.00 1.00

vector .545 .545 .545 .394 .394 .394 .575 .575 .575 1.00 1.00 1.00

random .372 .372 .372 .206 .206 .206 .413 .413 .413 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 147: SENSEVAL -3 results with wntagged format, window=3, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

176

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .343 .235 .279 .425 .230 .298 .000 .000 .000 .000 .000 .000

lch .347 .237 .282 .425 .230 .298 .000 .000 .000 .000 .000 .000

wup .333 .228 .270 .351 .190 .247 .000 .000 .000 .000 .000 .000

res .365 .237 .288 .155 .055 .081 .000 .000 .000 .000 .000 .000

lin .448 .268 .336 .188 .061 .092 .000 .000 .000 .000 .000 .000

jcn .503 .327 .397 .369 .199 .259 .000 .000 .000 .000 .000 .000

lesk .466 .459 .463 .370 .354 .362 .485 .464 .475 .000 .000 .000

vector .447 .447 .447 .343 .335 .339 .484 .480 .482 .000 .000 .000

random .221 .221 .221 .161 .161 .161 .282 .282 .282 .000 .000 .000

sense1 .660 .660 .660 .528 .528 .528 .627 .627 .627 .000 .000 .000

Table 148: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .291 .206 .241 .160 .086 .112 .000 .000 .000 .000 .000 .000

lch .291 .206 .241 .160 .086 .112 .000 .000 .000 .000 .000 .000

wup .297 .210 .246 .154 .083 .108 .000 .000 .000 .000 .000 .000

res .217 .148 .176 .100 .037 .054 .000 .000 .000 .000 .000 .000

lin .285 .177 .218 .101 .034 .050 .000 .000 .000 .000 .000 .000

jcn .278 .185 .222 .115 .061 .080 .000 .000 .000 .000 .000 .000

lesk .285 .284 .285 .159 .153 .156 .264 .255 .259 .000 .000 .000

vector .292 .292 .292 .150 .147 .148 .309 .309 .309 .000 .000 .000

random .173 .173 .173 .122 .122 .122 .351 .351 .351 .000 .000 .000

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 149: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

177

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .513 .380 .437 .468 .266 .339 1.00 .217 .357 1.00 1.00 1.00

lch .519 .385 .442 .468 .266 .339 1.00 .217 .357 1.00 1.00 1.00

wup .507 .376 .431 .407 .231 .295 1.00 .217 .357 1.00 1.00 1.00

res .536 .383 .447 .279 .107 .155 1.00 .217 .357 1.00 1.00 1.00

lin .606 .408 .488 .314 .111 .164 1.00 .217 .357 1.00 1.00 1.00

jcn .634 .455 .530 .436 .248 .316 1.00 .217 .357 1.00 1.00 1.00

lesk .572 .564 .568 .401 .384 .392 .601 .581 .591 1.00 1.00 1.00

vector .555 .554 .555 .378 .370 .374 .597 .593 .595 1.00 1.00 1.00

random .382 .382 .382 .192 .192 .192 .494 .494 .494 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 150: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .555 .555 .555 .488 .488 .488 .708 .708 .708 1.00 1.00 1.00

lch .558 .558 .558 .488 .488 .488 .708 .708 .708 1.00 1.00 1.00

wup .550 .550 .550 .453 .453 .453 .708 .708 .708 1.00 1.00 1.00

res .579 .579 .579 .434 .434 .434 .708 .708 .708 1.00 1.00 1.00

lin .629 .629 .629 .453 .453 .453 .708 .708 .708 1.00 1.00 1.00

jcn .647 .647 .647 .467 .467 .467 .708 .708 .708 1.00 1.00 1.00

lesk .576 .576 .576 .409 .409 .409 .606 .606 .606 1.00 1.00 1.00

vector .555 .555 .555 .384 .384 .384 .599 .599 .599 1.00 1.00 1.00

random .388 .388 .388 .193 .193 .193 .475 .475 .475 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 151: SENSEVAL -3 results with wntagged format, window=4, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

178

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .347 .275 .307 .424 .280 .337 .000 .000 .000 .000 .000 .000

lch .347 .275 .307 .426 .282 .339 .000 .000 .000 .000 .000 .000

wup .326 .258 .288 .370 .245 .295 .000 .000 .000 .000 .000 .000

res .375 .285 .324 .158 .070 .097 .000 .000 .000 .000 .000 .000

lin .458 .322 .378 .199 .081 .115 .000 .000 .000 .000 .000 .000

jcn .507 .386 .439 .377 .248 .299 .000 .000 .000 .000 .000 .000

lesk .464 .461 .462 .369 .358 .363 .502 .488 .495 .000 .000 .000

vector .447 .447 .447 .373 .364 .369 .484 .480 .482 .000 .000 .000

random .229 .229 .229 .153 .153 .153 .329 .329 .329 .000 .000 .000

sense1 .660 .660 .660 .528 .528 .528 .627 .627 .627 .000 .000 .000

Table 152: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .311 .247 .275 .166 .107 .130 .000 .000 .000 .000 .000 .000

lch .311 .247 .275 .171 .110 .134 .000 .000 .000 .000 .000 .000

wup .295 .235 .261 .175 .113 .138 .000 .000 .000 .000 .000 .000

res .245 .189 .213 .107 .049 .067 .000 .000 .000 .000 .000 .000

lin .331 .239 .278 .125 .052 .073 .000 .000 .000 .000 .000 .000

jcn .293 .222 .253 .123 .080 .097 .000 .000 .000 .000 .000 .000

lesk .255 .255 .255 .144 .141 .142 .283 .277 .280 .000 .000 .000

vector .272 .272 .272 .171 .168 .170 .277 .277 .277 .000 .000 .000

random .230 .230 .230 .147 .147 .147 .245 .245 .245 .000 .000 .000

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 153: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

179

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .495 .415 .452 .460 .313 .373 1.00 .217 .357 1.00 1.00 1.00

lch .497 .416 .453 .462 .314 .374 1.00 .217 .357 1.00 1.00 1.00

wup .478 .400 .436 .415 .282 .336 1.00 .217 .357 1.00 1.00 1.00

res .522 .423 .467 .263 .122 .167 1.00 .217 .357 1.00 1.00 1.00

lin .589 .447 .508 .307 .132 .185 1.00 .217 .357 1.00 1.00 1.00

jcn .620 .501 .554 .435 .295 .352 1.00 .217 .357 1.00 1.00 1.00

lesk .569 .566 .567 .397 .387 .392 .613 .599 .606 1.00 1.00 1.00

vector .555 .554 .555 .405 .396 .401 .597 .593 .595 1.00 1.00 1.00

random .396 .396 .396 .204 .204 .204 .447 .447 .447 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 154: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .525 .525 .525 .473 .473 .473 .708 .708 .708 1.00 1.00 1.00

lch .525 .525 .525 .474 .474 .474 .708 .708 .708 1.00 1.00 1.00

wup .511 .511 .511 .442 .442 .442 .708 .708 .708 1.00 1.00 1.00

res .554 .554 .554 .408 .408 .408 .708 .708 .708 1.00 1.00 1.00

lin .615 .615 .615 .434 .434 .434 .708 .708 .708 1.00 1.00 1.00

jcn .630 .630 .630 .453 .453 .453 .708 .708 .708 1.00 1.00 1.00

lesk .571 .571 .571 .403 .403 .403 .615 .615 .615 1.00 1.00 1.00

vector .555 .555 .555 .410 .410 .410 .599 .599 .599 1.00 1.00 1.00

random .362 .362 .362 .203 .203 .203 .429 .429 .429 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 155: SENSEVAL -3 results with wntagged format, window=5, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

180

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .331 .277 .301 .426 .309 .358 .000 .000 .000 .000 .000 .000

lch .329 .275 .300 .430 .312 .362 .000 .000 .000 .000 .000 .000

wup .317 .265 .289 .363 .263 .305 .000 .000 .000 .000 .000 .000

res .357 .287 .318 .147 .075 .099 .000 .000 .000 .000 .000 .000

lin .445 .334 .382 .197 .092 .125 .000 .000 .000 .000 .000 .000

jcn .503 .407 .450 .392 .283 .329 .000 .000 .000 .000 .000 .000

lesk .467 .465 .466 .348 .338 .343 .500 .488 .494 .000 .000 .000

vector .451 .451 .451 .370 .361 .366 .464 .460 .462 .000 .000 .000

random .226 .226 .226 .133 .133 .133 .329 .329 .329 .000 .000 .000

sense1 .660 .660 .660 .528 .528 .528 .627 .627 .627 .000 .000 .000

Table 156: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .283 .239 .259 .170 .122 .142 .000 .000 .000 .000 .000 .000

lch .278 .235 .254 .174 .125 .146 .000 .000 .000 .000 .000 .000

wup .259 .218 .237 .174 .125 .146 .000 .000 .000 .000 .000 .000

res .225 .185 .203 .114 .061 .080 .000 .000 .000 .000 .000 .000

lin .323 .255 .285 .130 .064 .086 .000 .000 .000 .000 .000 .000

jcn .289 .239 .261 .136 .098 .114 .000 .000 .000 .000 .000 .000

lesk .263 .263 .263 .144 .141 .142 .293 .287 .290 .000 .000 .000

vector .284 .284 .284 .156 .153 .154 .266 .266 .266 .000 .000 .000

random .185 .185 .185 .150 .150 .150 .245 .245 .245 .000 .000 .000

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 157: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

181

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .477 .415 .444 .461 .344 .394 1.00 .217 .357 1.00 1.00 1.00

lch .477 .415 .444 .465 .346 .397 1.00 .217 .357 1.00 1.00 1.00

wup .462 .403 .430 .409 .305 .349 1.00 .217 .357 1.00 1.00 1.00

res .503 .424 .460 .248 .132 .172 1.00 .217 .357 1.00 1.00 1.00

lin .575 .459 .511 .300 .147 .198 1.00 .217 .357 1.00 1.00 1.00

jcn .612 .518 .561 .446 .331 .380 1.00 .217 .357 1.00 1.00 1.00

lesk .571 .569 .570 .379 .369 .374 .611 .599 .605 1.00 1.00 1.00

vector .557 .557 .557 .401 .392 .397 .581 .578 .579 1.00 1.00 1.00

random .402 .402 .402 .184 .184 .184 .478 .478 .478 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 158: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .505 .505 .505 .467 .467 .467 .708 .708 .708 1.00 1.00 1.00

lch .503 .503 .503 .470 .470 .470 .708 .708 .708 1.00 1.00 1.00

wup .495 .495 .495 .428 .428 .428 .708 .708 .708 1.00 1.00 1.00

res .535 .535 .535 .385 .385 .385 .708 .708 .708 1.00 1.00 1.00

lin .605 .605 .605 .423 .423 .423 .708 .708 .708 1.00 1.00 1.00

jcn .628 .628 .628 .458 .458 .458 .708 .708 .708 1.00 1.00 1.00

lesk .572 .572 .572 .385 .385 .385 .612 .612 .612 1.00 1.00 1.00

vector .558 .558 .558 .406 .406 .406 .584 .584 .584 1.00 1.00 1.00

random .377 .377 .377 .218 .218 .218 .472 .472 .472 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 159: SENSEVAL -3 results with wntagged format, window=6, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

182

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .313 .275 .293 .419 .325 .366 .000 .000 .000 .000 .000 .000

lch .317 .279 .297 .423 .328 .369 .000 .000 .000 .000 .000 .000

wup .303 .267 .284 .338 .262 .295 .000 .000 .000 .000 .000 .000

res .352 .296 .322 .132 .075 .096 .000 .000 .000 .000 .000 .000

lin .439 .348 .388 .178 .092 .121 .000 .000 .000 .000 .000 .000

jcn .499 .428 .461 .369 .285 .322 .000 .000 .000 .000 .000 .000

lesk .472 .471 .471 .340 .331 .335 .488 .476 .482 .000 .000 .000

vector .460 .459 .460 .378 .369 .373 .448 .444 .446 .000 .000 .000

random .247 .247 .247 .142 .142 .142 .262 .262 .262 .000 .000 .000

sense1 .660 .660 .660 .528 .528 .528 .627 .627 .627 .000 .000 .000

Table 160: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .263 .235 .248 .161 .122 .139 .000 .000 .000 .000 .000 .000

lch .263 .235 .248 .169 .128 .146 .000 .000 .000 .000 .000 .000

wup .263 .235 .248 .161 .122 .139 .000 .000 .000 .000 .000 .000

res .214 .185 .199 .104 .061 .077 .000 .000 .000 .000 .000 .000

lin .305 .251 .275 .118 .064 .083 .000 .000 .000 .000 .000 .000

jcn .278 .243 .259 .120 .092 .104 .000 .000 .000 .000 .000 .000

lesk .280 .280 .280 .131 .128 .130 .272 .266 .269 .000 .000 .000

vector .296 .296 .296 .153 .150 .151 .255 .255 .255 .000 .000 .000

random .165 .165 .165 .153 .153 .153 .266 .266 .266 .000 .000 .000

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 161: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

183

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .458 .415 .435 .449 .356 .397 1.00 .217 .357 1.00 1.00 1.00

lch .461 .419 .439 .453 .359 .400 1.00 .217 .357 1.00 1.00 1.00

wup .446 .405 .425 .379 .300 .335 1.00 .217 .357 1.00 1.00 1.00

res .492 .430 .459 .225 .132 .167 1.00 .217 .357 1.00 1.00 1.00

lin .567 .471 .514 .275 .147 .192 1.00 .217 .357 1.00 1.00 1.00

jcn .607 .536 .569 .418 .330 .369 1.00 .217 .357 1.00 1.00 1.00

lesk .575 .574 .575 .371 .362 .366 .601 .590 .596 1.00 1.00 1.00

vector .564 .563 .564 .408 .399 .404 .569 .565 .567 1.00 1.00 1.00

random .387 .387 .387 .174 .174 .174 .457 .457 .457 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 162: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .482 .482 .482 .456 .456 .456 .708 .708 .708 1.00 1.00 1.00

lch .485 .485 .485 .459 .459 .459 .708 .708 .708 1.00 1.00 1.00

wup .475 .475 .475 .402 .402 .402 .708 .708 .708 1.00 1.00 1.00

res .521 .521 .521 .356 .356 .356 .708 .708 .708 1.00 1.00 1.00

lin .592 .592 .592 .401 .401 .401 .708 .708 .708 1.00 1.00 1.00

jcn .618 .618 .618 .433 .433 .433 .708 .708 .708 1.00 1.00 1.00

lesk .577 .577 .577 .378 .378 .378 .602 .602 .602 1.00 1.00 1.00

vector .564 .564 .564 .413 .413 .413 .571 .571 .571 1.00 1.00 1.00

random .378 .378 .378 .199 .199 .199 .463 .463 .463 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 163: SENSEVAL -3 results with wntagged format, window=7, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

184

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .321 .296 .308 .389 .338 .362 .000 .000 .000 .000 .000 .000

lch .318 .294 .305 .398 .346 .370 .000 .000 .000 .000 .000 .000

wup .302 .279 .291 .306 .266 .285 .000 .000 .000 .000 .000 .000

res .369 .337 .352 .138 .093 .111 .000 .000 .000 .000 .000 .000

lin .446 .393 .418 .186 .116 .143 .000 .000 .000 .000 .000 .000

jcn .492 .448 .469 .359 .311 .333 .000 .000 .000 .000 .000 .000

lesk .482 .480 .481 .328 .319 .323 .484 .476 .480 .000 .000 .000

vector .475 .475 .475 .392 .383 .387 .464 .460 .462 .000 .000 .000

random .226 .226 .226 .147 .147 .147 .317 .317 .317 .000 .000 .000

sense1 .660 .660 .660 .528 .528 .528 .627 .627 .627 .000 .000 .000

Table 164: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –score poly with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .305 .280 .292 .152 .131 .141 .000 .000 .000 .000 .000 .000

lch .305 .280 .292 .155 .135 .144 .000 .000 .000 .000 .000 .000

wup .274 .251 .262 .141 .122 .131 .000 .000 .000 .000 .000 .000

res .260 .235 .247 .116 .080 .094 .000 .000 .000 .000 .000 .000

lin .319 .276 .296 .130 .083 .101 .000 .000 .000 .000 .000 .000

jcn .303 .272 .286 .124 .107 .115 .000 .000 .000 .000 .000 .000

lesk .280 .280 .280 .134 .131 .133 .315 .309 .312 .000 .000 .000

vector .288 .288 .288 .156 .153 .154 .223 .223 .223 .000 .000 .000

random .173 .173 .173 .141 .141 .141 .362 .362 .362 .000 .000 .000

sense1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Table 165: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –s1nc with measure config for lesk and vectorand no forcepos.

185

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .460 .434 .447 .426 .376 .399 1.00 .217 .357 1.00 1.00 1.00

lch .460 .434 .447 .434 .382 .407 1.00 .217 .357 1.00 1.00 1.00

wup .447 .422 .434 .353 .312 .331 1.00 .217 .357 1.00 1.00 1.00

res .499 .465 .481 .215 .147 .175 1.00 .217 .357 1.00 1.00 1.00

lin .563 .508 .534 .265 .168 .206 1.00 .217 .357 1.00 1.00 1.00

jcn .598 .554 .575 .407 .357 .380 1.00 .217 .357 1.00 1.00 1.00

lesk .583 .581 .582 .361 .352 .357 .597 .590 .594 1.00 1.00 1.00

vector .576 .576 .576 .425 .416 .421 .581 .578 .579 1.00 1.00 1.00

random .395 .395 .395 .213 .213 .213 .469 .469 .469 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 166: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –usemono with measure config for lesk and vector and no forcepos.

Nouns Verbs Adjectives Adverbs

measure P R F P R F P R F P R F

path .471 .471 .471 .430 .430 .430 .708 .708 .708 1.00 1.00 1.00

lch .468 .468 .468 .437 .437 .437 .708 .708 .708 1.00 1.00 1.00

wup .457 .457 .457 .367 .367 .367 .708 .708 .708 1.00 1.00 1.00

res .507 .507 .507 .316 .316 .316 .708 .708 .708 1.00 1.00 1.00

lin .568 .568 .568 .366 .366 .366 .708 .708 .708 1.00 1.00 1.00

jcn .598 .598 .598 .414 .414 .414 .708 .708 .708 1.00 1.00 1.00

lesk .584 .584 .584 .369 .369 .369 .596 .596 .596 1.00 1.00 1.00

vector .577 .577 .577 .430 .430 .430 .584 .584 .584 1.00 1.00 1.00

random .374 .374 .374 .195 .195 .195 .422 .422 .422 1.00 1.00 1.00

sense1 .725 .725 .725 .545 .545 .545 .708 .708 .708 1.00 1.00 1.00

Table 167: SENSEVAL -3 results with wntagged format, window=15, contextScore=0.0,

pairScore=0.0, –backoff with measure config for lesk and vector and no forcepos.

186

References

[1] Satanjeev Banerjee and Ted Pedersen. An adapted Lesk algorithm for word sense disambiguation using

WordNet. InProceedings of the Third International Conference on Intelligent Text Processing and

Computational Linguistics, pages 136–145, Mexico City, February 2002.

[2] Eric Brill. Transformation-based error-driven learning and natural language processing: A case study

in part-of-speech tagging.Computational Linguistics, 21(4):543–565, 1995.

[3] A. Budanitsky and G. Hirst. Semantic distance in WordNet: An experimental, application-oriented

evaluation of five measures. InWorkshop on WordNet and Other Lexical Resources, Second meeting of

the North American Chapter of the Association for Computational Linguistics, pages 29–34, Pittsburgh,

June 2001.

[4] Robert Burchfield. Frequency analysis of english usage:Lexicon and grammar. by w. nelson francis

and henry kucera with the assistance of andrew w. mackie. boston: Houghton mifflin. 1982. x + 561.

Journal of English Linguistics, 18(1):64–70, April 1985.

[5] Davide Buscaldi and Paolo Rosso. Upv-wsd : Combining different wsd methods by means of fuzzy

borda voting. InProceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-

2007), pages 434–437, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

[6] C. Fellbaum, editor.WordNet: An electronic lexical database. MIT Press, 1998.

[7] William Gale, Kenneth Ward Church, and David Yarowsky. Estimating upper and lower bounds on the

performance of word-sense disambiguation programs. InProceedings of the 30th annual meeting on

Association for Computational Linguistics, pages 249–256, Morristown, NJ, USA, 1992. Association

for Computational Linguistics.

[8] Weiwei Guo and Mona Diab. Improvements to monolingual english word sense disambiguation. In

Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions

(SEW-2009), pages 64–69, Boulder, Colorado, June 2009. Association for Computational Linguistics.

[9] G. Hirst and D. St-Onge. Lexical chains as representations of context for the detection and correction of

malapropisms. In C. Fellbaum, editor,WordNet: An electronic lexical database, pages 305–332. MIT

Press, 1998.

[10] Véronique Hoste, Walter Daelemans, Iris Hendrickx, and Antal van den Bosch. Evaluating the results

of a memory-based word-expert approach to unrestricted word sense disambiguation. InProceedings

of the ACL-02 workshop on Word sense disambiguation, pages 95–101, Morristown, NJ, USA, 2002.

Association for Computational Linguistics.

187

[11] J. Jiang and D. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. InPro-

ceedings on International Conference on Research in Computational Linguistics, pages 19–33, Taiwan,

1997.

[12] A. Kilgarriff. What is word sense disambiguation good for? InProceedings of the NLP Pacific Rim

Symposium, Phuket, Tailand, 1997.

[13] C. Leacock, M. Chodorow, and G. Miller. Using corpus statistics and WordNet relations for sense

identification.Computational Linguistics, 24(1):147–165, March 1998.

[14] M. E. Lesk. Automatic sense disambiguation using machine readable dictionaries: how to tell a pine

code from an ice cream cone. InProceedings of the 5th annual international conference on Systems

documentation, pages 24–26. ACM Press, 1986.

[15] Dekang Lin. Automatic retrieval and clustering of similar words. InCOLING-ACL, pages 768–774,

1998.

[16] O. Madani and M. Connor. Large-scale many-class learning. InProceedings of the SIAM International

Conference on Data Mining, SDM-08, pages 24–26.

[17] C. Manning and H. Schütze.Foundations of Statistical Natural Language Processing. The MIT Press,

Cambridge, MA, 1999.

[18] Diana McCarthy, Rob Koeling, Julie Weeds, and John Carroll. Unsupervised acquisition of predominant

word senses.Computational Linguistics, 33(4):553–590, 2007.

[19] J. Michelizzi. Semantic relatedness applied to all words sense disambiguation. Master’s thesis, Univer-

sity of Minnesota, Duluth, July 2005.

[20] Rada Mihalcea and Ehsanul Faruque. Senselearner: Minimally supervised word sense disambiguation

for all words in open text. In Rada Mihalcea and Phil Edmonds,editors,Senseval-3: Third International

Workshop on the Evaluation of Systems for the Semantic Analysis of Text, pages 155–158, Barcelona,

Spain, July 2004. Association for Computational Linguistics.

[21] Rada F. Mihalcea. Bootstrapping large sense tagged corpora. InIn Proceedings of the 3rd International

Conference on Language Resources and Evaluations (LREC), Las Palmas, 2002.

[22] George A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39–41, 1995.

[23] George A. Miller, Martin Chodorow, Shari Landes, Claudia Leacock, and Robert G. Thomas. Using

a semantic concordance for sense identification. InHLT ’94: Proceedings of the workshop on Human

Language Technology, pages 240–243, Morristown, NJ, USA, 1994. Association forComputational

Linguistics.

188

[24] George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker. A semantic concordance. In

HLT ’93: Proceedings of the workshop on Human Language Technology, pages 303–308, Morristown,

NJ, USA, 1993. Association for Computational Linguistics.

[25] Roberto Navigli. Semi-automatic extension of large-scale linguistic knowledge bases. In Ingrid Russell

and Zdravko Markov, editors,FLAIRS Conference, pages 548–553. AAAI Press, 2005.

[26] Roberto Navigli and Mirella Lapata. Graph connectivity measures for unsupervised word sense disam-

biguation. InProceedings of the 20th International Joint Conference on Artificial Intelligence, pages

1683–1688, Hyderabad, India, 2007.

[27] Yann Ollivier and Pierre Senellart. Finding related pages using green measures: An illustration with

wikipedia. InAssociation for the Advancement of Artificial IntelligenceConference on Artificial Intel-

ligence (AAAI 2007), 2007.

[28] Trang Dang H. Palmer M., Tou Ng H.Word Sense Disambiguation: Algorithms and Applications,

volume 33 ofText, Speech and Language Technology, chapter Evaluation of WSD systems., pages

75–106. Springer, New York, July 2006.

[29] S. Patwardhan. Incorporating Dictionary and Corpus Information into a Context Vector Measure of

Semantic Relatedness. Master’s thesis, University of Minnesota, Duluth, August 2003.

[30] S. Patwardhan, S. Banerjee, and T. Pedersen. Using Measures of Semantic Relatedness for Word Sense

Disambiguation. InProceedings of the Fourth International Conference on Intelligent Text Processing

and Computational Linguistics, pages 241–257, Mexico City, Mexico, February 2003.

[31] T. Pedersen, S. Banerjee, and S. Patwardhan. Maximizing Semantic Relatedness to Perform Word Sense

Disambiguation. Research Report UMSI 2005/25, Universityof Minnesota Supercomputing Institute,

March 2005.

[32] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet::similarity - measuring the relat-

edness of concepts. InProceedings of the Nineteenth National Conference on Artificial Intelligence,

pages 1024–1025, San Jose, 2004.

[33] Judita Preiss. A detailed comparison of wsd systems: ananalysis of the system answers for the SEN-

SEVAL -2 english all words task.Natural Language Engineering, 12(3):209–228, 2006.

[34] Judita Preiss, Jon Dehdari, Josh King, and Dennis Mehay. Refining the most frequent sense baseline.

In Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions

(SEW-2009), pages 10–18, Boulder, Colorado, June 2009. Association for Computational Linguistics.

189

[35] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and application of a metric

on semantic nets.IEEE Transactions on Systems, Man and Cybernetics, 19(1):17–30, January/February

1989.

[36] P. Resnik. WordNet and class–based probabilities. In C. Fellbaum, editor,WordNet: An electronic

lexical database, pages 239–263. MIT Press, 1998.

[37] Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy. InProceedings

of the 14th International Joint Conference on Artificial Intelligence, pages 448–453, Montreal, August

1995.

[38] Philip Resnik. Semantic similarity in a taxonomy: An information-based measure and its application

to problems of ambiguity in natural language.Journal of Artificial Intelligence Research, 11:95–130,

1999.

[39] Hansen A. Schwartz and Fernando Gomez. Acquiring knowledge from the web to be used as selectors

for noun sense disambiguation. InCoNLL 2008: Proceedings of the Twelfth Conference on Computa-

tional Natural Language Learning, pages 105–112, Manchester, England, August 2008. Coling 2008

Organizing Committee.

[40] Hansen A. Schwartz and Fernando Gomez. Using web selectors for the disambiguation of all words.

In Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions

(SEW-2009), pages 28–36, Boulder, Colorado, June 2009. Association for Computational Linguistics.

[41] Ravi Sinha and Rada Mihalcea. Unsupervised graph-basedword sense disambiguation using measures

of word semantic similarity. InICSC ’07: Proceedings of the International Conference on Semantic

Computing, pages 363–369, Washington, DC, USA, 2007. IEEE Computer Society.

[42] D. D. Sleator and D. Temperley. Parsing english with a link grammar. InThird International Workshop

on Parsing Technologies, 1993.

[43] Michael Sussna. Word sense disambiguation for free-text indexing using a massive semantic network.

In CIKM ’93: Proceedings of the second international conference on Information and knowledge man-

agement, pages 67–74, New York, NY, USA, 1993. ACM.

[44] Yorick Wilks, Dan Fass, Cheng ming Guo, James E. McDonald, Tony Plate, and Brian M. Slator.

Providing machine tractable dictionary tools.Machine Translation, 5(2):99–154, 1990.

[45] Z. Wu and M. Palmer. Verb semantics and lexical selection. In32nd Annual Meeting of the Association

for Computational Linguistics, pages 133–138, Las Cruces, New Mexico, 1994.

190

[46] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. InProceed-

ings of the 33rd annual meeting on Association for Computational Linguistics, pages 189–196, Morris-

town, NJ, USA, 1995. Association for Computational Linguistics.

[47] G. Zipf. The Psycho-Biology of Language. Houghton Mifflin, Boston, MA, 1935.

191

