Question 1. (12 marks) Consider the following family of ternary strings. Let \(S \) be the smallest set such that:

Basis: \(0 \in S \)

Induction Step: if \(x, y \in S \), then so are \(x0y, 1x2, 0x \).

a. (7 marks) Prove that if \(k \in \mathbb{N} \), there is no string in \(S \) with exactly \(5^k + 1 \) zeros. **(HINT:** first use structural induction to prove that every string in \(S \) has an odd number of zeros).

b. (5 marks) Prove with a similar approach that if \(k \in \mathbb{N} \), there is no string in \(S \) with exactly \(2^{k+1} \) digits.

Question 2. (14 marks) For each statement below, state whether it is true or false and justify your answer. No credit will be given without proper justification.

(a) \(n^5 + 2n^2 + 3n + 6 \in O(n^5) \)

(b) \(\log_5 n \in \Omega(\log_7 n^4) \)

(c) \(n^3 + 1000n^2 + 2000n \in O(n^2) \)

(d) \(2^{n+1} \in O(2^n) \)

(e) \(2^{2n} \in O(2^n) \)

(f) \(f(n) \in \Theta(n^2) \), where

\[
f(n) = \begin{cases}
1 & n = 1 \\
3f(\lceil \frac{n}{3} \rceil) + 2f(\lfloor \frac{n}{3} \rfloor) + 4n & n \geq 2
\end{cases}
\]

in the case that \(l = 1 \). What about when \(l = 2 \)?

Question 3. (18 marks)

a. (12 marks) Consider the following recursive definition:

\[
f(n) = \begin{cases}
0 & n = 1 \\
3f(\lceil \frac{n}{2} \rceil) + (n - 3)^2 & n \geq 2
\end{cases}
\]

Present positive constants \(c \) and \(d \) and show that for every \(n \geq 2 \), \(f(n) \leq cn^2 - 2n - d \). You are not allowed to use the master theorem for this problem. You may use the fact that \(\frac{n-1}{2} \leq \lfloor \frac{n}{2} \rfloor \leq \frac{n}{2} \).

b. (6 marks) Consider the following function:

\[
f(n) = \begin{cases}
10 & n = 1 \\
3f(\lceil \frac{n}{2} \rceil) + 5n^2 & n \geq 2
\end{cases}
\]
Show that for every \(n \geq 1 \), \(f(n) \geq 8n^2 + n^{\log_2 3} \). You may use the fact that \(\lceil \frac{n}{2} \rceil \geq \frac{n}{2} \).

Question 4. (16 marks)

\[
f(n) = \begin{cases}
4 & n = 1 \\
3f(\lceil \frac{n}{3} \rceil) + 2n & n \geq 2
\end{cases}
\]

a. (10 marks) Find a closed-form formula for \(f(n) \) when \(n \) is a power of 3, i.e., \(n = 3^k \) for some \(k \in \mathbb{N} \). Use repeated substitution to guess the formula and then induction to prove it.

b. (6 marks) Note that the master theorem tells us that for large enough \(n \), \(f(n) \in \Theta(n \log_3 n) \). Without using the master theorem, find explicit positive constants \(c_1 \) and \(c_2 \) and show that for all \(n \geq 2 \), \(c_1 n \log_3 n \leq f(n) \leq c_2 n \log_3 n \).

HINT: one way to do this is to use (a) and the fact that \(f \) is nondecreasing; you do not need to prove that \(f \) is nondecreasing.

Question 5. (10 marks) Prove that the recursive program below is correct with respect to the following precondition/postcondition pair.

Precondition: \(x \in \mathbb{N} \) and \(x \geq 1 \).

Postcondition: The program returns \((x + 1)^2\).

```c
int foo(int x)
if (x = 1) then
    return 4
else
    a = foo(x div 2) // x div 2 = \lfloor x/2 \rfloor
    if (x mod 2 = 0) then
        return 4 * a - 2 * x - 3
    else
        return 4 * a
end if
end if
```

```c
```