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Abstract

We have two main results. Let P : Kn → Kn be a polynomial map
with constant nonzero Jacobian, where K is any algebraic extension
of Q.

1. The map P has a polynomial inverse if and only if the range of
P contains a cartesian product of n universal Hilbert sets.

2. There exists a set S that contains “almost all” rational integers
over K such that P is injective in S.

1 Introduction

The goal of this note is to present some remarks on the famous Jacobian
Conjecture. Let P : Kn → Kn be a map over a field K of characteristic 0,
and let J(P ) denote the determinant of its Jacobian matrix. We have two
main contributions:
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1. Let P : Kn → Kn be a polynomial map with J(P ) identically equal
to 1, where K is an algebraic extension of Q. Then, P is surjective if
and only if P has a polynomial inverse. In fact we prove something
stronger: P has a polynomial inverse if and only if the range of P
contains a product of universal Hilbert sets, which is much weaker
than being onto.

2. Let P : K2 → K2 be a polynomial map with J(P ) identically equal to
1, where K is an algebraic extension of Q. Then, P is invertible for
“almost all” integers over K.

For the first result two remarks are in order. First, the interesting di-
rection, of course, is the direction from “sufficiently onto” to “invertible”,
which is based on the existence of universal Hilbert sets. Second, we re-
cently realized that this result essentially follows from van den Dries and
McKenna [9]Proposition 1.2. In Section 3, we discuss the similarities and
differences between our result and theirs. We would still like to present our
proof as it is based on a different approach.

As for the second result, there are two main ingredients in our proof. The
first is the use of quantitative forms of Hilbert’s irreducibility theorem, i.e.,
counting the number of integers in a certain interval that preserve irreducibil-
ity of polynomials. The second step is reducing our question to showing that
a certain polynomial map of finite order has a fixed point. The proof is then
completed by using a theorem of Smith on the existence of fixed points of
diffeomorphisms with prime order.

As explained above, one of our main tools in both results is the use of
various forms of Hilbert’s irreducibility theorem and its implications. We
believe that the connection between this theorem and the invertibility of
polynomial maps is worth further investigation.

2 Definitions and Basic Facts

We first state some basic definitions and results that we need. Suppose that
P : Kn → Kn is a polynomial map where K is a field of characteristic 0. This
means, as usual, that P = (f1, . . . , fn) and each fi is in K[x1, . . . , xn]. We
use J(P ) to denote the determinant of the Jacobian matrix ( ∂fi

∂xj
)1≤i,j≤n of

the map P . The famous Jacobian Conjecture states that if J(P ) ≡ 1, then
P has a polynomial inverse.

2



Now assume that K is an algebraic extension of Q and let P = (f1, . . . , fn) :
Kn → Kn be a polynomial map with J(P ) ≡ 1. The following basic facts
will be used later on:

Lemma 1 The functions f1, . . . , fn are algebraically independent over K.

Proof : See [10] Proposition 1.1.31. �

Lemma 2 Each of x1, . . . , xn is algebraic over Q[f1, . . . , fn].

Suppose that Φ(u1, . . . , un, z) is a polynomial. We say that it depends on
z provided that when written as a polynomial in z, i.e., as

am(u1, . . . , un)zm + . . . + a0(u1, . . . , un)

then m > 0 and the polynomial am(u1, . . . , un) is nonzero.
Lemma 2 implies the following:

Lemma 3 For each xi, i = 1, . . . , n, there is an irreducible polynomial
Φi(u1, . . . , un, z) with integer coefficients so that Φi(f1, . . . , fn, xi) = 0. More-
over, each Φi(u1, . . . , un, z) depends on z.

Lemma 4 Let K be any field and let P : Kn → Kn be a polynomial map
with J(P ) ≡ 1. Then, for each x ∈ Kn, |P−1(x)| is finite.

Proof : See [10]Theorem 1.1.32. �

We use P ◦Q to denote as usual the functional composition of two maps
P and Q. Thus, for any z ∈ Kn, (P ◦Q)(z) = P (Q(z)).

Fact 5 Let P and Q be polynomial maps from Kn to Kn. Then,

J(P ◦Q) = J(P )(Q)J(Q).
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3 Statement of Main Results

In this Section, we state our main results. Let K be a field. We consider
polynomial maps P from Kn to Kn that satisfy the jacobian condition, i.e.,
J(P ) ≡ 1.

Definition 1 An infinite set H ⊆ K is called a universal Hilbert set of order
n if for any irreducible polynomial f(u, x1, . . . , xn), the set of a for which
f(a, x1, . . . , xn) is reducible, is a finite subset of H.

Hilbert’s irreducibility theorem, see e.g. [8], implies that universal Hilbert
sets exist for any algebraic extension K of Q and they can be quite “thin”.
See [8] for results on constructing Hilbert sets.

Our first result shows that if P is ”sufficiently onto”, then P has a poly-
nomial inverse.

Theorem 6 Let P : Kn → Kn, where K is any algebraic extension of Q and
P satisfies J(P ) ≡ 1. If P (Kn) ⊇ H1 × H2 × . . . × Hn, for some universal
Hilbert sets H1, H2, . . . , Hn of order n, then P has a polynomial inverse.

Note that the condition that the range of P only contains H1 × . . .×Hn

is much weaker than onto. Note also that our result yields an equivalence
between being sufficiently onto and being invertible since the reverse direc-
tion of Theorem 6 is trivial. Our proof works in two steps. We first show
that P has a rational inverse. Then, as proved by Keller [6], if J(P ) ≡ 1
and P has a rational inverse, P in fact has a polynomial inverse. We re-
cently found out that our first step essentially follows from van den Dries
and McKenna [9]Proposition 1.2 (our condition on the range of P implies
that the range is, as in their terminology, Hilbert-dense). Their proof is
based on a compactness argument similar in spirit to Gilmore and Robin-
son [4]. We would still like to present our proof as we think it is different
and based on more elementary arguments.

In our second main result we use the notion of being invertible for ”almost
all” elements of a set. For a fixed dimension n, we will say that a set S ⊆ Zn

contains almost all rational integers of Kn if for all large enough M , the
complement of S in Zn satisfies:

|S̄ ∩ [−M, M ]n| = o(Mn)

We can similarly define what it means for a property Π to hold for almost
all integers. In particular, we will say that a map P is injective for almost
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all integers if P is injective on a set S that contains almost all integers, i.e.,
for x ∈ S and x′ ∈ S, P (x) = P (x′) implies that x = x′.

Theorem 7 Let P : Kn → Kn, where K is an algebraic number field and P
satisfies J(P ) ≡ 1. Then P is injective for almost all integer points of Kn.

As usual, we use the term rational integers to distinguish Z from the set
of algebraic integers over K. The proof of Theorem 7 is more involved and
uses quantitative versions of Hilbert’s irreducibility theorem, i.e., estimates
on the number of integers within a certain interval that preserve irreducibility
of polynomials. Another essential tool in our proof is a result of Smith [1]
on the existence of fixed points of automorphisms of prime order.

Finally we would like to observe that the starting point in both of our
results is the use of Lemma 3 and various forms or implications of Hilbert’s
irreducibility theorem. We believe that the connection between invertibility
of polynomial maps and irreducibility questions should be further explored.

4 Proof of Theorem 6

Proof : We prove the theorem for K equal to the rationals and for n = 2.
The general case is similar. Let P = (f, g) : Q2 → Q2 be a map with
J(P ) ≡ 1. By Lemma 3, there is an irreducible polynomial Φ1 such that
Φ1(f, g, x1) = 0 (similarly a polynomial Φ2 for x2). Let

Φ1(f, g, x1) = am(f, g)xm
1 + . . . + a0(f, g)

Lemma 3 implies that m > 0. We claim that there is a choice of rational
values α ∈ H1, β ∈ H2 for f and g (in fact there is an infinite number of such
values), such that the polynomial Φ′

1(x1) ≡ Φ1(α, β, x1) ∈ Q[x1] is irreducible
over Q, it has a rational root and it has the same degree in x1 as the original
Φ1. To see this, note that for any pair (α, β) = (f(x1, x2), g(x1, x2)), for
(x1, x2) ∈ Q2, it is true that x1 is a rational root of Φ1(α, β, x1) and x2 is a
root of Φ2(α, β, x2). Suppose we first substitute f with α ∈ H1 in Φ1. By
the definition of a Hilbert set, there is only a finite number of α’s that make
Φ1(α, g, x1) reducible. Furthermore, there is only a finite number of α’s that
make am(α, g) identically 0. Once we fix α, then again there can be at most a
finite number of choices for β that either make Φ1(α, β, x1) reducible or make
the highest degree term in x1 vanish. Since the range of P contains H1×H2,
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we can always find a pair (α, β) with the desirable properties. However, if
degx1(Φ1) > 1, then we have a contradiction, since Φ′

1(x1) is irreducible over
Q and we have assumed that it has a rational root. The same is true if
degx2(Φ2) > 1. Hence degx1(Φ1) = degx2(Φ2) = 1. Then x1, x2 ∈ Q(f, g),
which means that P has a rational inverse. Since J(P ) ≡ 1, it follows by [6]
that P in fact has a polynomial inverse. �

5 Proof of Theorem 7

Let P = (f1, ..., fn), where each fi is a function of x1, ..., xn. We present
the proof with K = Q. The generalization to any algebraic number field
is straightforward. By Lemma 3, we know that for every variable xi, there
exists a polynomial Φi(u1, u2, ..., un, z) that depends on z, such that

Φi(f1, f2, ..., fn, xi) = 0, i = 1, ..., n

.
Let u = (u1, ..., un) and f = (f1, ..., fn). Suppose that in each Φi(u, z) we

substitute u by f . We can then see Φi as a polynomial in z with coefficients
from Q[f1, ..., fn]:

Φi(f, z) = ami
(f)zmi + ami−1(f)zmi−1 + ... + a0(f)

We can further substitute f1, ..., fn as functions of x = (x1, ..., xn) and
factor the resulting polynomial over Q(x). We will then obtain a polynomial
in Q(x)[z]:

Φi(f, z) = (z − φi1(x))(z − φi2(x))...(z − φi,ri
(x))Ai(x, z) (1)

where the φij’s are rational functions of x and each Ai is a product of ir-
reducible polynomials. Suppose that Ai contains li irreducible polynomials
that depend on z (Ai may also contain factors that depend only on x but
such terms do not affect our analysis). Note that each polynomial Φi has at
least one factor, i.e., ri ≥ 1 because xi is a root (since Φi(f, xi) = 0). Finally,
we can also assume that each φij has integer coefficients.

Let u = (u1, ..., un) be the value of f at a point, say u = P (x∗), where
x∗ = (x∗1, ..., x

∗
n) ∈ Qn. We want to see when can we say that u has no other

preimage. We will show that there exists a set S that contains almost all
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points of Zn, such that for any x∗ ∈ S, the corresponding value u has no
other preimage within that set.

From now on, we assume that x∗ ∈ Zn, the dimension n is some fixed
integer and that each x∗i is in [−M, M ], for some large enough M . Through-
out our proof, we will eliminate integer points from [−M, M ]n for which our
arguments do not apply. We call such points ”bad” points. We will show
that there is a constant m0 such that for all M ≥ m0, the number of bad
points is o(Mn). This will directly imply that the map P is injective on a
set that contains almost all integer points.

Substituting x∗ in each Φi yields the following univariate polynomials:

Φi(z) = (z − αi1)...(z − αi,ri
)Ai(z) (2)

where αij = φij(x
∗), j = 1, . . . , ri, Ai(z) = Ai(x

∗, z).
We first note that for almost all integer points x∗ ∈ Zn, the polyno-

mials Ai(z) are products of irreducible polynomials over Q and hence have
no rational roots. This follows from the result of [2], a quantitative form
of Hilbert’s irreducibility theorem. In particular, if we have an irreducible
polynomial B(x, z) in n+1 variables and we substitute x with integer values
in the interval [−M, M ], there can be at most O(Mn−1/2 log M) bad points
x∗ that make B(x∗, z) reducible, out of a total of O(Mn) possible points
(see [8] Chapter 4 for related results). Since each Ai was a product of li
irreducible polynomials, there are in total at most c(

∑
i li)M

n−1/2 log M bad
points, for some constant c. By picking large enough M , this is o(Mn).

Consider an integer point x∗ such that all the factors of Ai(x
∗, z) are

irreducible over Q. Then the only rational roots of each Φi(z) are the αij’s.
Notice also that for each preimage of u, say x̂, it holds that x̂i is a root of
Φi(z). This comes from the fact that Φi satisfies Φi(f, x̂i) = 0. Hence, there
is at least one point, say without loss of generality α∗ = (α11, α21, ..., αn1),
that is equal to x∗. To see if u has any other integer preimage, we only need
to check if there exists any other tuple of αij’s, say α̂ = (α1,j1 , ..., αn,jn) 6= α∗

for which α̂ ∈ Zn and P (α̂) = u. If there is no such pair, then u has no other
integer preimage apart from x∗.

Suppose that there is indeed a point α̂ = (α1,j1 , ..., αn,jn) 6= α∗ for which
α̂ ∈ Zn and P (α̂) = u. We claim that this cannot happen for a lot of integer
points x∗. Note that α̂ is equal to (φ1,j1(x

∗), ..., φn,jn(x∗)). Hence we have that
P (φ1,j1(x

∗), ..., φn,jn(x∗)) = P (x∗). Let Q be the map Q = (φ1,j1 , ..., φn,jn).
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Obviously Q is not the identity map, since α̂ = Q(x∗). We first show that for
almost all integers, we may assume that the map Q is in fact a polynomial
map. For this we will make use of the following well known lemma, which
says that varieties can hit only a small fraction of integer points in [−M, M ]n

(e.g., see [8] Lemma 1, p. 298):

Lemma 8 Let V be the variety: V = {x ∈ Rn : R(x) = 0, R ∈ Q[x]}. For
any n ≥ 1 and any ε > 0, the number of integer points in [−M, M ]n that
belong to V is O(Mn−1).

The constant in the asymptotic expression of Lemma 8 depends on the max-
imum degree of a variable in R(x).

Lemma 9 Let a(x1, ..., xn)/b(x1, ..., xn) be a rational function with integer
coefficients such that a(x) 6≡ c(x)b(x), i.e., a/b is not a polynomial function.
Then for every n ≥ 1, the number of integer pairs x∗ ∈ [−M, M ]n for which
a(x∗)/b(x∗) is an integer is O(Mn−1/2 log M).

Proof : Fix n ≥ 1. Assume without loss of generality that b is irreducible.
For a point x∗ = (x∗1, ..., x

∗
n), let y∗ = (x∗2, ..., x

∗
n). We estimate separately

for each y∗ ∈ [−M, M ]n−1, the number of x∗1’s such that b(x∗1, y
∗) divides

a(x∗1, y
∗). There are two cases to consider for y∗. First suppose that b(x, y∗)

becomes reducible. The result of Cohen [2], implies that there can be at most
O(Mn−3/2 log M) such y∗’s. Hence in the worst case there can be at most
O(Mn−1/2 log M) such pairs (x∗1, y

∗) for which the rational function takes an
integer value. Assume now that b(x, y∗) remains irreducible, which happens
for O(Mn−1) values of y∗. Let R(y∗) be the resultant of a(x, y∗) and b(x, y∗),
which is a polynomial in y∗ (for a definition of the resultant, see [7]). It is
easy to check that if the resultant is identically 0, then a(x) is a multiple of
b(x) and a/b is a polynomial map, a contradiction to our assumptions. Hence
the resultant is not identically 0 and we consider two subcases. Suppose that
R(y∗) = 0. By Lemma 8, this can happen for at most O(Mn−2) values of y∗.
Therefore there can be at most O(Mn−1) points (x∗1, y

∗) that fall under this
subcase. Assume now that R(y0) 6= 0, which is true for O(Mn−1) values of
y∗. This implies that a(x, y∗) and b(x, y∗) are relatively prime and there is a
d ∈ Z and polynomials q, s ∈ Z[x] such that:

q(x)a(x, y∗) + s(x)b(x, y∗) = d
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For b(x∗1, y
∗) to divide a(x∗1, y

∗), it has to be the case that b(x∗1, y
∗) is

equal to a divisor of d (or minus a divisor of d). However for any δ > 0,
the number of divisors of any large enough number n is O(nδ) [5]. We also
know that d is at most a polynomial in y∗ by the way it was constructed and
therefore for any ε > 0, we can choose large enough constant m0, so that for
M ≥ m0 there are at most c M ε divisors of d, for some constant c. Then for
each (x∗1, y

∗) that we are interested in, x∗1 has to be a solution to b(x, y∗) = d′

for some divisor d′ of d. Hence there are at most degxb(x, y∗) = O(1) such
choices for each divisor d′. In total, for each y∗ in this subcase, we can have
at most O(M ε) values for x∗1 that make b(x∗) divide a(x∗). Therefore the
total number of points x∗ is O(Mn−1+ε). Finally, summing up all the integer
points that we counted in each case, we get a total of O(Mn−1/2 log M). �

Coming back to the discussion before Lemma 8 and 9, consider a tuple of
functions (φ1,j1 , ..., φn,jn). If at least one of them is a rational function, then
by Lemma 9, for almost every point x∗ ∈ Zn, the point (φ1,j1(x

∗), ..., φn,jn(x∗))
is not an integer point. Since there are at most Πri such tuples containing at
least one rational map, it follows that for almost every integer point x∗ ∈ Zn,
the second preimage of u, α̂ = (α1,j1 , ..., αn,jn), as defined above, belongs to
Zn only if the corresponding map Q = (φ1,j1 , ..., φn,jn) is a polynomial map.
Hence after throwing away o(Mn) bad points we may assume that Q is a
polynomial map satisfying (P ◦ Q)(x∗) = P (x∗). We consider the following
two cases:

Case 1 P ◦ Q is not identical to P . In this case, the equation P (Q(x)) −
P (x) = 0 defines a non-trivial variety. But by Lemma 8, varieties can hit
only a small fraction of integer points in [−M, M ]n. By ignoring these points,
we have that all the remaining points cannot have any other integer preimage
and we are done since in our analysis we have only ignored a total of o(Mn)
integer points.
Case 2 P ◦Q ≡ P This case is more complicated. We will derive a contra-
diction by showing that Q has to be the identity map. First note that since
P (Q) ≡ P over Q, the same will hold over C. From now on we look at P
and Q as polynomial maps from C2 to C2. Note also that by Fact 5, we have
J(Q) ≡ 1.

We use P t to denote the t-fold composition of the map P with itself.
Thus, P 2 = P ◦ P . In the rest of our analysis, we make repeated use of the
following lemma:
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Lemma 10 If the map Q has a fixed point, then Q is the identity map.

Proof : The proof is based on the inverse function theorem. Suppose Q
has a fixed point, say Q(a) = a, where a ∈ Cn. Since J(Q) ≡ 1, by the inverse
function theorem, we know that P is locally invertible at a neighborhood of
a, i.e., there exists an open set U containing a and an open set V containing
P (a), such that V = P (U) and P is one-to-one, when restricted to U . We
can pick a small enough open subset of U , say D ⊆ U , such that for every
a′ ∈ D, Q(a′) ∈ U . Since P (Q) ≡ P , we have that

P (Q(a′)) = P (a′) ∀a′ ∈ D

But P is one-to-one, when restricted to U . It follows that Q(a′) = a′ on the
open set D, i.e., Q is the identity map on the open set D. But since Q is a
polynomial map, Q has to be the identity map everywhere. �

Lemma 10 enables us to prove the following property of the map Q.

Lemma 11 The map Q has a finite order, i.e., there exists a positive integer
t ≥ 1 such that Qt is the identity map.

Proof : Pick z ∈ Cn and let u = P (z). Consider the terms z, Q(z), Q2(z),. . ..
By Lemma 4 we know that |P−1(z)| is finite. On the other hand, u =
P (z) = P (Q(z)) = P (Q2(z)) = . . .. Hence there exist r > s such that
Qr(z) = Qs(z). This means that the map Qr−s has a fixed point and it also
satisfies J(Qr−s) ≡ 1 and P ◦Qr−s = P . Lemma 10 completes the proof. �

The final argument in our proof uses the following Theorem, proved by
Smith (see [1]):

Theorem 12 [1] Let P : Rn → Rn be a diffeomorphism of prime order.
Then P has a fixed point.

By Lemma 11, there exists t ≥ 1 such that Qt is the identity map. Con-
sider the minimum such t. We want to show that t = 1. So assume t ≥ 2.
Write t = pd, with p prime. Then Qd is a diffeomorphism of R2n of prime
order. By Theorem 12 it follows that Qd has a fixed point. So by lemma 10,
Qd is the identity map, a contradiction with the minimality of t(clearly d < t,
since p is prime and hence p > 1).
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Hence Q is the identity map, a contradiction. Therefore x∗ is the only
preimage of u. In various steps of our analysis we only needed to ignore inte-
ger pairs in [−M, M ]n that were no more than o(Mn). Hence what remains
is a set S of O(Mn) points such that for any x ∈ S, P has no other preimage
within S. This completes the proof of Theorem 7.

6 Conclusions

We have obtained some connections between Hilbert’s irreducibility theorem
(in various forms) and invertibility of polynomial maps over algebraic number
fields.

We think it is possible to generalize Theorem 7 and show that P is injec-
tive for almost all algebraic integers over K. One of the steps that requires
a different analysis towards this is Lemma 9. Another way to enlarge the
set on which P is injective in the statement of Theorem 7 could be to start
with a complete factorization of the polynomials Φi(f, z), in which the φij

functions would be algebraic functions of x and perform a similar analysis.
In fact we believe that the jacobian conjecture is equivalent to the following
statement:

Conjecture 13 The jacobian conjecture is equivalent to proving the follow-
ing statement: Let P : Cn → Cn with:

1. J(P ) ≡ 1,

2. there exists an algebraic function defined on some open set U , such that
P ◦Q = P ,

3. Q has finite order.

Then the map Q has a fixed point.
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