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Applications of GPLVM

We will concentrate on a few successful applications in computer vision
@ Pose priors for character animation
@ Pose priors for human pose estimation and tracking
@ Deformation priors for shape estimation
o

Shape priors for Segmentation
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GPLVM for Character Animation

@ Learn a GPLVM from a small mocap sequence

@ Pose synthesis by solving an optimization problem
argmin — log p(y|x)

x7y
such that C(y)=0
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GPLVM for Character Animation

@ Learn a GPLVM from a small mocap sequence

@ Pose synthesis by solving an optimization problem

argmin — log p(y|x)
.y

such that C(y)=0

@ These handle constraints may come from a user in an interactive session, or

from a mocap system.
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GPLVM for Character Animation

@ Learn a GPLVM from a small mocap sequence

@ Pose synthesis by solving an optimization problem

argmin — log p(y|x)
.y

such that C(y)=0

@ These handle constraints may come from a user in an interactive session, or
from a mocap system.

@ Smooth the latent space by adding noise in order to reduce the number of
local minima.

@ Optimization in an annealed fashion over different anneal version of the
latent space.
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Application: Replay same motion

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Application: Keyframing joint trajectories

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Application: Deal with missing data in mocap

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Application: Style Interpolation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Applications: Animation from Images

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

@ Requires manual interaction

@ Next we will see how to do this automatically with these models

Figure: Syle-IK
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The problem of human pose estimation

@ The goal is given an image | to estimate the 3D location and orientation of
the body parts y.
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Notation

¢ — the state to be estimated
| — the image
x — the latent representation
n — number of training samples
l;.o — image observations up to time t
Y0 — poses up to time t
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Pose estimation

@ Generative approaches: focus on modeling

_ p(l[¢)p(9)
p(l)

o Discriminative approaches: focus on modeling directly
p(oll)

We saw how to directly model p(¢,x) with a GP before, where ¢ =y.
Let’s now focus on generative approaches.

p(oll)
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Generative approaches

Generative approach models

_ p(ll®)p(¢)
P(¢|I) - p(l)
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Generative approaches

Generative approach models

_ p(ll®)p(¢)
P(¢|I) - p(l)

Types of generative approaches:

@ Bayesian approaches: focus on approximating p(¢|l), usually via sampling
(e.g., particle filter).

@ Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(¢|l).
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Generative approaches

Generative approach models
p(l|®)p(9)
p(o|l) = ————~—~
(el p(l)
Types of generative approaches:

@ Bayesian approaches: focus on approximating p(¢|l), usually via sampling
(e.g., particle filter).

@ Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(¢|l).

Common to all of them is the need to model
@ Image likelihood: p(l|¢)
@ Priors: p(¢)
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Generative approaches

Generative approach models

p(ll¢)p(¢)

p(oll) = o(1)

Types of generative approaches:

@ Bayesian approaches: focus on approximating p(¢|l), usually via sampling
(e.g., particle filter).

@ Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(¢|l).

Common to all of them is the need to model
@ Image likelihood: p(l|¢)
@ Priors: p(¢)

In general p(l) is assumed constant and ignored. The different trackers then
depend on the different modeling choices and optimization procedures.
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Particle filter revisited

The posterior density is described with three terms

t(le|o:)p(@elli—1.0)

P(d)t“to) = p(|t||t—1:0)
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Particle filter revisited

The posterior density is described with three terms

t(le|o:)p(@elli—1.0)
P(|t||t—1:0)

p(P:lleo) =

@ Prior: defines the knowledge of the model

p(b¢lle-1.0) = /P(¢t|¢t—1)P(¢t—1|It—1:0)d¢t—1
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Particle filter revisited

The posterior density is described with three terms

t(le|P.)p(Pe[Ve—1.0)

P(d)t“tio) = p(lt“t—I:O)

@ Prior: defines the knowledge of the model

p(b¢lle-1.0) = /P(¢t|¢t1)P(¢t1|lt1:0)d¢t1

o Likelihood: p(l:|¢,) determines the measurement noise model

o Evidence: which involves

p(lalle 1) = / p(1e|d0)p(Sell-10)dd,
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Optimization techniques

It is defined as minimizing the following programs:
PmL = arg;nin — log p(1|9)

Phap = arg;nin — log p(l|@) — log p()
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Optimization techniques

It is defined as minimizing the following programs:
P = arg;rlin — log p(1|9)
Pmap = arg;nin — log p(l|¢) — log p(¢)

It suffers from the following problems:

@ Local minima: usually —log p(l|¢) is a non-convex function of ¢.

@ Initialization: usually hand initialized or use discriminative approaches.

@ Drift: As times goes, the estimate gets worst.

Difficult to define a good general — log p(l]¢).
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Optimization techniques

It is defined as minimizing the following programs:
om = arg;rlin — log p(1]¢)
map = arg;nin — log p(l]¢) — log p(¢)

It suffers from the following problems:

@ Local minima: usually — log p(l|¢) is a non-convex function of ¢.

@ Initialization: usually hand initialized or use discriminative approaches.

@ Drift: As times goes, the estimate gets worst.

Difficult to define a good general — log p(l]¢).

Usually computationally more efficient than particle filter (if not use GPU).

This can be combined with particle filter to create hybrid monte-carlo.
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GPLVM as a prior for Tracking

Likelihood models: p(l|¢)

@ Monocular tracking: 2D-3D correspondences, silhouettes, edges,
template matching, etc.

@ Multi-view tracking: stereo, visual hull, etc.
Priors: p(¢)

@ Pose priors

@ Dynamical priors

@ Shape priors

Note that | have defined ¢ as a general quantity, not just the pose, e.g., it
includes the latent coordinates.
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Generative tracking: Priors for 3D people tracking

@ Learn off-line prior models from Mocap: GPLVM

@ Use then online to constrain the tracking.

Off-line Learning

Learning [— ‘

Mocap Data Motion/Pose Model

On-line Tracking Prior

Tracking [—

Pose
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Tracking formulation

For each image I; we have to estimate the state ¢¢ = (y, X¢).
Bayesian formulation of the tracking

P(¢t:t+r“t:t+r7 X, Y) o8 H P(|t+i|¢t+i) H p(yt+i|xt+i7 X, Y)

@ The image likelihood is composed of the distance to 2D joints
automatically tracked using WSL (Jepson et al. 03).

Tracking by minimizing

- |Og p(¢t:t+T||t:t+Ta Xv Y) = ‘Cimages + £prior
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Tracking from a single example!

[ R. Urtasun, D. J. Fleet, A. Hertzmann and P. Fua, ICCV 2005]

@ Feature or bug?
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Non-rigid shape deformation

Monocular 3D shape recovery is severely under-constrained:
o Complex deformations and low-texture objects.
@ Deformation models are required to disambiguate.
@ Building realistic physics-based models is very complex.
o

Learning the models is a popular alternative.
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Global deformation models

State-of-the-art techniques learn global models that
@ require large amounts of training data,

@ must be learned for each new object.
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Key observations

@ Locally, all parts of a physically homogeneous surface obey the same
deformation rules.

@ Deformations of small patches are much simpler than those of a
global surface, and thus can be learned from fewer examples.

— Learn Local Deformation Models and combine them into a global one
representing the particular shape of the object of interest.

Urtasun & Lawrence () June 16, 2012 21 /95



Overview of the method

Generative Approach

Mocap Data Deformation Model Pose

Urtasun & Lawrence () GP tutorial June 16, 2012 22 /95



Combining the deformations
Use a Product of Experts (POE) paradigm (Hinton 99):

@ High dimensional data subject to low dimensional constraints.

A global deformation should be composed of highly probable local ones.

For homogeneous materials, all local patches follow the same deformation
rules.

@ Learn a single local model, and replicate it to cover the whole object.
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Combining the deformations
Use a Product of Experts (POE) paradigm (Hinton 99):

@ High dimensional data subject to low dimensional constraints.
@ A global deformation should be composed of highly probable local ones.

@ For homogeneous materials, all local patches follow the same deformation
rules.

@ Learn a single local model, and replicate it to cover the whole object.

— Same deformation model represents arbitrary shapes and topologies.
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Tracking

For each image /; we have to estimate the state ¢: = (y¢, X¢t)-

Bayesian formulation of the tracking

p(¢t“t7X:Y) o8 p(lt‘(bt)p(Yt’xta XaY)P(Xt)

The image likelihood is composed of texture (template matching) and
edge information

p(ltlét) = p(Telér)p(Et|or)

Tracking by minimizing the posterior
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Tracking poorly-textured surfaces

[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Same prior model for different shapes

[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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More complex materials

[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Different topology and Occlusions

[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Shape Priors in Level Set Segmentation

@ Represent contours with elliptic Fourier descriptors
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Shape Priors in Level Set Segmentation

@ Represent contours with elliptic Fourier descriptors

@ Learn a GPLVM on the parameters of those descriptors
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Shape Priors in Level Set Segmentation

@ Represent contours with elliptic Fourier descriptors

@ Learn a GPLVM on the parameters of those descriptors

@ We can now generate close contours from the latent space
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Shape Priors in Level Set Segmentation

@ Represent contours with elliptic Fourier descriptors

@ Learn a GPLVM on the parameters of those descriptors
@ We can now generate close contours from the latent space

@ Segmentation is done by non-linear minimization of an image-driven energy
which is a function of the latent space
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GPLVM on Contours

[ V. Prisacariu and I. Reid, ICCV 2011]

AT R
bATEXX R
T 8.8,
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Segmentation Results

[ V. Prisacariu and I. Reid, ICCV 2011]
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Does it work all the time?

Is training with so little data a bug or a feature?
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Problems with the GPLVM

@ It relies on the optimization of a non-convex function

L= g In K| + gtr(K_lYYT) .
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Problems with the GPLVM

@ It relies on the optimization of a non-convex function
L= g In K| + gtr(K_lYYT) .

@ Even with the right dimensionality, they can result in poor representations if
initialized far from the optimum.
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Problems with the GPLVM

@ It relies on the optimization of a non-convex function
L= g In K| + gtr(K_lYYT) .

@ Even with the right dimensionality, they can result in poor representations if
initialized far from the optimum.

@ This is even worst if the dimensionality of the latent space is small.
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Problems with the GPLVM

@ It relies on the optimization of a non-convex function
L= g In |K| + ’2—’tr(K—1YYT) .

@ Even with the right dimensionality, they can result in poor representations if
initialized far from the optimum.

@ This is even worst if the dimensionality of the latent space is small.

@ As a consequence this models have only been applied to small databases of
a single activity.
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Solutions that have been proposed

@ Constrain the back-mapping

@ Incorporate dynamics when learning the latent space
© Rank priors for continuous dimensionality reduction
© Incorporate prior knowledge

© Stochastic gradient descent optimization
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1) Back Constraints

Local Distance Preservation (Lawrence et al. 06)
@ Most dimensional reduction techniques preserve local distances.
@ The GP-LVM does not.
@ GP-LVM maps smoothly from latent to data space.

» Points close in latent space are close in data space.
» This does not imply points close in data space are close in latent space.

o Kernel PCA maps smoothly from data to latent space.

» Points close in data space are close in latent space.
» This does not imply points close in latent space are close in data space.
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Back Constraints in the GP-LVM

Back Constraints

@ The Neuroscale (Lowe, 96) made latent positions a function of the data.
Xij = i (¥i:v)
@ We can use the same idea to force the GP-LVM to respect local

distances.

» By constraining each x; to be a ‘smooth’ mapping from y; local
distances can be respected.

@ This works because in the GP-LVM we maximise wrt latent variables,
we don't integrate out.
@ Can use any ‘smooth’ function:

@ Neural network.
@ RBF Network.
© Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients
@ GP-LVM normally proceeds by optimising

L(X) = log p(Y[X)

with respect to X using %.

@ The back constraints are of the form

xij = f; (¥i:v)
where v are parameters.

@ We can compute % via chain rule and optimise parameters of
mapping.
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Motion Capture Results

[N. Lawrence and J. Quinonero-Candela, ICML 2006]
demStickl and demStick3
1.5

1

0.5

0

Figure: The latent space for the motion capture data with (right) and without
(left) back constraints.
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Stick Man Results

[N. Lawrence and J. Quinonero-Candela, ICML 2006]

demStickResults

(a) (b) (c) (d)

Projection into data space from four points in the latent space. The inclination of
the runner changes becoming more upright.
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2) Adding Dynamics

MAP Solutions for Dynamics Models
o Data often has a temporal ordering.
@ Markov-based dynamics are often used.
@ For the GP-LVM

» Marginalising such dynamics is intractable.
» But: MAP solutions are trivial to implement.

@ Many choices: Kalman filter, Markov chains etc..

e (Wang et al. 05) suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.

‘
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GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.
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Gaussian Process Dynamics

GP-LVM with Dynamics

@ Autoregressive Gaussian process mapping in latent space between
time points.
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Motion Capture Results

demStickl and demStick?2

0 2 4

Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (right) based on an exponentiated quadratic kernel.
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Regressive Dynamics

Inner Groove Distortion
@ Autoregressive unimodal
dynamics, p (x¢|x¢—1) -
@ Forces spiral visualisation.

@ Poorer model due to inner
groove distortion.

Urtasun & Lawrence () GP tutorial June 16, 2012 43 / 95



Regressive Dynamics

Direct use of Time Variable

Instead of auto-regressive dynamics, consider regressive dynamics.

@ Take t as an input, use a prior p (X|t).

@ User a Gaussian process prior for p (X|t).

@ Also allows us to consider variable sample rate data.
°

Problem: The notion of time might not be appropiate.
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Motion Capture Results

[N. Lawrence and A. Moore, ICML 2007]

demStickl, demStick2 and demStick5

4’ }

2y |

-1

4
3
2
1
0

-1

-2|

3|

-4

1.5

|
&

-4 -2 0 2 4 -0.05 0 0.05

Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an exponentiated quadratic kernel.
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Incorporating dynamics into Tracking

@ The mapping from latent space to high dimensional space as
Vi, = Wy(x;.) +n;., where n;.~N (0,02I) .

@ We can augment the model with ARMA dynamics. This is called
Gaussian process dynamical models (GPDM) (Wang et al., 05).

Xer1: = PP(Xee—r:) + ;. where 7.~ N(0,051).

;

GPLVM GPDM
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Model Learned for tracking

Model learned from 6 walking subjects,1 gait cycle each, on treadmill at
same speed with a 20 DOF joint parameterization (no global pose)

Figure: Randomly generated
trajectories

Figure: Density
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Tracking results

[ R. Urtasun, D. Fleet and P. Fua, CVPR 2006]
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Estimated latent trajectories

[ R. Urtasun, D. Fleet and P. Fua, CVPR 2006]

Figure: Estimated latent trajectories. (cian) - training data, (black) - exaggerated
walk, (blue) - occlusion.
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Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)
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Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)
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3) Rank Priors for Dimensionality Reduction

@ No distortion is introduced by an initialization step; the latent
coordinates are initialized to be the original observations

Xinit =Y

@ We introduce a prior over the latent space that encourages latent
spaces to be low dimensional.

@ Our method is able to estimate the latent space and its dimensionality.
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Continuous dimensionality reduction

@ We want to encourage latent space that are low-dimensional.
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Continuous dimensionality reduction

@ We want to encourage latent space that are low-dimensional.

e Dimensionality can be measure by the rank of XX,
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Continuous dimensionality reduction

@ We want to encourage latent space that are low-dimensional.
e Dimensionality can be measure by the rank of XX,

@ We would like to penalize the rank, but the rank is a discrete
function. The optimization would have to solve a complex
combinatorial problem.
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Continuous dimensionality reduction

@ We want to encourage latent space that are low-dimensional.
e Dimensionality can be measure by the rank of XXT.

@ We would like to penalize the rank, but the rank is a discrete
function. The optimization would have to solve a complex
combinatorial problem.

@ We relax the rank minimization and define a prior that encourages
sparsity of the eigenvalues, such that:

p
_ P p -1 T .
£=2inlK|+ Zer(K1YY )+a;¢(s,)

with s; the eigenvalues of XXT X the zero-mean X, and ¢ is a
function that encourages sparsity.
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Choice of the penalty function

@ Common choice for sparseness is the power family
o(si, r) = |sil”

r =1is a Laplace prior (i.e., L1 norm), which is linear.
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Choice of the penalty function

@ Common choice for sparseness is the power family

B(si,r) = |si|"

r =1is a Laplace prior (i.e., L1 norm), which is linear.

@ However, our objective function is non-convex. We use a penalty that
drives faster to zero the small singular values

o(si) = log(1 + Bs;) -
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Estimating the dimensionality

@ Minimizing the negative log posterior results in a reduction of the
energy of the spectrum. We prevent this by optimizing instead

min p(Y|X, 6)
y,0
s. t¥is >0, E(Y)—E(X)=0

with the energy E(X) =, s?.
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Estimating the dimensionality

@ Minimizing the negative log posterior results in a reduction of the
energy of the spectrum. We prevent this by optimizing instead

min p(Y|X, 6)
y,0
s. t¥is >0, E(Y)—E(X)=0

with the energy E(X) =, s?.
@ Finally, we choose the dimensionality to be

Q = argmax;
"siy1t€

where e < 1,and s > s > --- > sp
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Dimensionality Estimation Results

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

GPLVM + LLE our methd
- -i;'

:
converged &Q
local minimum
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Tracking from Mocap

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

Running: Tracking Error (3000 experiments)

Tullspace]
rank
——gpvm2d.

Average joint error (cm)
S 8 R 3 @

500 1000
Number of particles

Walking: Tracking Error (1500 experiments)

full space]
rank
—gpvm2d.

B R 5

Average joint error (cm)
3

o o

500 1000 1500
05 0 05 1 2 2 Number of particles

(GPLVM init PCA) (our method) (Error comparison)

Figure: Tracking running (top) and walking (bottom) motions from 2D mocap
data. Results are averaged over 10 splits.
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Tracking and classifying in the kitchen domain

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

You can learn for the first time latent spaces that are composed of
multiple motions.

GPLVM+LLE our method
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4) Incorporating prior knowledge

@ It is useful to use prior knowledge when additional information is
available.

@ We design priors over the latent space that incorporate the prior
knowledge.
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4) Incorporating prior knowledge

@ It is useful to use prior knowledge when additional information is
available.

@ We design priors over the latent space that incorporate the prior
knowledge.

@ Prior is based on the Locally Linear Embedding (LLE) [Roweiss, 01]
cost function

N d
p p -
£=7InK|+ Ztr(K YY) AT Clxig = Y WiaXiall
i=1 q=1 Jeni

with x; ; the g-th dimension of x;.

@ We define the weights to reflect the prior knowledge.
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Example 1: generate animations by sampling
[ R. Urtasun, D. J Fleet, A. Geiger, J. Popovic, T. Darrell and N. Lawrence, ICML 2008]

@ We learn style-content separation models using the following sources of prior
knowledge

» smoothness: points close in observation space should be close in latent
space.

» cyclic structure: points with similar phase should be close.

» transitions: points where a transition could happen should be close in
the latent space.

Figure: GPLVM Figure: Topologies Figure: Sampling
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Example 2: generate animations from user constrains

[ R. Urtasun, D. J Fleet, A. Geiger, J. Popovic, T. Darrell and N. Lawrence, ICML 2008]

@ This problem can be formulated very similarly to tracking.

@ Minimize the distance to the user constrains given the motion priors.

Example 1: walking Example 2: jumping

.
N |

| |
s "

\ g 7 |

‘ - T ; i
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5) Stochastic Gradient Descent

[N. Lawrence and R. Urtasun, ICML 2009]

Learning: maximize likelihood wrt X and 6.

This typically get's stuck close to initialization

We suggest stochastic gradient descent.

» Do local updates, by selecting points at random
» Compute gradients in the local neighborhood of the selected points.

The complexity of each iteration is only O(R3), with R < N, with R
the size of the neighborhood

If the matrix has missing data (e.g., netflix challenge) this is exact,
otherwise it's an approximation.

Urtasun & Lawrence () GP tutorial June 16, 2012 61 / 95



Stochastic Algorithm

Algorithm 1: Stochastic GPLVM
Randomly initialize X
Set € with an initial guess
for t = 1:T
randomly select x,
find R neighbors around x,: X = X €R

aL aL
Compute #= and 50

Update X and 0:
AX; = px - AXi_1 +1x - 387)(6?
X; — Xi_1 + AX;
Al = g - AB;_1 + 149 - 30R
0,0, 1+ A6,

Figure: Stochastic gradient descent and incremental learning for the
GPLVM; .y is a momentum parameter and 7.y is the learning rate.
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Results on MOCAP

Within-Subject

Cross-Subject

25 particles 150 particles 25 particles 150 particles
> E 60 90
sE 75
2 45
=2
o 30 60
15 45
- E 120 160
§§1oo W 125 | N——
38 80| pgsr—" 130 | W= : ;I
o 60 115
% E 240 280
o e N ————t
58 | ||
DN 240 e
7} ~——— t——
% 120 220
=
S 150 [ 205 [
2 N——"
E = 125 H‘IA/‘ FF«P-‘I/' 190 | st
B ugJ 100 H_'/'/I 175 %
S 160

PCA

5
0% 0.05% 0.1%0% 0.05% 0.1%

GPLVM

0% 0.05% 0.1

60% 0.05% 0.1%

stochastic GPLVM

Figure: Within- and cross-subject 3D tracking errors for each type of activity
sequence with respect to amount of additive noise for different number of particles
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Smooth Latent Space Learning
[ A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

Distance Matrix PCA GPLVM stochastic GPLVM

©
&

Walking

Jumping

(@

Exercise
Stretching

Signals

A
§
¥
K

Basketball
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Humaneva Results

C1, Frame 27

S1 Boxing

C1,Frame72 (3, Frame27  C3,Frame 72

[ A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

C1,Frame30  C1,Frame60  C3, Frame 30

C3, Frame 60

[ Train [ Test [[ [Xu07] ] [Li10] [ GPLVM [ CRBM [ imCRBM | Ours |
S1 S1 - - 57.6 + 11.6 48.8 + 3.7 58.6 + 3.9 440 £ 1.8
S1,2,3 S1 140.3 - 64.3 4+ 19.2 55.4 + 0.8 54.3 + 0.5 41.6 +£ 0.8
S2 S2 - 68.7 + 24.7 98.2 + 15.8 47.4+29 67.0 + 0.7 54.4 + 1.8
S1,2,3 S2 149.4 - 155.9 + 48.8 99.1 4+ 23.0 69.3 + 3.3 64.0 + 2.9
S3 S3 - 69.6 £22.2 71.6 £10.0 49.8 £2.2 51.4 £ 0.9 454 1+ 1.1
S1,2,3 S3 156.3 - 123.8. £ 16.7 70.9 + 2.1 43.4+4.1 46.5 + 1.4

Model

Tracking Error

|

[Pavlovic00] as reported in [Li07]

569.90 £ 209.18

[Lin06] as reported in [Li07]

380.02 £ 74.97

GPLVM 121.44 + 30.7

[Ci07] 117.0£55

Best CRBM [Taylor10] 75.4 £ 9.7
Ours 74.1+33

GP tutorial
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Is that all?
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Other Extensions

@ Discriminative GPLVMs
@ Hierarchical GPLVMs
© Multi-output GPLVM
@ Deformation transfer
© Style-content separation

@ Connectivity priors for animation
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) o exp {—iztr (S;lsb)} )
04

with S the between class matrix and S,, the within class matrix
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria
1 -1
p(X) o exp < ——tr (S,'Ss) ¢
T4

with S, the between class matrix and S,, the within class matrix

L

So=3 %(M; —Mg)(M; — M)"
i=1

where X() = [xgi)7 e ,xf,';.)] are the n; training points of class /, M; is the
mean of the elements of class i, and My is the mean of all the training
points of all classes.
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) o exp {—O_lztr (s;lsb)} ;

d

with S the between class matrix and S,, the within class matrix

() — M) () — M;)T]

where X() = [xg")7 ‘e ,xs,';.)] are the n; training points of class i, M; is the
mean of the elements of class i, and My is the mean of all the training
points of all classes.

@ As before the model is learned by maximizing p(Y|X)p(X).
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1) Priors for supervised learning

@ We introduce a prior that is based on the Fisher criteria

p(X) o exp {12tr (swlsb)} ,
Gd

with S, the between class matrix and S,, the within class matrix

-08 -06 -04 -02 0 02 04

Figure: 2D latent spaces learned by D-GPLVM on the oil dataset are shown, with
100 training examples and different values of o4. Note that as 1/07 increases the
model becomes more discriminative but has worse generalization.
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Experimental evaluation

[R. Urtasun and T. Darrell, ICML 2007]

Mean error usps

-e- I-LP
—=~DGPLVM-LP| ol DGPLVM-LP)

Mean error oil Mean error wine
org

e -original-LP
—=—DGPLYM-LP|

Mean error
Mean error

Mean error
§ &8 § § &

Number of training points Number of training points Number of training points

Figure: Mean classification error for the (left) oil (middle) UCI-Wine and (right)
USPS datasets. The oil datasets has 3 classes and D = 12. The UCI-Wine
database has 2 classes with D = 13. The USPS dataset consist on discriminating
3'sand 5's, D = 256.
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Hierarchical GP-LVM

2) Stacking Gaussian Processes
@ Regressive dynamics provides a simple hierarchy.

» The input space of the GP is governed by another GP.

Interaction

@ By stacking GPs we can consider more complex hierarchies.
o ldeally we should marginalise latent spaces

> In practice we seek MAP solutions.
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Two Correlated Subjects

[N. Lawrence and A. Moore, ICML 2007]

A B
Both Subjects
’ R B
1 g o
X %< c D
of % Xxﬁ,ﬁg
A R
EEE ) G
Subject 1 Subject 2
E F
ix <% B 1 X e,
A e, For k'S
k SRR
ol %
A
2 LTS Yok G H
g s g g § g

RN

Figure: Hierarchical model of a 'high five'.
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Within Subject Hierarchy

Decomposition of Body

PR N

I

head

aht abdomen
left arm right arm leftleg right leg

Figure: Decomposition of a subject.
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Single Subject Run/Walk

[N. Lawrence and A. Moore, ICML 2007]

: E
x Q A B C
4 oo 1
1 & '$ o
X oo
m%dy
Y

< e

T g k3 T D E F
Leﬂwgﬁﬂ%m Head “Right Am (g E& §\

F
B
i
B!

Figure: Hierarchical model of a walk and a run.
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3) Modeling Multiple Outputs with GPLVM

@ Single space to model correlations between two different data sources, e.g.,
images & text, image & pose.

@ Shared latent spaces: (Shon et al. NIPS'06, Ek et al. MLMI’07, Navaratnam et al.

ICCV'07).
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3) Modeling Multiple Outputs with GPLVM

@ Single space to model correlations between two different data sources, e.g.,
images & text, image & pose.

@ Shared latent spaces: (Shon et al. NIPS'06, Ek et al. MLMI’07, Navaratnam et al.

ICCV'07).

@ Effective when the views are correlated.

@ But not all information is shared between both views.
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Shared-Private Factorization

@ In real scenarios, the views are neither fully independent, nor fully correlated.
@ Shared models

» either allow information relevant to a single view to be mixed in the
shared signal,
> or are unable to model such private information.

@ Solution: Model shared and private information (Ek et al. MLMI'08, Leen 2008)
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Factorized Orthogonal Latent Spaces (FOLS)

A FOLS model can be learned by minimizing (Salzmann et al. 10)
L = Lgata + Lortho + Laim + Lenergy .

@ |t does continuous dimensionality reduction

@ Orthogonality prior to encourage the different latent spaces to be
non-redundant.

Lortho =y | [XT-ZOJ2+> (127 - z9|12
i

Jj>i
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Experiments: discriminative pose estimation

We seek to recover the 3D pose from image features

@ Y is image representation

@ Y® pose (i.e., 3D angles for each joint)
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Humaneva: Jog and Walk

Discriminative Pose

Mean 3D joint error [mm]

Ek etal. 08

="""Leen 08
""""S-GPLVM

" ——FOLS-GPLYM

Urtasun & Lawrence ()

[M. Salzmann, C. Ek, R. Urtasun and T. Darrell, AISTATS 2010]

Mean 3D joint error [mm]

GP tutorial

Estimation: hopeless?

@
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~
=}

@
3

—GP Regr
Eketal. 08
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“"""S-SGPLVM

— FOLS-GPLVM
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4) Modeling Pose and Shape

@ Model two types of variation: phenotype variation and pose

@ They model each variation with an independent GPLVM

I

1

I Pose
: Generator
|

\

Shape
Generator

———— -

@ Models have to be registered!

@ Combine both at inference by " deformation transfer” [Sumner et al., 04]

V=VAL+JV°-V%tny
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Generating 3D Shapes

@ For shape synthesis the posterior is non-Gaussian, thus it requires

approximations

VA
Pose Generator

Shape A\
QMMm}

Zew
Shape
Shape Generator

My

Urtasun & Lawrence ()

Pose Genenn)r

Sh e
Svrlhesls

Zer
Shape

\ AV

)
Lt
L ’%\ 8
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Matching Silhouettes

Silhouette matching is a two-stage process
@ Initial segmentation using Grabcuts
@ Project the 3D shape to the 2D image plane

@ Chamfer matching of 2D silhouettes

Urtasun & Lawrence () GP tutorial June 16, 2012

81/ 95



Results: Sharks

[ Y. Chen, T. Kim and R. Cipolla, ECCV 2010]
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Results: Humans

[ Y. Chen, T. Kim and R. Cipolla, ECCV 2010]
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5) Style Content Separation and Multi-linear models

Multiple aspects that affect the input signal, interesting to factorize them

TN ,/"'_"‘-—.‘\ P
( Sactor 1 ) (ﬁzctor 2 ) sae (facrar N )

A : \.
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Multilinear models

@ Style-Content Separation (Tenenbaum & Freeman 00)

y = Zwija,-bj-l—e

y

@ Multi-linear analysis (Vasilescu & Terzopoulous 02)

y= E W,'jk...aibjCk oot €
i

@ Non-linear basis functions (Elgammal & Lee, 2004)

y= Z W,'j3,'¢j(b) + €
7

Urtasun & Lawrence () GP tutorial June 16, 2012

85 / 95



Multi (non)-linear models with GPs

@ In the GPLVM
y = Z wjdi(x) + e =w' d(x) + e
J
with
Ely,y'] = o(x)"(y) + 8716 = k(x,X) + 8715
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Multi (non)-linear models with GPs

@ In the GPLVM
y = Z wjdi(x) + e =w' d(x) + e
J
with
Ely,y'] = o(x)"(y) + 8716 = k(x,X) + 8715

@ Multifactor Gaussian process
(1) (1) (1)
y= > wyseNel
ik

with
Ely.y]=[[o" o0 4 5~ 16—Hk (x,x') + p~15
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Multi (non)-linear models with GPs

@ In the GPLVM
y = Z wjdi(x) + e =w' d(x) + e
J
with
Ely,y'] = o(x)"(y) + 8716 = k(x,X) + 8715

@ Multifactor Gaussian process

y= Z Wijk.. ¢ 1)¢)(1)¢(1

ik

with
Ely.y]=[[o" o0 4 5~ 16—Hk (x,x') + p~15

@ Learning in this model is the same, just the kernel changes.
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Training Data

Each training motion is a collection of poses, sharing the same combination of
subject (s) and gait (g).

Stylistic factors

subject 1 subject 2 subject 3

stride

Urtasun & Lawrence () GP tutorial June 16, 2012 87 / 95



Character Animation

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Training data, 6 sequences, 314 frames in total

A locomotion model
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Generating new styles for a subject

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Generating new styles

subject 1, stride
subject 1, walk (generated)
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Interpolating Gaits

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Interpolating between gaits
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Generating Different Styles

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Various style parameters
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6) Continuous Character Control

@ When employing GPLVM, different motions get too far apart
@ Difficult to generate animations where we transition between motions
@ Back-constraints or topologies are not enough

@ New prior that enforces connectivity in the graph

Inp(X) = we > InK
iJ

with the graph diffusion kernel K¢ obtain from
K,-j-’ = exp(BH) with H=_T 2712

the graph Laplacian, and T is a diagonal matrix with T;; = 7. w(x;,x;),

{Zk w(x;,xg) ifi=j
Lj=

—w(Xi,X;) otherwise.
and w(x;,x;) = ||x; — x;|| 7P measures similarity.
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Embeddings: Walking

(b)

Figure: Walking embeddings learned (a) without the connectivity term, (b) with
we = 0:1, and (c) with w. = 1:0.
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Embeddings: Punching

Figure: Embeddings for the punching task (a) with and (b) without the
connectivity term.
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Video Results

[ S. Levine, J. Wang, A. Haraux, Z. Popovic and V. Koltun, Siggraph 2012]
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