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Applications of GPLVM

We will concentrate on a few successful applications in computer vision

Pose priors for character animation

Pose priors for human pose estimation and tracking

Deformation priors for shape estimation

Shape priors for Segmentation
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GPLVM for Character Animation

Learn a GPLVM from a small mocap sequence

Pose synthesis by solving an optimization problem

argmin
x,y

− log p(y|x)

such that C (y) = 0

These handle constraints may come from a user in an interactive session, or
from a mocap system.

Smooth the latent space by adding noise in order to reduce the number of
local minima.

Optimization in an annealed fashion over different anneal version of the
latent space.
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Application: Replay same motion

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Application: Keyframing joint trajectories

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Application: Deal with missing data in mocap

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Application: Style Interpolation

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Figure: Syle-IK
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Applications: Animation from Images

[K. Grochow, S. Martin, A. Hertzmann and Z. Popovic, Siggraph 2004]

Requires manual interaction

Next we will see how to do this automatically with these models

Figure: Syle-IK
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The problem of human pose estimation

The goal is given an image I to estimate the 3D location and orientation of
the body parts y.
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Notation

φ — the state to be estimated
I – the image

x – the latent representation
n — number of training samples

It:0 — image observations up to time t
yt:0 — poses up to time t
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Pose estimation

Generative approaches: focus on modeling

p(φ|I) =
p(I|φ)p(φ)

p(I)

Discriminative approaches: focus on modeling directly

p(φ|I)

We saw how to directly model p(φ, x) with a GP before, where φ = y.
Let’s now focus on generative approaches.

Urtasun & Lawrence () GP tutorial June 16, 2012 11 / 95



Generative approaches

Generative approach models

p(φ|I) =
p(I|φ)p(φ)

p(I)

Types of generative approaches:

Bayesian approaches: focus on approximating p(φ|I), usually via sampling
(e.g., particle filter).

Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(φ|I).

Common to all of them is the need to model

Image likelihood: p(I|φ)

Priors: p(φ)

In general p(I) is assumed constant and ignored. The different trackers then

depend on the different modeling choices and optimization procedures.
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Particle filter revisited

The posterior density is described with three terms

p(φt |It:0) =
t(It |φt)p(φt |It−1:0)

p(It |It−1:0)

Prior: defines the knowledge of the model

p(φt |It−1:0) =

∫
p(φt |φt−1)p(φt−1|It−1:0)dφt−1

Likelihood: p(It |φt) determines the measurement noise model

Evidence: which involves

p(In|It−1:0) =

∫
p(It |φt)p(φt |It−1:0)dφt
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Optimization techniques

It is defined as minimizing the following programs:

φ∗ML = argmin
φ

− log p(I|φ)

φ∗MAP = argmin
φ

− log p(I|φ)− log p(φ)

It suffers from the following problems:

Local minima: usually − log p(I|φ) is a non-convex function of φ.

Initialization: usually hand initialized or use discriminative approaches.

Drift: As times goes, the estimate gets worst.

Difficult to define a good general − log p(I|φ).

Usually computationally more efficient than particle filter (if not use GPU).

This can be combined with particle filter to create hybrid monte-carlo.
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GPLVM as a prior for Tracking

Likelihood models: p(I|φ)

Monocular tracking: 2D-3D correspondences, silhouettes, edges,
template matching, etc.

Multi-view tracking: stereo, visual hull, etc.

Priors: p(φ)

Pose priors

Dynamical priors

Shape priors

Note that I have defined φ as a general quantity, not just the pose, e.g., it
includes the latent coordinates.
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Generative tracking: Priors for 3D people tracking

Learn off-line prior models from Mocap: GPLVM

Use then online to constrain the tracking.

Mocap Data Motion/Pose Model 

Learning 

Prior 

Video Pose 

Tracking 
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Tracking formulation

For each image It we have to estimate the state φt = (yt , xt).

Bayesian formulation of the tracking

p(φt:t+τ |It:t+τ ,X,Y) ∝
∏
i

p(It+i |φt+i )
∏
i

p(yt+i |xt+i ,X,Y)

The image likelihood is composed of the distance to 2D joints
automatically tracked using WSL (Jepson et al. 03).

Tracking by minimizing

− log p(φt:t+τ |It:t+τ ,X,Y) = Limages + Lprior
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Tracking from a single example!
[ R. Urtasun, D. J. Fleet, A. Hertzmann and P. Fua, ICCV 2005]

Feature or bug?
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Non-rigid shape deformation

Monocular 3D shape recovery is severely under-constrained:

Complex deformations and low-texture objects.

Deformation models are required to disambiguate.

Building realistic physics-based models is very complex.

Learning the models is a popular alternative.
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Global deformation models

State-of-the-art techniques learn global models that

require large amounts of training data,

must be learned for each new object.
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Key observations

1 Locally, all parts of a physically homogeneous surface obey the same
deformation rules.

2 Deformations of small patches are much simpler than those of a
global surface, and thus can be learned from fewer examples.

→ Learn Local Deformation Models and combine them into a global one
representing the particular shape of the object of interest.
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Overview of the method

 Generative Approach 

Mocap Data Deformation Model Pose 

Image 

model 
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Combining the deformations
Use a Product of Experts (POE) paradigm (Hinton 99):

High dimensional data subject to low dimensional constraints.

A global deformation should be composed of highly probable local ones.

For homogeneous materials, all local patches follow the same deformation
rules.

Learn a single local model, and replicate it to cover the whole object.
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Tracking

For each image It we have to estimate the state φt = (yt , xt).

Bayesian formulation of the tracking

p(φt |It ,X,Y) ∝ p(It |φt)p(yt |xt ,X,Y)p(xt)

The image likelihood is composed of texture (template matching) and
edge information

p(It |φt) = p(Tt |φt)p(Et |φt)

Tracking by minimizing the posterior

Urtasun & Lawrence () GP tutorial June 16, 2012 24 / 95



Tracking poorly-textured surfaces
[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Same prior model for different shapes
[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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More complex materials
[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Different topology and Occlusions
[M. Salzmann, R. Urtasun and P. Fua, CVPR 2008]
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Shape Priors in Level Set Segmentation

Represent contours with elliptic Fourier descriptors

Learn a GPLVM on the parameters of those descriptors

We can now generate close contours from the latent space

Segmentation is done by non-linear minimization of an image-driven energy
which is a function of the latent space
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GPLVM on Contours
[ V. Prisacariu and I. Reid, ICCV 2011]
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Segmentation Results
[ V. Prisacariu and I. Reid, ICCV 2011]
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Does it work all the time?

Is training with so little data a bug or a feature?
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Problems with the GPLVM

It relies on the optimization of a non-convex function

L =
p

2
ln |K|+ p

2
tr(K−1YYT ) .
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This is even worst if the dimensionality of the latent space is small.
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This is even worst if the dimensionality of the latent space is small.

As a consequence this models have only been applied to small databases of
a single activity.
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Solutions that have been proposed

1 Constrain the back-mapping

2 Incorporate dynamics when learning the latent space

3 Rank priors for continuous dimensionality reduction

4 Incorporate prior knowledge

5 Stochastic gradient descent optimization
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1) Back Constraints

Local Distance Preservation (Lawrence et al. 06)

Most dimensional reduction techniques preserve local distances.

The GP-LVM does not.

GP-LVM maps smoothly from latent to data space.

I Points close in latent space are close in data space.
I This does not imply points close in data space are close in latent space.

Kernel PCA maps smoothly from data to latent space.

I Points close in data space are close in latent space.
I This does not imply points close in latent space are close in data space.
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Back Constraints in the GP-LVM

Back Constraints

The Neuroscale (Lowe, 96) made latent positions a function of the data.

xi ,j = fj (yi ,:; v)

We can use the same idea to force the GP-LVM to respect local
distances.

I By constraining each xi to be a ‘smooth’ mapping from yi local
distances can be respected.

This works because in the GP-LVM we maximise wrt latent variables,
we don’t integrate out.

Can use any ‘smooth’ function:

1 Neural network.
2 RBF Network.
3 Kernel based mapping.
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Optimising BC-GPLVM

Computing Gradients

GP-LVM normally proceeds by optimising

L (X) = log p (Y|X)

with respect to X using dL
dX .

The back constraints are of the form

xi ,j = fj (yi ,:; v)

where v are parameters.

We can compute dL
dv via chain rule and optimise parameters of

mapping.
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Motion Capture Results
[N. Lawrence and J. Quinonero-Candela, ICML 2006]

demStick1 and demStick3
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Figure: The latent space for the motion capture data with (right) and without
(left) back constraints.
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Stick Man Results
[N. Lawrence and J. Quinonero-Candela, ICML 2006]

demStickResults
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(a) (b) (c) (d)

Projection into data space from four points in the latent space. The inclination of

the runner changes becoming more upright.
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2) Adding Dynamics

MAP Solutions for Dynamics Models

Data often has a temporal ordering.

Markov-based dynamics are often used.

For the GP-LVM

I Marginalising such dynamics is intractable.
I But: MAP solutions are trivial to implement.

Many choices: Kalman filter, Markov chains etc..

(Wang et al. 05) suggest using a Gaussian Process.
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Gaussian Process Dynamics

GP-LVM with Dynamics

Autoregressive Gaussian process mapping in latent space between
time points.

t
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Motion Capture Results

demStick1 and demStick2
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Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (right) based on an exponentiated quadratic kernel.
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Regressive Dynamics

Inner Groove Distortion

Autoregressive unimodal
dynamics, p (xt |xt−1) .

Forces spiral visualisation.

Poorer model due to inner
groove distortion.
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Regressive Dynamics

Direct use of Time Variable

Instead of auto-regressive dynamics, consider regressive dynamics.

Take t as an input, use a prior p (X|t).

User a Gaussian process prior for p (X|t) .

Also allows us to consider variable sample rate data.

Problem: The notion of time might not be appropiate.
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Motion Capture Results

[N. Lawrence and A. Moore, ICML 2007]

demStick1, demStick2 and demStick5
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Figure: The latent space for the motion capture data without dynamics (left),
with auto-regressive dynamics (middle) and with regressive dynamics (right)
based on an exponentiated quadratic kernel.
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Incorporating dynamics into Tracking

The mapping from latent space to high dimensional space as

yi ,: = Wψ(xi ,:) + ηi ,:, where ηi ,: ∼ N
(
0, σ2I

)
.

We can augment the model with ARMA dynamics. This is called
Gaussian process dynamical models (GPDM) (Wang et al., 05).

xt+1,: = Pφ(xt:t−τ,:) + γ i ,:, where γi ,: ∼ N
(
0, σ2

d I
)
.

X

Y

X1 

Y1 

X2 

Y2 

X3 

Y3 

XT 

YT 

… 

GPLVM GPDM
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Model Learned for tracking

Model learned from 6 walking subjects,1 gait cycle each, on treadmill at
same speed with a 20 DOF joint parameterization (no global pose)

Figure: Density
Figure: Randomly generated
trajectories
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Tracking results

[ R. Urtasun, D. Fleet and P. Fua, CVPR 2006]
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Estimated latent trajectories

[ R. Urtasun, D. Fleet and P. Fua, CVPR 2006]

Figure: Estimated latent trajectories. (cian) - training data, (black) - exaggerated
walk, (blue) - occlusion.
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Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)
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Visualization of Knee Pathology

Two subjects, four walk gait cycles at each of 9 speeds (3-7 km/hr)

Two subjects with a knee pathology.
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3) Rank Priors for Dimensionality Reduction

No distortion is introduced by an initialization step; the latent
coordinates are initialized to be the original observations

Xinit = Y

We introduce a prior over the latent space that encourages latent
spaces to be low dimensional.

Our method is able to estimate the latent space and its dimensionality.
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Continuous dimensionality reduction

We want to encourage latent space that are low-dimensional.

Dimensionality can be measure by the rank of XXT .

We would like to penalize the rank, but the rank is a discrete
function. The optimization would have to solve a complex
combinatorial problem.

We relax the rank minimization and define a prior that encourages
sparsity of the eigenvalues, such that:

L =
p

2
ln |K|+ p

2
tr(K−1YYT ) + α

p∑
i=1

φ(si )

with si the eigenvalues of X̄X̄T , X̄ the zero-mean X, and φ is a
function that encourages sparsity.
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Choice of the penalty function

Common choice for sparseness is the power family

φ(si , r) = |si |r

r = 1 is a Laplace prior (i.e., L1 norm), which is linear.

However, our objective function is non-convex. We use a penalty that
drives faster to zero the small singular values

φ(si ) = log(1 + βsi ) .

Urtasun & Lawrence () GP tutorial June 16, 2012 53 / 95



Choice of the penalty function

Common choice for sparseness is the power family

φ(si , r) = |si |r

r = 1 is a Laplace prior (i.e., L1 norm), which is linear.

However, our objective function is non-convex. We use a penalty that
drives faster to zero the small singular values

φ(si ) = log(1 + βsi ) .

Urtasun & Lawrence () GP tutorial June 16, 2012 53 / 95



Estimating the dimensionality

Minimizing the negative log posterior results in a reduction of the
energy of the spectrum. We prevent this by optimizing instead

min
y,θ

p(Y|X,θ)

s. t.∀i si ≥ 0, E (Y)− E (X) = 0

with the energy E (X) =
∑

i s
2
i .

Finally, we choose the dimensionality to be

Q = argmaxi
si

si+1 + ε

where ε� 1, and s1 ≥ s2 ≥ · · · ≥ sD
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Dimensionality Estimation Results

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]
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Tracking from Mocap
[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]
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Figure: Tracking running (top) and walking (bottom) motions from 2D mocap
data. Results are averaged over 10 splits.
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Tracking and classifying in the kitchen domain

[A. Geiger, R. Urtasun and T. Darrell, CVPR 2009]

You can learn for the first time latent spaces that are composed of
multiple motions.
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4) Incorporating prior knowledge

It is useful to use prior knowledge when additional information is
available.

We design priors over the latent space that incorporate the prior
knowledge.

Prior is based on the Locally Linear Embedding (LLE) [Roweiss, 01]
cost function

L =
p

2
ln |K|+ p

2
tr(K−1YYT ) + λ

N∑
i=1

d∑
q=1

||xi,q −
∑
j∈ηi

wij,qxj,q||2

with xi ,q the q-th dimension of xi .

We define the weights to reflect the prior knowledge.
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Example 1: generate animations by sampling

[ R. Urtasun, D. J Fleet, A. Geiger, J. Popovic, T. Darrell and N. Lawrence, ICML 2008]

We learn style-content separation models using the following sources of prior
knowledge

I smoothness: points close in observation space should be close in latent
space.

I cyclic structure: points with similar phase should be close.
I transitions: points where a transition could happen should be close in

the latent space.

Figure: GPLVM Figure: Topologies Figure: Sampling
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Example 2: generate animations from user constrains

[ R. Urtasun, D. J Fleet, A. Geiger, J. Popovic, T. Darrell and N. Lawrence, ICML 2008]

This problem can be formulated very similarly to tracking.

Minimize the distance to the user constrains given the motion priors.
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5) Stochastic Gradient Descent

[N. Lawrence and R. Urtasun, ICML 2009]

Learning: maximize likelihood wrt X and θ.

This typically get’s stuck close to initialization

We suggest stochastic gradient descent.

I Do local updates, by selecting points at random
I Compute gradients in the local neighborhood of the selected points.

The complexity of each iteration is only O(R3), with R � N, with R
the size of the neighborhood

If the matrix has missing data (e.g., netflix challenge) this is exact,
otherwise it’s an approximation.
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Stochastic Algorithm

Algorithm 1: Stochastic GPLVM
Randomly initialize X
Set θ with an initial guess
for t = 1:T

randomly select xr
find R neighbors around xr : XR = X ∈ R
Compute ∂L

∂XR
and ∂L

∂θR

Update X and θ:
∆Xt = µX ·∆Xt−1 + ηX · ∂L∂XR

Xt ← Xt−1 + ∆Xt

∆θt = µθ ·∆θt−1 + ηθ · ∂L∂θR

θt ← θt−1 + ∆θt

Figure: Stochastic gradient descent and incremental learning for the
GPLVM; µ(·) is a momentum parameter and η(·) is the learning rate.
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Results on MOCAP
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Figure: Within- and cross-subject 3D tracking errors for each type of activity
sequence with respect to amount of additive noise for different number of particles
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Smooth Latent Space Learning

[ A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]
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Humaneva Results
[ A. Yao, J. Gall, L. Van Gool and R. Urtasun, NIPS 2011]

C1, Frame 27 C1, Frame 72 C3,  Frame 27 C3, Frame 72

S1
  B

ox
in

g

C1, Frame 30 C1, Frame 60 C3,  Frame 30 C3, Frame 60

S3
  W

al
ki

n
g

Train Test [Xu07] [Li10] GPLVM CRBM imCRBM Ours

S1 S1 - - 57.6 ± 11.6 48.8 ± 3.7 58.6 ± 3.9 44.0 ± 1.8
S1,2,3 S1 140.3 - 64.3 ± 19.2 55.4 ± 0.8 54.3 ± 0.5 41.6 ± 0.8

S2 S2 - 68.7 ± 24.7 98.2 ± 15.8 47.4 ± 2.9 67.0 ± 0.7 54.4 ± 1.8
S1,2,3 S2 149.4 - 155.9 ± 48.8 99.1 ± 23.0 69.3 ± 3.3 64.0 ± 2.9

S3 S3 - 69.6 ± 22.2 71.6 ± 10.0 49.8 ± 2.2 51.4 ± 0.9 45.4 ± 1.1
S1,2,3 S3 156.3 - 123.8. ± 16.7 70.9 ± 2.1 43.4 ± 4.1 46.5 ± 1.4

Model Tracking Error

[Pavlovic00] as reported in [Li07] 569.90 ± 209.18
[Lin06] as reported in [Li07] 380.02 ± 74.97

GPLVM 121.44 ± 30.7
[Li07] 117.0 ± 5.5

Best CRBM [Taylor10] 75.4 ± 9.7
Ours 74.1 ± 3.3
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Is that all?

Urtasun & Lawrence () GP tutorial June 16, 2012 66 / 95



Other Extensions

1 Discriminative GPLVMs

2 Hierarchical GPLVMs

3 Multi-output GPLVM

4 Deformation transfer

5 Style-content separation

6 Connectivity priors for animation
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1) Priors for supervised learning

We introduce a prior that is based on the Fisher criteria

p(X) ∝ exp

{
− 1

σ2
d

tr
(
S−1
w Sb

)}
,

with Sb the between class matrix and Sw the within class matrix
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p(X) ∝ exp

{
− 1

σ2
d

tr
(
S−1
w Sb

)}
,

with Sb the between class matrix and Sw the within class matrix

Sb =
L∑

i=1

ni
N

(Mi −M0)(Mi −M0)T

where X(i) = [x
(i)
1 , · · · , x(i)

ni ] are the ni training points of class i , Mi is the
mean of the elements of class i , and M0 is the mean of all the training
points of all classes.
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p(X) ∝ exp

{
− 1

σ2
d

tr
(
S−1
w Sb

)}
,

with Sb the between class matrix and Sw the within class matrix

Sb =
L∑

i=1

ni
N

(Mi −M0)(Mi −M0)T

Sw =
L∑

i=1

ni
n

[
1

ni

Ni∑
k=1

(x
(i)
k −Mi )(x

(i)
k −Mi )

T

]

where X(i) = [x
(i)
1 , · · · , x(i)

ni ] are the ni training points of class i , Mi is the
mean of the elements of class i , and M0 is the mean of all the training
points of all classes.

As before the model is learned by maximizing p(Y|X)p(X).
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Figure: 2D latent spaces learned by D-GPLVM on the oil dataset are shown, with
100 training examples and different values of σd . Note that as 1/σ2

d increases the
model becomes more discriminative but has worse generalization.
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Experimental evaluation

[R. Urtasun and T. Darrell, ICML 2007]
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Figure: Mean classification error for the (left) oil (middle) UCI-Wine and (right)
USPS datasets. The oil datasets has 3 classes and D = 12. The UCI-Wine
database has 2 classes with D = 13. The USPS dataset consist on discriminating
3’s and 5’s, D = 256.
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Hierarchical GP-LVM

2) Stacking Gaussian Processes

Regressive dynamics provides a simple hierarchy.

I The input space of the GP is governed by another GP.

By stacking GPs we can consider more complex hierarchies.

Ideally we should marginalise latent spaces

I In practice we seek MAP solutions.
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Two Correlated Subjects
[N. Lawrence and A. Moore, ICML 2007]

Figure: Hierarchical model of a ’high five’.
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Within Subject Hierarchy

Decomposition of Body

Figure: Decomposition of a subject.
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Single Subject Run/Walk

[N. Lawrence and A. Moore, ICML 2007]

Figure: Hierarchical model of a walk and a run.
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3) Modeling Multiple Outputs with GPLVM

Single space to model correlations between two different data sources, e.g.,
images & text, image & pose.

Shared latent spaces: (Shon et al. NIPS’06, Ek et al. MLMI’07, Navaratnam et al.

ICCV’07).

X

Y Y
(1) (2)

Effective when the views are correlated.

But not all information is shared between both views.
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Shared-Private Factorization

In real scenarios, the views are neither fully independent, nor fully correlated.

Shared models

I either allow information relevant to a single view to be mixed in the
shared signal,

I or are unable to model such private information.

Solution: Model shared and private information (Ek et al. MLMI’08, Leen 2008)

(1)
Z

(2)
X

Y Y
(1)

Z

(2)
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Factorized Orthogonal Latent Spaces (FOLS)

(1)
Z

(2)
X

Y Y
(1)

Z

(2)

A FOLS model can be learned by minimizing (Salzmann et al. 10)

L = Ldata + Lortho + Ldim + Lenergy .

It does continuous dimensionality reduction

Orthogonality prior to encourage the different latent spaces to be
non-redundant.

Lortho = α
∑
i

||XT · Z(i)||2F +
∑
j>i

||(Z(i))T · Z(j)||2F

 .
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Experiments: discriminative pose estimation

We seek to recover the 3D pose from image features

Y(1) is image representation

Y(2) pose (i.e., 3D angles for each joint)
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Humaneva: Jog and Walk

[M. Salzmann, C. Ek, R. Urtasun and T. Darrell, AISTATS 2010]

Discriminative Pose Estimation: hopeless?

(Jog) (Walk)
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4) Modeling Pose and Shape

Model two types of variation: phenotype variation and pose

They model each variation with an independent GPLVM

Models have to be registered!

Combine both at inference by ”deformation transfer” [Sumner et al., 04]

V = VA + J(VS − V0) + nV
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Generating 3D Shapes

For shape synthesis the posterior is non-Gaussian, thus it requires
approximations
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Matching Silhouettes

Silhouette matching is a two-stage process

Initial segmentation using Grabcuts

Project the 3D shape to the 2D image plane

Chamfer matching of 2D silhouettes
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Results: Sharks
[ Y. Chen, T. Kim and R. Cipolla, ECCV 2010]
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Results: Humans

[ Y. Chen, T. Kim and R. Cipolla, ECCV 2010]
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5) Style Content Separation and Multi-linear models

Multiple aspects that affect the input signal, interesting to factorize them

Urtasun & Lawrence () GP tutorial June 16, 2012 84 / 95



Multilinear models

Style-Content Separation (Tenenbaum & Freeman 00)

y =
∑
ij

wijaibj + ε

Multi-linear analysis (Vasilescu & Terzopoulous 02)

y =
∑
ijk···

wijk···aibjck · · ·+ ε

Non-linear basis functions (Elgammal & Lee, 2004)

y =
∑
ij

wijaiφj(b) + ε
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Multi (non)-linear models with GPs

In the GPLVM
y =

∑
j

wjφj(x) + ε = wTΦ(x) + ε

with
E [y, y′] = Φ(x)TΦ(y) + β−1δ = k(x, x′) + β−1δ

Multifactor Gaussian process

y =
∑

i,j,k,···

wijk···φ
(1)
i φ

(1)
j φ

(1)
k · · ·+ ε

with
E [y, y′] =

∏
i

Φ(i)TΦ(i) + β−1δ =
∏
i

ki (x(i), x(i)′) + β−1δ

Learning in this model is the same, just the kernel changes.
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Training Data

Each training motion is a collection of poses, sharing the same combination of
subject (s) and gait (g).
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Character Animation
[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]

Training data, 6 sequences, 314 frames in total
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Generating new styles for a subject

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]
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Interpolating Gaits

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]
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Generating Different Styles

[J. Wang, D. Fleet and A. Hertzmann, ICML 2007]
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6) Continuous Character Control

When employing GPLVM, different motions get too far apart

Difficult to generate animations where we transition between motions

Back-constraints or topologies are not enough

New prior that enforces connectivity in the graph

ln p(X) = wc

∑
i,j

lnK d
ij

with the graph diffusion kernel Kd obtain from

K d
ij = exp(βH) with H = −T−1/2LT−1/2

the graph Laplacian, and T is a diagonal matrix with Tii =
∑

j w(xi , xj),

Lij =

{∑
k w(xi , xk) if i = j

−w(xi , xj) otherwise.

and w(xi , xj) = ||xi − xj ||−p measures similarity.
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Embeddings: Walking

Figure: Walking embeddings learned (a) without the connectivity term, (b) with
wc = 0:1, and (c) with wc = 1:0.
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Embeddings: Punching

Figure: Embeddings for the punching task (a) with and (b) without the
connectivity term.
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Video Results

[ S. Levine, J. Wang, A. Haraux, Z. Popovic and V. Koltun, Siggraph 2012]
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