Session 1: Gaussian Processes

Neil D. Lawrence and Raquel Urtasun

CVPR 16th June 2012

Urtasun and Lawrence ()

Book

?

Outline

The Gaussian Density

- 2 Covariance from Basis Functions
- 3 Basis Function Representations
- 4 Constructing Covariance
- **5** GP Limitations

Outline

The Gaussian Density

- 2 Covariance from Basis Functions
- 3 Basis Function Representations
- 4 Constructing Covariance
- 5 GP Limitations
- 6 Conclusions

The Gaussian Density

• Perhaps the most common probability density.

$$p(y|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$
$$= \mathcal{N}\left(y|\mu, \sigma^2\right)$$

• The Gaussian density.

Gaussian Density

The Gaussian PDF with $\mu = 1.7$ and variance $\sigma^2 = 0.0225$. Mean shown as red line. It could represent the heights of a population of students.

Gaussian Density

$$\mathcal{N}\left(\mathbf{y}|\mu,\sigma^{2}
ight)=rac{1}{\sqrt{2\pi\sigma^{2}}}\exp\left(-rac{(\mathbf{y}-\mu)^{2}}{2\sigma^{2}}
ight)$$

Sum of Gaussian variables is also Gaussian.

 $y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

 $y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

wy
$$\sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

 $y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

$$\mathbf{y} \sim \mathcal{N}\left(\boldsymbol{\mu}, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

 $y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2
ight)$$

Sum of Gaussian variables is also Gaussian.

 $y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

$$\mathbf{y} \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

 $y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

(*Aside*: As sum increases, sum of non-Gaussian, finite variance variables is also Gaussian [central limit theorem].)

$$\mathbf{y} \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

wy
$$\sim \mathcal{N}\left(\mathbf{w}\mu,\mathbf{w}^{2}\sigma^{2}
ight)$$

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

$$y_1 - y_2 = m(x_1 - x_2)$$

$$\frac{y_1 - y_2}{x_1 - x_2} = m$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$c = y_1 - mx_1$$

How do we deal with three simultaneous equations with only two unknowns?

$$y_1 = mx_1 + c$$

$$y_2 = mx_2 + c$$

$$y_3 = mx_3 + c$$

Overdetermined System

• With two unknowns and two observations:

 $y_1 = mx_1 + c$ $y_2 = mx_2 + c$

• Additional observation leads to *overdetermined* system.

 $y_3 = mx_3 + c$

• This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0, \sigma^2\right)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Overdetermined System

• With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

• Additional observation leads to overdetermined system.

$$y_3 = mx_3 + c$$

• This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0, \sigma^2\right)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Overdetermined System

• With two unknowns and two observations:

$$y_1 = mx_1 + c$$
$$y_2 = mx_2 + c$$

• Additional observation leads to *overdetermined* system.

$$y_3 = mx_3 + c$$

• This problem is solved through a noise model $\epsilon \sim \mathcal{N}\left(0, \sigma^2\right)$

$$y_1 = mx_1 + c + \epsilon_1$$

$$y_2 = mx_2 + c + \epsilon_2$$

$$y_3 = mx_3 + c + \epsilon_3$$

Noise Models

- We aren't modeling entire system.
- Noise model gives mismatch between model and data.
- Gaussian model justified by appeal to central limit theorem.
- Other models also possible (Student-*t* for heavy tails).
- Maximum likelihood with Gaussian noise leads to *least squares*.

$$c = 1.75 \Longrightarrow m = 1.25$$

$$c = -0.777 \Longrightarrow m = 3.78$$

$$c = -4.01 \Longrightarrow m = 7.01$$

$$c = -0.718 \Longrightarrow m = 3.72$$

$$c = 2.45 \Longrightarrow m = 0.545$$

$$c = -0.657 \Longrightarrow m = 3.66$$

$$c = -3.13 \Longrightarrow m = 6.13$$

$$c = -1.47 \Longrightarrow m = 4.47$$

Can compute *m* given *c*. Assume

$$c \sim \mathcal{N}(0, 4)$$
,

we find a distribution of solutions.

Probability for Under- and Overdetermined

- To deal with overdetermined introduced probability distribution for 'variable', ϵ_i .
- For underdetermined system introduced probability distribution for 'parameter', *c*.
- This is known as a Bayesian treatment.

- For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \sum_i w_j x_{i,j} + \epsilon_i$$

(where we've dropped c for convenience), we need a prior over w.

- This motivates a *multivariate* Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).

- For general Bayesian inference need multivariate priors.
- E.g. for multivariate linear regression:

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

(where we've dropped c for convenience), we need a prior over w.

- This motivates a *multivariate* Gaussian density.
- We will use the multivariate Gaussian to put a prior *directly* on the function (a Gaussian process).
Multivariate Regression Likelihood

• Recall multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = \frac{1}{(2\pi\alpha)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha}\mathbf{w}^{\top}\mathbf{w}\right)$$

Multivariate Regression Likelihood

• Recall multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = \frac{1}{(2\pi\alpha)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha}\mathbf{w}^{\top}\mathbf{w}\right)$$

Posterior Density

• Once again we want to know the posterior:

```
p(\mathbf{w}|\mathbf{y},\mathbf{X}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})
```

• And we can compute by completing the square.

$$\log p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = -\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2 + \frac{1}{\sigma^2} \sum_{i=1}^n y_i \mathbf{x}_{i,:}^\top \mathbf{w}$$
$$-\frac{1}{2\sigma^2} \sum_{i=1}^n \mathbf{w}^\top \mathbf{x}_{i,:} \mathbf{x}_{i,:}^\top \mathbf{w} - \frac{1}{2\alpha} \mathbf{w}^\top \mathbf{w} + \text{const.}$$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \mathcal{N}(\mathbf{w}|\boldsymbol{\mu}_{w}, \mathbf{C}_{w})$$
$$\mathbf{C}_{w} = (\sigma^{-2}\mathbf{X}^{\top}\mathbf{X} + \alpha^{-1})^{-1} \text{ and } \boldsymbol{\mu}_{w} = \mathbf{C}_{w}\sigma^{-2}\mathbf{X}^{\top}\mathbf{y}$$

Posterior Density

• Once again we want to know the posterior:

 $p(\mathbf{w}|\mathbf{y},\mathbf{X}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})$

• And we can compute by completing the square.

$$\log p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = -\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2 + \frac{1}{\sigma^2} \sum_{i=1}^n y_i \mathbf{x}_{i,:}^\top \mathbf{w}$$
$$-\frac{1}{2\sigma^2} \sum_{i=1}^n \mathbf{w}^\top \mathbf{x}_{i,:} \mathbf{x}_{i,:}^\top \mathbf{w} - \frac{1}{2\alpha} \mathbf{w}^\top \mathbf{w} + \text{const.}$$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \mathcal{N}(\mathbf{w}|\boldsymbol{\mu}_w, \mathbf{C}_w)$$

 $\mathbf{C}_w = (\sigma^{-2}\mathbf{X}^\top\mathbf{X} + \alpha^{-1})^{-1} \text{ and } \boldsymbol{\mu}_w = \mathbf{C}_w \sigma^{-2}\mathbf{X}^\top\mathbf{y}$

Bayesian vs Maximum Likelihood

• Note the similarity between posterior mean

$$\boldsymbol{\mu}_{w} = (\sigma^{-2} \mathbf{X}^{\top} \mathbf{X} + \alpha^{-1})^{-1} \sigma^{-2} \mathbf{X}^{\top} \mathbf{y}$$

and Maximum likelihood solution

$$\hat{\mathbf{w}} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

Marginal Likelihood is Computed as Normalizer

$\rho(\mathbf{w}|\mathbf{y},\mathbf{X})\rho(\mathbf{y}|\mathbf{X})=\rho(\mathbf{y}|\mathbf{w},\mathbf{X})\rho(\mathbf{w})$

Marginal Likelihood

• Can compute the marginal likelihood as:

$$p(\mathbf{y}|\mathbf{X}, \alpha, \sigma) = \mathcal{N}\left(\mathbf{y}|\mathbf{0}, \alpha\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Two Dimensional Gaussian

- Consider height, h/m and weight, w/kg.
- Could sample height from a distribution:

 $p(h) \sim \mathcal{N}(1.7, 0.0225)$

• And similarly weight:

 $p(w) \sim \mathcal{N}(75, 36)$

Height and Weight Models

Marginal Distributions

distributions for height and weight.

Marginal Distributions

Marginal Distributions

Marginal Distributions

Marginal Distributions

Marginal Distributions

Independence Assumption

• This assumes height and weight are independent.

$$p(h,w) = p(h)p(w)$$

• In reality they are dependent (body mass index) = $\frac{w}{h^2}$.

Marginal Distributions

Marginal Distributions

Marginal Distributions

Marginal Distributions

Urtasun and Lawrence ()

p(w,h) = p(w)p(h)

$$p(w,h) = \frac{1}{\sqrt{2\pi\sigma_1^2}\sqrt{2\pi\sigma_2^2}} \exp\left(-\frac{1}{2}\left(\frac{(w-\mu_1)^2}{\sigma_1^2} + \frac{(h-\mu_2)^2}{\sigma_2^2}\right)\right)$$

$$p(w,h) = \frac{1}{2\pi\sqrt{\sigma_1^2 \sigma_2^2}} \exp\left(-\frac{1}{2}\left(\begin{bmatrix}w\\h\end{bmatrix} - \begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\right)^\top \begin{bmatrix}\sigma_1^2 & 0\\0 & \sigma_2^2\end{bmatrix}^{-1}\left(\begin{bmatrix}w\\h\end{bmatrix} - \begin{bmatrix}\mu_1\\\mu_2\end{bmatrix}\right)$$

$$p(\mathbf{y}) = rac{1}{2\pi \left|\mathbf{D}
ight|} \exp\left(-rac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{ op}\mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu})
ight)$$

Form correlated from original by rotating the data space using matrix ${\bf R}.$

$$\rho(\mathbf{y}) = \frac{1}{2\pi |\mathbf{D}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{D}^{-1}(\mathbf{y} - \boldsymbol{\mu})\right)$$

Form correlated from original by rotating the data space using matrix \mathbf{R} .

$$\rho(\mathbf{y}) = \frac{1}{2\pi \left|\mathbf{D}\right|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})^{\top}\mathbf{D}^{-1}(\mathbf{R}^{\top}\mathbf{y} - \mathbf{R}^{\top}\boldsymbol{\mu})\right)$$

Form correlated from original by rotating the data space using matrix ${\bf R}.$

$$p(\mathbf{y}) = rac{1}{2\pi \left|\mathbf{D}
ight|^{rac{1}{2}}} \exp\left(-rac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{ op} \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{ op}(\mathbf{y}-\boldsymbol{\mu})
ight)$$

this gives a covariance matrix:

$$\mathbf{C}^{-1} = \mathbf{R} \mathbf{D}^{-1} \mathbf{R}^{ op}$$

Form correlated from original by rotating the data space using matrix \mathbf{R} .

$$p(\mathbf{y}) = rac{1}{2\pi \left|\mathbf{C}\right|^{rac{1}{2}}} \exp\left(-rac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top}\mathbf{C}^{-1}(\mathbf{y}-\boldsymbol{\mu})
ight)$$

this gives a covariance matrix:

 $\mathbf{C} = \mathbf{R} \mathbf{D} \mathbf{R}^{\top}$

Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

② Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

② Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

$$\mathbf{y}_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}
ight)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

$$\mathbf{y}_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Sum of Gaussian variables is also Gaussian.

$$\mathbf{y}_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

wy
$$\sim \mathcal{N}\left(\mathbf{w}\mu,\mathbf{w}^{2}\sigma^{2}
ight)$$

Multivariate Consequence

 $\mathbf{x} \sim \mathcal{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$

And

• If

 $\mathbf{y} = \mathbf{W}\mathbf{x}$

• Then

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{\mu}, \mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^{ op}
ight)$$

Multivariate Consequence

$$\mathbf{x} \sim \mathcal{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$$

And

• If

$$\mathbf{y} = \mathbf{W}\mathbf{x}$$

• Then

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{W} oldsymbol{\mu}, \mathbf{W} oldsymbol{\Sigma} \mathbf{W}^{ op}
ight)$$

Multivariate Consequence

 $\mathbf{x} \sim \mathcal{N}\left(oldsymbol{\mu}, oldsymbol{\Sigma}
ight)$

And

• If

$$\mathbf{y} = \mathbf{W}\mathbf{x}$$

• Then

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{W} \boldsymbol{\mu}, \mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^{ op}
ight)$$
Sampling a Function

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- We will plot these points against their index.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

0.9 0.8

0.7

0.5 0.4

0.3 0.2

0.1

n

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

0.9 0.8

0.7

0.5 0.4

0.3 0.2

0.1

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

0.9 0.8

0.7

0.5 0.4

0.3 0.2

0.1

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

Figure: A sample from a 25 dimensional Gaussian distribution.

0.9

0.7

0.5 0.4

0.3 0.2

0.1

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f_2 from f_1 requires conditional density.
- Conditional density is *also* Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = egin{bmatrix} k_{1,1} & k_{1,2} \ k_{2,1} & k_{2,2} \end{bmatrix}$$

The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f_* from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f},\mathbf{K}_{*,*}-\mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}
ight)$$

• Here covariance of joint density is given by

$$\mathbf{K} = egin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- \bullet Prediction of f_{\ast} from f requires multivariate conditional density.
- Multivariate conditional density is *also* Gaussian.

$$\begin{split} \rho(\mathbf{f}_*|\mathbf{f}) &= \mathcal{N}\left(\mathbf{f}_*|\boldsymbol{\mu},\boldsymbol{\Sigma}\right)\\ \boldsymbol{\mu} &= \mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f}\\ \boldsymbol{\Sigma} &= \mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}\\ \bullet \text{ Here covariance of joint density is given by} \end{split}$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \\ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k\left(\mathbf{x},\mathbf{x}'
ight) = lpha \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|_{2}^{2}}{2\ell^{2}}
ight)$$

- Covariance matrix is built using the *inputs* to the function **x**.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k\left(\mathbf{x},\mathbf{x}'
ight) = lpha \exp\left(-rac{\|\mathbf{x}-\mathbf{x}'\|_{2}^{2}}{2\ell^{2}}
ight)$$

- Covariance matrix is built using the *inputs* to the function **x**.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_1 = -3.0, \ x_1 = -3.0$$
$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_2 = 1.20, x_1 = -3.0$$
$$0.110$$
$$0.110$$
$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_2 = 1.20, x_2 = 1.20$$
$$0.110$$
$$0.110$$
$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.40, x_1 = -3.0$$
$$0.110 \quad 0.110$$
$$0.110 \quad 1.00$$
$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.40, x_1 = -3.0$$
$$0.110 \quad 0.0889$$
$$0.110 \quad 1.00$$
$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.40, x_2 = 1.20$$
$$0.110 \quad 0.0889$$
$$0.110 \quad 1.00$$
$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.40, x_2 = 1.20$$
$$0.110 \quad 1.00 \quad 0.995$$
$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.40, x_3 = 1.40$$
$$0.110 \quad 0.0889$$
$$0.110 \quad 1.00 \quad 0.995$$
$$0.0889 \quad 0.995$$
Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.40, x_3 = 1.40$$
$$0.110 \quad 0.0889$$
$$0.110 \quad 1.00 \quad 0.995$$
$$0.0889 \quad 0.995 \quad 1.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3, x_1 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3--3)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3, x_{1} = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - -3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_2 = 1.2, x_2 = 1.2$$
$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_1 = -3$$
$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_1 = -3$$
$$0.11 \quad 1.0$$
$$0.089$$
$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_2 = 1.2$$
$$0.11 \quad 1.0$$
$$0.089$$
$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_2 = 1.2$$
$$0.11 \quad 1.0$$
$$0.089 \quad 1.0$$
$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_2 = 1.2$$
$$\left[\begin{array}{c} 1.0 & 0.11 & 0.089\\ 0.11 & 1.0 & 1.0\\ 0.089 & 1.0\\ k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)\end{array}\right]$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_3 = 1.4$$
$$\begin{pmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \\ k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right) \end{pmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_3 = 1.4, x_3 = 1.4$$
$$\begin{pmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \\ 0.089 & 1.0 & 0.089 \\ 0.11 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.10 & 0.089 \\ 0.089 & 0.089 \\ 0.080 & 0.089 \\ 0.080 & 0.089 \\ 0.080 & 0.080 \\ 0.080 & 0.08$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, x_1 = -3$$
$$0.11 \quad 1.0 \quad 1.0$$
$$0.089 \quad 1.0 \quad 1.0$$
$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, \ x_1 = -3$$
$$0.11 \ 1.0 \ 1.0$$
$$0.089 \ 1.0 \ 1.0$$
$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, x_1 = -3$$
$$\begin{pmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \\ 0.044 \end{pmatrix}$$
$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & 0.92 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, x_2 = 1.2$$
$$\left(\begin{array}{c} 1.0 & 0.11 & 0.089 & 0.044\\ 0.11 & 1.0 & 1.0 & 0.92\\ 0.089 & 1.0 & 1.0\\ 0.044 & 0.92\end{array}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, x_3 = 1.4$$
$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & 0.92 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & 0.92 & 0.96 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, x_3 = 1.4$$
$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$
$$x_4 = 2.0, x_4 = 2.0$$
$$\begin{pmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 \\ \end{pmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 & 0.96 \\ 0.044 & 0.92 & 0.96 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_1 = -3.0, \ x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$
Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$\left[\begin{array}{cccc}
4.00 & 2.81 & 2.72 \\
2.81 & 4.00 \\
2.72 & 4.00
\end{array}\right]$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

Outline

The Gaussian Density

- 2 Covariance from Basis Functions
 - 3 Basis Function Representations
 - 4 Constructing Covariance
 - 5 GP Limitations
 - 6 Conclusions

Basis Function Form

Radial basis functions commonly have the form

$$\phi_k(\mathbf{x}_i) = \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2}{2\ell^2}\right)$$

 Basis function maps data into a "feature space" in which a linear sum is a non linear function.

Figure: A set of radial basis functions with width $\ell = 2$ and location parameters $\mu = \begin{bmatrix} -4 & 0 & 4 \end{bmatrix}^{\top}$.

Basis Function Representations

• Represent a function by a linear sum over a basis,

$$f(\mathbf{x}_{i,:};\mathbf{w}) = \sum_{k=1}^{m} w_k \phi_k(\mathbf{x}_{i,:}), \qquad (1)$$

• Here: *m* basis functions and $\phi_k(\cdot)$ is *k*th basis function and

$$\mathbf{w} = [w_1, \ldots, w_m]^\top.$$

• For standard linear model: $\phi_k(\mathbf{x}_{i,:}) = x_{i,k}$.

Random Functions

Functions derived using:

$$f(x) = \sum_{k=1}^m w_k \phi_k(x),$$

where **W** is sampled from a Gaussian density,

$$w_k \sim \mathcal{N}(\mathbf{0}, \alpha)$$
.

Figure: Functions sampled using the basis set from figure 2. Each line is a separate sample, generated by a weighted sum of the basis set. The weights, **w** are sampled from a Gaussian density with variance $\alpha = 1$.

• Use matrix notation to write function,

$$f(\mathbf{x}_{i};\mathbf{w}) = \sum_{k=1}^{m} w_{k} \phi_{k}(\mathbf{x}_{i})$$

computed at training data gives a vector

 $\mathbf{f} = \mathbf{\Phi} \mathbf{w}.$

- w and f are only related by a inner product.
- Φ is fixed and non-stochastic for a given training set.
- **f** is Gaussian distributed.
- it is straightforward to compute distribution for **f**

• Use matrix notation to write function,

$$f\left(\mathbf{x}_{i};\mathbf{w}\right) = \sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i}\right)$$

computed at training data gives a vector

 $f = \Phi w$.

- w and f are only related by a inner product.
- Φ is fixed and non-stochastic for a given training set.
- **f** is Gaussian distributed.
- it is straightforward to compute distribution for **f**

• Use matrix notation to write function,

$$f\left(\mathbf{x}_{i};\mathbf{w}\right) = \sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i}\right)$$

computed at training data gives a vector

 $\mathbf{f} = \mathbf{\Phi} \mathbf{w}.$

- w and f are only related by a inner product.
- Φ is fixed and non-stochastic for a given training set.
- **f** is Gaussian distributed.
- it is straightforward to compute distribution for **f**

• Use matrix notation to write function,

$$f\left(\mathbf{x}_{i};\mathbf{w}\right) = \sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i}\right)$$

computed at training data gives a vector

$$f = \Phi w$$
.

• w and f are only related by a inner product.

- Φ is fixed and non-stochastic for a given training set.
- **f** is Gaussian distributed.
- it is straightforward to compute distribution for **f**

• Use matrix notation to write function,

$$f\left(\mathbf{x}_{i};\mathbf{w}\right) = \sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i}\right)$$

computed at training data gives a vector

$$f = \Phi w$$

- w and f are only related by a inner product.
- Φ is fixed and non-stochastic for a given training set.
- f is Gaussian distributed.
- it is straightforward to compute distribution for **f**

• Use matrix notation to write function,

$$f\left(\mathbf{x}_{i};\mathbf{w}\right) = \sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i}\right)$$

computed at training data gives a vector

$$f = \Phi w$$

- w and f are only related by a inner product.
- Φ is fixed and non-stochastic for a given training set.
- **f** is Gaussian distributed.
- it is straightforward to compute distribution for f

• Use matrix notation to write function,

$$f\left(\mathbf{x}_{i};\mathbf{w}\right) = \sum_{k=1}^{m} w_{k} \phi_{k}\left(\mathbf{x}_{i}\right)$$

computed at training data gives a vector

$$f = \Phi w$$
.

- w and f are only related by a inner product.
- Φ is fixed and non-stochastic for a given training set.
- **f** is Gaussian distributed.
- ullet it is straightforward to compute distribution for f f

• We use $\langle \cdot \rangle$ to denote expectations under prior distributions. • We have

 $\left< \mathbf{f} \right> = \boldsymbol{\phi} \left< \mathbf{w} \right>$.

• Prior mean of **w** was zero giving

 $\langle \mathbf{f} \rangle = \mathbf{0}.$

• Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

$$\left\langle \mathbf{f}\mathbf{f}^{\top}\right\rangle = \mathbf{\Phi}\left\langle \mathbf{w}\mathbf{w}^{\top}\right\rangle \mathbf{\Phi}^{\top},$$

 $\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$

giving

- \bullet We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left< \mathbf{f} \right> = \boldsymbol{\phi} \left< \mathbf{w} \right>$$
 .

• Prior mean of w was zero giving

 $\langle \mathbf{f} \rangle = \mathbf{0}.$

• Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

$$\left\langle \mathbf{f}\mathbf{f}^{\top}\right\rangle = \mathbf{\Phi}\left\langle \mathbf{w}\mathbf{w}^{\top}\right\rangle \mathbf{\Phi}^{\top},$$

 $\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$

giving

- \bullet We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left< \mathbf{f} \right> = \boldsymbol{\phi} \left< \mathbf{w} \right>$$
 .

• Prior mean of **w** was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

• Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

$$\left\langle \mathbf{f}\mathbf{f}^{\top}\right\rangle = \mathbf{\Phi}\left\langle \mathbf{w}\mathbf{w}^{\top}\right\rangle \mathbf{\Phi}^{\top},$$

 $\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$

giving

- \bullet We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left< \mathbf{f} \right> = \boldsymbol{\phi} \left< \mathbf{w} \right>$$
 .

• Prior mean of **w** was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

• Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

$$\left\langle \mathbf{f}\mathbf{f}^{\top}\right\rangle = \mathbf{\Phi}\left\langle \mathbf{w}\mathbf{w}^{\top}\right\rangle \mathbf{\Phi}^{\top},$$

 $\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^{\mathsf{T}}.$

giving

- \bullet We use $\langle \cdot \rangle$ to denote expectations under prior distributions.
- We have

$$\left< \mathbf{f} \right> = \boldsymbol{\phi} \left< \mathbf{w} \right>$$
 .

• Prior mean of **w** was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

• Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

$$\left\langle \mathbf{f}\mathbf{f}^{\top}\right\rangle = \mathbf{\Phi}\left\langle \mathbf{w}\mathbf{w}^{\top}\right\rangle \mathbf{\Phi}^{\top},$$

giving

$$\mathbf{K} = \gamma' \mathbf{\Phi} \mathbf{\Phi}^\top.$$

• The prior covariance between two points \mathbf{x}_i and \mathbf{x}_j is

$$k(\mathbf{x}_{i},\mathbf{x}_{j}) = \gamma' \sum_{\ell}^{m} \phi_{\ell}(\mathbf{x}_{i}) \phi_{\ell}(\mathbf{x}_{j})$$

or in vector form

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2 + |\mathbf{x}_j - \boldsymbol{\mu}_k|^2}{2\ell^2}\right)$$

• The prior covariance between two points \mathbf{x}_i and \mathbf{x}_j is

$$k(\mathbf{x}_{i},\mathbf{x}_{j}) = \gamma' \sum_{\ell}^{m} \phi_{\ell}(\mathbf{x}_{i}) \phi_{\ell}(\mathbf{x}_{j})$$

or in vector form

$$k(\mathbf{x}_i,\mathbf{x}_j)=\phi_{:}(\mathbf{x}_i)^{\top}\phi_{:}(\mathbf{x}_j),$$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2 + |\mathbf{x}_j - \boldsymbol{\mu}_k|^2}{2\ell^2}\right)$$

• The prior covariance between two points \mathbf{x}_i and \mathbf{x}_j is

$$k(\mathbf{x}_{i},\mathbf{x}_{j}) = \gamma' \sum_{\ell}^{m} \phi_{\ell}(\mathbf{x}_{i}) \phi_{\ell}(\mathbf{x}_{j})$$

or in vector form

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j),$$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{|\mathbf{x}_i - \boldsymbol{\mu}_k|^2 + |\mathbf{x}_j - \boldsymbol{\mu}_k|^2}{2\ell^2}\right)$$

• The prior covariance between two points \mathbf{x}_i and \mathbf{x}_j is

$$k(\mathbf{x}_{i},\mathbf{x}_{j}) = \gamma' \sum_{\ell}^{m} \phi_{\ell}(\mathbf{x}_{i}) \phi_{\ell}(\mathbf{x}_{j})$$

or in vector form

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j),$$

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{|\mathbf{x}_{i} - \boldsymbol{\mu}_{k}|^{2} + |\mathbf{x}_{j} - \boldsymbol{\mu}_{k}|^{2}}{2\ell^{2}}\right)$$

Need to choose

- Iocation of centers
- 2 number of basis functions
- Consider uniform spacing over a region:

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_i^2 + x_j^2 - 2\mu_k(x_i + x_j) + 2\mu_k^2}{2\ell^2}\right),$$

Need to choose

Iocation of centers

2 number of basis functions

• Consider uniform spacing over a region:

$$k(x_{i}, x_{j}) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_{i}^{2} + x_{j}^{2} - 2\mu_{k}(x_{i} + x_{j}) + 2\mu_{k}^{2}}{2\ell^{2}}\right),$$

Need to choose

- location of centers
- 2 number of basis functions
- Consider uniform spacing over a region:

$$k(x_{i}, x_{j}) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_{i}^{2} + x_{j}^{2} - 2\mu_{k}(x_{i} + x_{j}) + 2\mu_{k}^{2}}{2\ell^{2}}\right),$$

Need to choose

- location of centers
- 2 number of basis functions
- Consider uniform spacing over a region:

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_i^2 + x_j^2 - 2\mu_k(x_i + x_j) + 2\mu_k^2}{2\ell^2}\right),$$

Uniform Basis Functions

• Set each center location to

$$\mu_k = \mathbf{a} + \Delta \mu \cdot (\mathbf{k} - 1).$$

• Specify the bases in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} - \frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}\right).$$

Uniform Basis Functions

• Set each center location to

$$\mu_k = \mathbf{a} + \Delta \mu \cdot (\mathbf{k} - 1).$$

• Specify the bases in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=1}^{m} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} - \frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}\right).$$

Infinite Basis Functions

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu,$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.
Infinite Basis Functions

• Take
$$\mu_0 = a$$
 and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.

• Take limit as $\Delta \mu
ightarrow 0$ so $m
ightarrow \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu,$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

Infinite Basis Functions

• Take
$$\mu_0 = a$$
 and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.

• Take limit as $\Delta\mu
ightarrow 0$ so $m
ightarrow \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu,$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

Infinite Basis Functions

• Take
$$\mu_0 = a$$
 and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m-1)$.

• Take limit as $\Delta\mu
ightarrow 0$ so $m
ightarrow \infty$

$$k(x_i, x_j) = \gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}(x_i + x_j)\right)^2 - \frac{1}{2}(x_i + x_j)^2}{2\ell^2}\right) d\mu,$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

Result

• Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as $a
ightarrow -\infty$ and $b
ightarrow \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

Result

• Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as $a
ightarrow -\infty$ and $b
ightarrow \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right)$$

where
$$\alpha = \gamma \sqrt{\pi \ell^2}$$
.

Result

• Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

 $\bullet\,$ Now take limit as $a\to -\infty$ and $b\to\infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

• A RBF model with infinite basis functions is a Gaussian process.

- The covariance function is the exponentiated quadratic.
- **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different
- Similar results can obtained for multi-dimensional input networks ??.

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different
- Similar results can obtained for multi-dimensional input networks ??.

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different

• Similar results can obtained for multi-dimensional input networks ??.

- A RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- **Note:** The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different
- Similar results can obtained for multi-dimensional input networks ??.

Nonparametric Gaussian Processes

- This work takes us from parametric to non-parametric.
- The limit implies infinite dimensional w.
- Gaussian processes are generally non-parametric: combine data with covariance function to get model.
- This representation *cannot* be summarized by a parameter vector of a fixed size.

- Parametric models have a representation that does not respond to increasing training set size.
- Bayesian posterior distributions over parameters contain the information about the training data.
 - Use Bayes' rule from training data, $p(\mathbf{w}|\mathbf{y}, \mathbf{X})$,
 - Make predictions on test data

$$p(y_*|\mathbf{X}_*,\mathbf{y},\mathbf{X}) = \int p(y_*|\mathbf{w},\mathbf{X}_*) p(\mathbf{w}|\mathbf{y},\mathbf{X}) d\mathbf{w}).$$

- w becomes a bottleneck for information about the training set to pass to the test set.
- Solution: increase *m* so that the bottleneck is so large that it no longer presents a problem.
- How big is big enough for *m*? Non-parametrics says $m \to \infty$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it *is* possible to express *parametric* as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it *is* possible to express *parametric* as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it *is* possible to express *parametric* as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it *is* possible to express *parametric* as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$.

- Now no longer possible to manipulate the model through the standard parametric form given in (1).
- However, it *is* possible to express *parametric* as GPs:

$$k(\mathbf{x}_i,\mathbf{x}_j) = \phi_{:}(\mathbf{x}_i)^{\top} \phi_{:}(\mathbf{x}_j).$$

- These are known as degenerate covariance matrices.
- Their rank is at most *m*, non-parametric models have full rank covariance matrices.
- Most well known is the "linear kernel", $k(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$.

• For non-parametrics prediction at new points f_{\ast} is made by conditioning on f in the joint distribution.

- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points f_* is made by conditioning on f in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points **f**_{*} is made by conditioning on **f** in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points **f**_{*} is made by conditioning on **f** in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

- For non-parametrics prediction at new points **f**_{*} is made by conditioning on **f** in the joint distribution.
- In GPs this involves combining the training data with the covariance function and the mean function.
- Parametric is a special case when conditional prediction can be summarized in a *fixed* number of parameters.
- Complexity of parametric model remains fixed regardless of the size of our training data set.
- For a non-parametric model the required number of parameters grows with the size of the training data.

RBF Basis Functions

$$k\left(\mathbf{x},\mathbf{x}'\right) = \alpha \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\phi}(\mathbf{x}')$$

$$\phi_i(\mathbf{x}) = \exp\left(-rac{\|\mathbf{x}-\mu_i\|_2^2}{\ell^2}
ight)$$
 $\boldsymbol{\mu} = egin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}$

RBF Basis Functions

$$k\left(\mathbf{x},\mathbf{x}'
ight) = lpha \boldsymbol{\phi}(\mathbf{x})^{ op} \boldsymbol{\phi}(\mathbf{x}')$$

Covariance Functions and Mercer Kernels

• Mercer Kernels and Covariance Functions are similar.

- the kernel perspective does not make a probabilistic interpretation of the covariance function.
- Algorithms can be simpler, but probabilistic interpretation is crucial for kernel parameter optimization.

Covariance Functions and Mercer Kernels

- Mercer Kernels and Covariance Functions are similar.
- the kernel perspective does not make a probabilistic interpretation of the covariance function.
- Algorithms can be simpler, but probabilistic interpretation is crucial for kernel parameter optimization.

Covariance Functions and Mercer Kernels

- Mercer Kernels and Covariance Functions are similar.
- the kernel perspective does not make a probabilistic interpretation of the covariance function.
- Algorithms can be simpler, but probabilistic interpretation is crucial for kernel parameter optimization.

Outline

The Gaussian Density

- 2 Covariance from Basis Functions
- 3 Basis Function Representations
- 4 Constructing Covariance
 - 5 GP Limitations
 - 6 Conclusions

Constructing Covariance Functions

• Sum of two covariances is also a covariance function.

$$k(\mathbf{x},\mathbf{x}') = k_1(\mathbf{x},\mathbf{x}') + k_2(\mathbf{x},\mathbf{x}')$$

Constructing Covariance Functions

• Product of two covariances is also a covariance function.

$$k(\mathbf{x},\mathbf{x}')=k_1(\mathbf{x},\mathbf{x}')k_2(\mathbf{x},\mathbf{x}')$$

Multiply by Deterministic Function

- If $f(\mathbf{x})$ is a Gaussian process.
- $g(\mathbf{x})$ is a deterministic function.
- $h(\mathbf{x}) = f(\mathbf{x})g(\mathbf{x})$
- Then

$$k_h(\mathbf{x},\mathbf{x}') = g(\mathbf{x})k_f(\mathbf{x},\mathbf{x}')g(\mathbf{x}')$$

where k_h is covariance for $h(\cdot)$ and k_f is covariance for $f(\cdot)$.

MLP Covariance Function

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \operatorname{asin}\left(\frac{w\mathbf{x}^{\top}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\top}\mathbf{x} + b + 1}\sqrt{w\mathbf{x}'^{\top}\mathbf{x}' + b + 1}}\right)$$

• Based on infinite neural network model.

$$w = 40$$

MLP Covariance Function

$$k\left(\mathbf{x}, \mathbf{x}'\right) = \alpha \operatorname{asin}\left(\frac{w\mathbf{x}^{\top}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\top}\mathbf{x} + b + 1}\sqrt{w\mathbf{x}'^{\top}\mathbf{x}' + b + 1}}\right)$$

• Based on infinite neural network model.

$$w = 40$$

Linear Covariance Function

$$k\left(\mathbf{x},\mathbf{x}'\right) = \alpha \mathbf{x}^{\top} \mathbf{x}'$$

• Bayesian linear regression.

$$\alpha = 1$$

Linear Covariance Function

$$k\left(\mathbf{x},\mathbf{x}'
ight)=lpha\mathbf{x}^{ op}\mathbf{x}'$$

$$\alpha = 1$$

Gaussian Process Interpolation

Figure: Real example: BACCO (see *e.g.* (?)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Noise Models

Graph of a GP

- Relates input variables, X, to vector, y, through f given kernel parameters θ.
- Plate notation indicates independence of $y_i | f_i$.
- Noise model, $p(y_i|f_i)$ can take several forms.
- Simplest is Gaussian noise.

Figure: The Gaussian process depicted graphically.

Gaussian Noise

• Gaussian noise model,

$$p(y_i|f_i) = \mathcal{N}(y_i|f_i, \sigma^2)$$

where σ^2 is the variance of the noise.

• Equivalent to a covariance function of the form

$$k(\mathbf{x}_i, \mathbf{x}_j) = \delta_{i,j} \sigma^2$$

where $\delta_{i,j}$ is the Kronecker delta function.

• Additive nature of Gaussians means we can simply add this term to existing covariance matrices.

Can we determine length scales and noise levels from the data?

$$\mathcal{N}\left(\mathbf{y}|\mathbf{0},\mathbf{K}
ight) = rac{1}{(2\pi)^{rac{n}{2}}|\mathbf{K}|} \exp\left(-rac{\mathbf{y}^{ op}\mathbf{K}^{-1}\mathbf{y}}{2}
ight)$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Can we determine length scales and noise levels from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}) = rac{1}{(2\pi)^{\frac{n}{2}}|\mathbf{K}|} \exp\left(-rac{\mathbf{y}^{\top}\mathbf{K}^{-1}\mathbf{y}}{2}
ight)$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Can we determine length scales and noise levels from the data?

$$\log \mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}) = -\frac{n}{2}\log 2\pi - \frac{1}{2}\log |\mathbf{K}| - \frac{\mathbf{y}^{\top}\mathbf{K}^{-1}\mathbf{y}}{2}$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Can we determine length scales and noise levels from the data?

$$E(\boldsymbol{ heta}) = rac{1}{2} \log |\mathbf{K}| + rac{\mathbf{y}^{ op} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$k_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j; \boldsymbol{\theta})$$

Eigendecomposition of Covariance

$\mathbf{K} = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^\top$

where Λ is a *diagonal* matrix and $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$. Useful representation since $|\mathbf{K}| = |\Lambda^2| = |\Lambda|^2$.

Urtasun and Lawrence ()

Session 1: GP and Regression

 $|\mathbf{\Lambda}| = \lambda_1 \lambda_2$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

$$\Lambda =$$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

 $\begin{array}{c|cccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \hline 0 & 0 & \lambda_3 \end{array}$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2 \lambda_3$$

Urtasun and Lawrence ()

 $\Lambda =$

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

$$|\mathbf{R}\mathbf{\Lambda}| = \lambda_1 \lambda_2$$

Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

$$E(\boldsymbol{\theta}) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\theta) = \frac{1}{2} |\mathbf{K}| + \frac{\mathbf{y} | \mathbf{K}^{-1} \mathbf{y}}{2}$$

Gene Expression Example

Outline

The Gaussian Density

- 2 Covariance from Basis Functions
- 3 Basis Function Representations
- 4 Constructing Covariance
- **GP** Limitations
 - 6 Conclusions

Limitations of Gaussian Processes

- Inference is $O(n^3)$ due to matrix inverse (in practice use Cholesky).
- Gaussian processes don't deal well with discontinuities (financial crises, phosphorylation, collisions, edges in images).
- Widely used exponentiated quadratic covariance (RBF) can be too smooth in practice (but there are many alternatives!!).

Summary

- Broad introduction to Gaussian processes.
 - Started with Gaussian distribution.
 - Motivated Gaussian processes through the multivariate density.
- Emphasized the role of the covariance (not the mean).
- Performs nonlinear regression with error bars.
- Parameters of the covariance function (kernel) are easily optimized with maximum likelihood.

References I

- G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6): 939–948, Jun 2008. [URL]. [DOI].
- A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. BMC Bioinformatics, 12(180), 2011. [DOI].
- R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture Notes in Statistics 118.
- J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. *Biometrika*, 89(4): 769–784, 2002.
- C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, Cambridge, MA, 2006. [Google Books] .
- C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203-1216, 1998.