
Rank Priors for Continuous Non-Linear Dimensionality Reduction

Raquel Urtasun1, Andreas Geiger2, Trevor Darrell1

UC Berkeley EECS & ICSI, Berkeley, U.S.A.1

Karlsruhe Institute of Technology, Germany2

rutasun@csail.mit.edu, geiger@mrt.uka.de, trevor@eecs.berkeley.edu

Many problems involve high dimensional datasets that are computationally challenging to analyze. In
such cases it is desirable to reduce the dimensionality of the data while preserving the original information
in the data distribution, allowing for more efficient learning and inference. Linear dimensionality reduction
techniques (e.g., PCA) have been very popular in the past, due to their simplicity and efficiency. However
in practice they can result in poor approximations when dealing with complex datasets.

Graph-based methods [4] exploit local neighborhood distances to approximate the geodesic distance in the
manifold. They have been shown to be very effective when dealing with large datasets that are homogeniously
sampled. However, they suffer in the presence of noisy and sparse data. Unfortunately, a large set of real
world datasets are sparse. Human motion datasets are comprised of small number of examples of motions
from different subjects performing different activities. While these databases are typically densely sampled
in time, they are sparse in the motion style and activity type. Object recognition databases also suffer from
sparsity: only a few objects are labeled for categories with large variation in appearence.

Non-linear probabilistic models, such as the GPLVM [3], can recover complex manifolds, and have received
considerable attention in recent years [6, 1]. However, they have only been applied to small databases
typically composed of very few examples of a single activity [6]. Moreover, the latent dimensionality was
either chosen by the user or optimized by cross-validation, which is computationally expensive. While their
representation power is desirable, such methods suffer from local minima, since they rely on computationally
expensive optimization of complex non-linear functions that are generally non-convex. Even with the right
dimensionality, if initialized far from the optimimum, they can result in poor representations [5]. Factors
which contribute to this include the distortion introduced by the initialization and the non-convexity of the
optimization. This is aggravated when optimizing very low-dimensional latent spaces, which is typically the
case in applications such as tracking [6].

In this paper we present a new learning paradigm that mitigates the problem of local minima by perform-
ing continuous dimensionality reduction. In contrast to previous GPLVM-based approaches, no distortion is
introduced by an initialization step since the latent coordinates are initialized to be the original observations.
By introducing a prior over the dimensionality of the latent space that encourages sparsity of the singular
values, our method is able to simultaneously estimate the latent space and its dimensionality.

Let Y = [y1, · · · ,yN ]T be the set of observations yi ∈ <D, and let X = [x1, · · · ,xN ]T be the set of
latent variables xi ∈ <Q, with Q � D. Probabilistic LVMs relate the latent variables to a set of observed
variables via a probabilistic mapping, y(d) = f(x) + η, with y(d) the d-th coordinate of y, and η ∼ N (0, θ3)
iid Gaussian noise. The Gaussian Process Latent Variable Model (GPLVM) places a Gaussian process prior
over the space of mapping functions f . Marginalizing over f and assuming conditional independence of the
output dimensions given the latent variables results in

p(Y|X) =
D∏

d=1

N (Y(d)|0,K)

where Y(d) is the d-th column in Y, and K is the covariance matrix, typically defined in terms of a kernel
function. Learning is performed by maximizing the posterior p(X|Y) ∝ p(Y|X)p(X) with respect to the
latent variables X and the kernel hyperparameters Θ. p(X) encodes prior knowledge about the latent space.

PCA and graph-based techniques are commonly used to initialize the latent space in GPLVM-based
dimensionality reduction; both offer closed-form solutions. However, PCA cannot capture non-linear depen-
dencies, LLE gives a good initialization only if the data points are uniformly sampled along the manifold, and
Isomap has difficulty with non-convex datasets [2]. Generally, when initialized far from the global minimum,



the GPLVM optimization can get stuck in local minima [3, 5]. To avoid this problem different priors over
the latent space have been developed. In [7] a prior was introduced in the form of a Gaussian process over
the dynamics in the latent space. This results in smoother manifolds but performs poorly when learning
stylistic variations of a motion or multiple motions [5]. In [5] a prior over the latent space was proposed, in-
spired by the LLE cost function, that encourages smoothness and allows the introduction of prior knowledge,
e.g., topological information about the manifold. However, such prior knowledge is not commonly available,
reducing considerably the applicability of their technique.

Here we introduce a continuous dimensionality reduction technique that initializes the latent space to
the observation space to avoid initial distorsions, and learns the latent space and its dimensionality by
introducing a prior that penalizes latent spaces with high dimensionality. The dimensionality of the latent
space can be described by the rank of the Gram matrix of the latent coordinates, which can be computed
as the number of non-zero eigenvalues. However, it is difficult to enforce directly a prior on the rank since
it is a discrete quantity. Instead, we propose a relaxation that results in a penalty function which gradients
are continuous and can be easily computed. In particular, we introduce a prior of the form

p(X) =
1
Z

exp

(
−α

D∑
i=1

φ(si)

)
(1)

where si are the normalized singular values of the mean-subtracted matrix of latent coordinates, with D the
dimensionality of the latent space, and Z a normalization constant.

Different penalty functions φ can be considered. Common choices for sparsity are the power family and
the (generalized) elastic net. In the power family

φ(si, p) = |si|p (2)

sparsity is achieved for p ≤ 1. The L2 norm (i.e., p = 2) is a well studied penalty, but does not encourage
sparsity. It is equivalent to a Gaussian prior over the singular values in (1). The most commonly used
penalty that encourage sparsity is the L1 norm (i.e., p = 1), that results in a Laplace prior over the singular
values in Eq. (1). This case is in general attractive since the penalty function is linear, and when the
objective function is also linear the optimization can be effectively solved with a Linear Program, even with
large number of variables. However here we are interested in learning non-linear latent spaces; our objective
function is non-linear even when φ is linear. In particular, we minimize the negative log posterior

L =
D

2
ln |K|+ D

2
tr(K−1YYT ) + α

D∑
i=1

φ(si) , (3)

where α controls the influence of the penalty in the optimization. Of particular interest to us are functions φ
that drive small singular values faster towards 0 than larger ones. Examples of such functions are the power
family with p < 1, logarithmic and sigmoid functions.

We demonstrate the effectiveness of our approach to discover the latent structure and its dimensionality
in a variety of artificial datasets. We then illustrate the application of our method to the problem of tracking
and classifying 3D articulated motion. Our approach proofs superior to tracking in the original space and
tracking using standard GPLVM in a variety of synthetic and real databases.
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