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Abstract

From conventional wisdom and empirical studies of an-
notated data, it has been shown that visual statistics such
as object frequencies and segment sizes follow power law
distributions. Using these two as prior distributions, the
hierarchical Pitman-Yor process has been proposed for the
scene segmentation task. In this paper, we add label in-
formation into the previously unsupervised model. Our ap-
proach exploits the labelled data by adding constraints on
the parameter space during the variational learning phase.
We evaluate our formulation on the LabelMe natural scene
dataset, and show the effectiveness of our approach.

1. Introduction
The problem of image segmentation and grouping re-

mains one of the important challenges in computer vision,
as segmenting a scene into semantic categories is one of the
key steps towards scene understanding. As evidenced by
the PASCAL VOC challenge [7], segmentation is still an
unsolved problem - the accuracy of existing approaches is
still insufficient for integration into real-world applications,
e.g., robotics.

In the past few years, approaches based on Markov ran-
dom fields (MRF) have been popular for segmentation [13]
[11] [15]. In these approaches, the image is modelled as an
undirected graphical model, with nodes being pixels and/or
superpixels. Node potentials are defined in terms of the
local evidence, and edge potentials are defined to encour-
age smoothness in the segmentation. The resulting infer-
ence problem is either solved by graph-cuts [4] or message-
passing algorithms [9].

While very effective for certain tasks, these probabilis-
tic models do not reflect the underlying statistics of natu-
ral images. Recent studies show that a wide range of natu-
ral image statistics are distributed according to heavy-tailed
distributions. This problem has been noticed not only for
segmentation, but also for optical flow (denoising) [25], in-
trinsic images [33] and layer extraction [1]. Moreover, long
range dependencies are difficult to capture with MRFs.

The gPb method of [17] computes long-range interac-

tions by building an affinity matrix from local cues via
the Pb response[18] and computing gradients of the corre-
sponding eigenvectors. These gradients are then combined
with local feature gradients to obtain the final gPb function.
[2] applies the oriented watershed transform (OWT) of the
gPb response to form regions, and subsequently construct
the ultrametric contour map (UCM), defining a hierarchi-
cal segmentation. We adopt the gPb function as a basic
boundary model, and we demonstrate in our experiments
that a probabilistic model with a prior which succinctly de-
scribes segment statistics achieves better performance than
the OWT-UCM model.

Sudderth and Jordan [30] proposed an unsupervised
probabilistic model for segmentation that is based on the
Hierarchical Pitman-Yor process (HPY), which is a non-
parametric Bayesian prior over infinite partitions. The HPY
process is a generalization of the hierarchical Dirichlet pro-
cesses (HDP), with heavier-tailed power law prior distribu-
tions. Confirming the findings of Sudderth et al., we show
that the distribution over the size of natural segments as well
as the frequencies that objects appear in an image follow a
power law distribution. Long range dependencies are in-
troduced in their framework via thresholded Gaussian pro-
cesses. Their approach, however, is unsupervised, and does
not leverage the ever growing abundance of annotations and
ground truth data, e.g., LabelMe. As a consequence, the in-
ferred segmentations are not always accurate and have room
for improvement.

In this paper we propose a novel supervised discrimina-
tive Hierarchical Pitman-Yor process (DHPY) approach to
segmentation. In particular, we frame the learning as a reg-
ularized constrained optimization problem, where we max-
imize a variational lower bound on the log likelihood while
imposing the inferred labels at the segment and object lev-
els agree with the ground truth annotations. We borrow in-
tuitions from the literature of cutting plane and subgradi-
ent optimization methods, and derive an efficient method
to train the HPY. At every step of the algorithm the most
violated constraint is introduced into the optimization via
Lagrange multipliers. While we leverage the additional an-
notations, we also inherit the nice properties of [30]; more
specifically, we are able to capture long range dependencies

2281



via thresholded Gaussian process, and we retain the natural
power-law priors.

We demonstrate the effectiveness of our approach in a
dataset composed of 8 different types of scenes and 100 ob-
ject categories taken from the LabelMe dataset [26]. Our
approach outperforms normalized cuts [28], the Ultrametric
Contour Map approach of [2], as well as the unsupervised
HPY [30]. In the remainder of the paper we first review the
related work. We then introduce the HPY process, derive
our supervised DHPY formulation, show empirical results,
and conclude with avenues of future research.

2. Related Work
Markov Random Fields (MRFs) have become a popu-

lar approach to segmentation, as demonstrated by the large
body of work [13, 11, 15]. In these approaches the image
is modeled as an undirected graphical model at the level
of pixels and/or superpixels. Node potentials describe lo-
cal evidence and edge potentials usually encourage smooth-
ness for neighboring pixels/superpixels with the same label.
Several approaches to inference have been proposed for the
MRF, such as graph cuts [4] and belief propagation [9].

One particular form of MRF that directly defines a dis-
criminative distribution of the latent states is the Condi-
tional Random Field (CRF) [29]. Inference is made eas-
ier since the conditional probabilities of the latent labels
given the observations are modelled directly. Another
way that supervision is used is through the fusing of con-
textual information [15]. Context can be added in the
form of global constraints which usually specify class-co-
occurrence and/or conditional dependence in the form of
clique structure.

While effective for segmentation, MRFs have been
shown to be inadequate for modelling the visual statistics
of natural scenes [27]. In this paper, we build on top of the
Hierarchical Pitman-Yor processes, which accurately model
the power law prior distributions, such as the distributions
over the number of objects per image as well as that of the
size of natural segments.

Recently, [5, 6] show that segmentation can be framed
as a two step process. First, candidate segments which can
be part of an object are identified - [5] employs a graph-cut
optimization framework, while [6] uses a CRF model. The
segmentation problem is then formulated as a ranking prob-
lem over the candidate segments, which involves computing
segment-level features such as segment area, perimeter and
shape statistics.

Sudderth and Jordan [30] proposed an unsupervised ap-
proach to image segmentation that models segments of vi-
sual scenes with a hierarchical Pitman-Yor process (HPY).
Thresholded Gaussian process are utilized to capture spatial
coherence among regions. Moreover, this captures long-
range dependences among the observations, which are diffi-

Figure 1: Graphical model of the Hierarchical Pitman-Yor
Process (HPY), applied to natural scene segmentation [30].
Each observation xji is assigned to layer zji, an indicator
variable. The assignment depends on the thresholded GPs
ujt and layer probabilities vjt, which are generated from the
PY stick-breaking prior GEM(αa, αb). Each layer is as-
signed to class cjt, another indicator variable, which follow
the PY prior GEM(γa, γb) where wk are the stick lengths.
Each class has an associated appearance model θk.

cult to achieve with MRFs. In this paper we propose a novel
supervised HPY process framework for segmentation, and
show that the use of annotations significantly improves the
performance over the unsupervised HPY.

Discriminative nonparametric Bayesian models have
been proposed in the context of latent variable models,
e.g., Latent Dirichlet Allocation (LDA) [3, 14]. These ap-
proaches modify the graphical model, by adding either a
generative distribution of the label given the latent state [3]
or a discriminative distribution of the latent state given the
label [14]. However, it is not easy to pick a suitable dis-
tribution, such as generalized linear models (GLM). There
is also the question of how much discriminative power the
modified likelihood can exert on the latent states. Unlike
these approaches, we propose to maximize a variational
lower bound on the log likelihood while imposing the in-
ferred label assignments coincide with the ground truth an-
notations. We derive an efficient method to train the HPY
model. In contrast to other supervised approaches to non-
parametric Bayesian models, our discriminative approach
makes use of supervised data directly resulting in significant
performance improvements over the unsupervised model.

3. A Review of Unsupervised HPY Processes

We now describe the hierarchical Pitman-Yor (HPY)
model for visual scenes [30], which is a generalization
of the hierarchical Dirichlet process (HDP)[31]. In the
next section we will introduce our new supervised HPY
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model. The Pitman-Yor process [22], denoted by φ ∼
GEM(γa, γb), places a prior distribution over partitions
with hyperparameters γa, γb satisfying 0 ≤ γa < 1 and
γb > −γa. It can be defined using the stick-breaking con-
struction as

φk = wk

k−1∏
l=1

(1− wl) = wk(1−
k−1∑
l=1

φl), with

wk ∼ Beta(1− γa, γb + kγa). (1)

The {φk} are the partition probabilities, while the {wk}
are the stick lengths. Note that we recover a Dirichlet pro-
cess, specified by a single concentration parameter γb, when
γa = 0. When γa > 0, the partition probabilities follow
a power-law distribution with a heavy tail. While the PY
process is a prior on infinite partitions, only a finite subset
of partitions will have positive probabilities greater than a
threshold ε. Hence, the PY process implicitly imposes a
prior on the number of partitions.

In the HPY model, two Pitman-Yor process priors are
placed over the distributions of global class categories and
segment proportions. Fig. 1 shows the directed graphical
model. Each image is segmented into superpixels, which
are from now on treated as the observed data units xji. Each
data point is then assigned to a layer with probability

P [zji = t|zji 6= t−1, . . . , 1] = P [ujti < Φ−1(vjt)] = vjt,

where we have introduced a zero mean Gaussian process
(GP) ujt for each layer t. These thresholded GPs com-
pletely determine the layer assignment of each superpixel,
with the assignment rule being

zji = min{t|ujti < Φ−1(vjt)}. (2)

Each layer is associated with a global object class cjt
with an appearance model θk. The emission probability is
then

p(xji|zji = t, cjt = k,θ) = Mult(xji|θk). (3)

with θ = {θ1, · · · } To place PY priors on the dis-
tributions over global class categories and segment pro-
portions, the class assignments cjt are sampled from
φ ∼ GEM(γa, γb), which is the stick-breaking prior de-
scribed above, with wk the stick length. Similarly, the
layer assignment probabilities vjt are sampled from π ∼
GEM(αa, αb).

4. Supervised Hierarchical Pitman-Yor Model
In this section we present our supervised hierarchical

Pitman-Yor process model for image segmentation. We first
derive our variational learning approach and show how to
incorporate supervision by solving a constrained optimiza-
tion problem. We then derive a cutting plane method to
efficiently learn the model.

Following [30], we train the HPY model with a mean
field variational approximation. A completely factorized
variational posterior is introduced as follows

q(u,v, c,w,θ) =

K∏
k=1

q(wk|ωk)q(θk|ηk)×

×
J∏
j=1

T∏
t=1

q(vjt|νjt)q(cjt|κjt)
Nj∏
i=1

q(ujti|µjti),

where the distributions are, with v̄jt = Φ−1(vjt),

q(θk|ηk) = Dir(ηk)

q(cj |κj) = Mult(cj |κj)
q(wk|ωk,a, ωk,b) = Beta(wk|ωk,a, ωk,b)
q(v̄jt|νjt, δjt) = N(v̄jt|νjt, δjt)

q(ujti|µjti, λjti) = N(ujti|µjti, λjti).

We truncate the variational posterior by setting q(vjT =
1) = 1 and q(wK = 1) = 1. We then train the model by
optimizing the lower bound on the marginal likelihood

log p(x|α, γ, ρ) ≥ H(q) + Eq[log p(x, z,u,v, c,w, θ|α, γ, ρ)]

= Eq[log p(x, z,u,v, c,w, θ|α, γ, ρ)]− Eq[log q(u,v, c,w, θ)] ≡ L

This is equivalent to minimizing the KL-divergence be-
tween p and q. The optimization is done through a com-
bination of closed-form updates and gradient descent.

Inference in the unsupervised HPY model produce layer-
level and class-level segmentations using the variational
marginals arg maxt Pq(zji = t) and arg maxk Pq(cjt =
k), where

Pq(zji = t) = Φ(
νjt − µjti√
δjt + λjti

)

t−1∏
τ=1

(1− Φ(
νjτ − µjτi√
δjτ + λjτi

))

Pq(cjt = k) = κjtk

= exp{
∑
i,l

xji,lPq(zji = t)Eq log ηk,l +

k∑
k′=1

Eq logωk′,l},

with Eq log ηk,l = Ψ(ηk,l) − Ψ(
∑
l ηk,l) and Eq logωk′,l

= Ψ(ωk′,t)−Ψ(ωk′,t + ωk′,b) from the Dirichlet posterior
assumption. The last equation stems from the closed-form
update for κjtk.

Let A be the set of annotations. We are provided with
two types of annotations:

A =
{

(asji, a
c
ji)|asji ∈ {1, . . . , T}, acji ∈ {1, . . . ,K}

}
where asji : segment-level annotation, and

acji : class-level annotation.

Segment-level annotations describe the layer assignment of
each observation, while class-level annotation describes the
class assignment of each layer. Note that we have imposed
an absolute ordering on the layers, due to the stick-breaking
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construction of the layer model; in practice, we sort the dif-
ferent layers in decreasing order of their sizes.

We apply supervision constrains that are added to the
variational program. Learning the supervised HPY can then
be formulated as the following maximization problem

max L
s.t. ∀(j, i) ∈ A, Pq(zji = asji) ≥ max

t
Pq(zji = t)

∀(j, i) ∈ A, Pq(cjasji = acji) ≥ max
k

Pq(cjasji = k)

with respect to µjti, λjti, νjt and δjt. Note that the above
probabilities have been defined perviously in terms of these
variables.

We transform the above optimization problem into a sin-
gle objective by adding slack variables

max L −
∑

(i,j)∈A(Csζsji + Ccζcji)

s.t. ∀(j, i) ∈ A, Pq(zji = asji) + ζsji ≥ maxt Pq(zji = t)

∀(j, i) ∈ A, Pq(cjasji = acji) + ζcji ≥ maxk Pq(cjasji = k)

The Lagrangian ` can then be defined as

` = L − Cs
∑

(i,j)∈A

(max
t
Pq(zji = t)− Pq(zji = asji))

−Cc
∑

(i,j)∈A

(max
k

Pq(cjasji = k)− Pq(cjasji = acji))

Maximizing the Lagrangian defines the optimization prob-
lem we solve to learn the discriminative HPY model. The
coefficients Cs and Cc determine the relative weighting the
model puts on minimizing the KL divergence and minimiz-
ing the segmentation error.

Learning: In the unsupervised model gradient descent is
carried out independently for each image and layer. With
the segment-level and class-level constraints, the layers and
images are now dependent, complicating the optimization.
Since adding all constraints to the optimization is computa-
tionally expensive, we derive a cutting plane type algorithm
that selects, during each iteration, the most violated con-
straint and adds it to the optimization. We now explain the
learning process in detail (see also Table 1).

First, we initialize the appearance model multinomial pa-
rameters, setting them according to the class-level annota-
tions. Note that it is possible that our truncated value for
the number of classes, K, is less than the number of global
class categories. We first sort the classes in descending fre-
quency, and lump the truncated classes into a ”background”
class. For classes that have not been observed in the train-
ing data, we randomly sample their appearance model from
the background class, which may exhibit extensive intra-
class variability. We then initialize all the other variational
posteriors.

Within each image, we first train the variational param-
eters in the unsupervised fashion via gradient descent on

Algorithm 1: DHPY
for each k = observed, non-background class

Set ηk =
∑

j,i 1{a
c
ji=k}xj,i∑

j,i 1{ac
ji=k}

for each k = unobserved class
Initialize ηk randomly from background class

Initialize table assignments
Initialize class assignments κjt from acji
Initialize µjti, λjti, νjt, δjt
for each image j = 1 to J

Run unsupervised HPY training
for each i = 1 to Nj

Set assign(i) = Pq(min{t|ujti < Φ−1(vjt)} = t)
Set M = getOptimalPermutation(assign, asji)
Permute layers according to M
Construct new confusion matrix C
Do while

∑
s6=t C(s, t) stabilizes:

Set s∗, t∗ = arg maxs 6=t C(s, t)
Set k∗ = arg maxk Pq(cj,s∗ = k)
Set I∗ = {i|Pq(zji = t∗) < Pq(zji = s∗)}
Set I∗∗ = {i ∈ I∗|Pq(cj,s∗ = acji) < Pq(cj,s∗ = k∗)}
Set ∂Ls = ∂1{i∈I∗}(Pq(zji = t∗)− Pq(zji = s∗))
Set ∂Lc = ∂1{i∈I∗∗}(Pq(cj,s∗ = k∗)− Pq(cj,s∗ = acji))
Run gradient descent with ∂L − Cs∂Ls − Cc∂Lc

end

function getOptimalPermutation(assign, assign gt)
Construct confusion matrix C:
for n = Range(assign)

for m = Range(assign gt)
C(n,m) = |{(i, j)|assign(i) = n, assign gt(j) = m}|

Run Hungarian algorithm with weight matrix C
return matching M

Table 1: Discriminative HPY (DHPY) learning algorithm
using Gradient Descent

the objective L. Next, we permute the layers to minimize
the number of violated constraints. This is necessary since
we imposed an absolute ordering on the layers. The prob-
lem of computing the optimal permutation can be formu-
lated as a bipartite matching on a graph where the nodes are
the assignment labels and the edge weights are the number
of agreements in the layer assignments - or more simply,
the confusion matrix. The intuition behind this reformula-
tion is that a permutation is an independent edge set (or a
matching) since each assignment id can only be permuted
to one other id, and vice versa. The matching is carried out
with the Hungarian algorithm [12].

Once the layers are properly permuted, we iteratively
identify the pair of layers with the most violated constraints,
as motivated by the cutting-plane method in [10]. This cor-
responds to finding the largest off-diagonal entry in the new
confusion matrix. Given this pair of layers, we find the
set of observations which violate these segment-level con-
straints, as well as the subset of observations which violate
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Figure 2: (a,b) Power-law Empirical Distributions across all categories and their fitted Pitman-Yor processes. (c) Performance
in terms of Rand Index as a function of the number of training examples aggregated across categories

the class-level constraints. We now perform gradient de-
scent on these sets of nodes, using the subgradient method
suggested in [23] which approximates

∂

∂x
max f(x) ≈ max

∂f(x)

∂x
∈ S,

where S is the set of subgradients of max f(x). We proceed
until there are no more violated constraints. In practice,
however, this is never accomplished; hence, we iterate until
the number of violated constraints stabilizes.

Modeling Spatial Dependencies: We employ a few
mechanisms to capture spatial dependencies. First, a
bottom-up approach preprocess the data into superpixels
[8, 19, 24, 20, 16], over-segmenting each image into locally
consistent regions. In our experiments, we use TurboPixels
[16]. Recall that in the HPY model, each layer is associated
with a zero mean GP over ujt. If the GPs have diagonal
covariance functions, the model is spatially independent.
More general covariances can encode affinities among pairs
of data features. In particular, for an image j, we employ a
covariance that incorporates intervening contour cues based
on the gPb detector [2],

Wj(xi, xi′) = exp{−||x̄i − x̄i
′ ||2

2σ2
sp

}(1− gPb(xi, xi′))σgpb ,

where σsp and σgpb are constants, x̄i is the centroid of the i-
th superpixel and gPb(xi, xi′) is the maximal gPb response
along the line between the two superpixels’ centroids. To
induce sparsity, we also included a neighborhood parame-
ter, εn; the covariance entry is zero if the corresponding su-
perpixel centroids are more than εn pixels apart; otherwise,
the value is the same as above. Since Wj is a covariance
matrix, it is required to be positive semi-definite (PSD). To
ensure that the covariance is PSD, we compute the eigen-
decomposition of Wj and retain only the eigenvalues that
are at least εeig times the maximal eigenvalue. This is done
for robustness and computational reasons (the feature di-
mension becomes smaller).

5. Experimental Evaluation

We validate our approach on the natural scene dataset of
[21, 30], which is a subset of the LabelMe [26] database.
The dataset consists of eight categories and a total of 2,688
images, each comprising a number of manually segmented
polygons with a semantic text label. For all experiments, we
use σsp = 300, σgpb = 0.3, εn = 200, and εeig = 0.001,
which are estimated via cross-validation.

Each image is first preprocessed into roughly 1,000 su-
perpixels. We use a local texton histogram quantized to 64
bins and a color histogram quantized to 100 bins as fea-
tures. For each image, the segments are sorted in decreas-
ing order, with the largest segment assigned to be layer 1.
The segment label for each superpixel is then computed as
the majority segment id among the encompassing pixels.
The class label is taken to be the most frequent unigram,
accounting for plurals and ignoring labels marked as oc-
cluded. The empirical distributions of the segment sizes (in
terms of superpixels) and class counts are shown in Fig. 2.
The asymptotic linearity in the loglog plot is evidence of a
power law distribution; fitted Pitman-Yor priors are shown.

A single HPY and DHPY model is trained for each cat-
egory. In our experiments, we set the number of global
classesK to be 100 (across all scene categories); we bundle
the truncated classes into a background class. For compu-
tation reasons, we set the number of segments T to be the
same as the number of global classes. The crucial class-
level PY hyperparameters γa, γb are set to their fitted values
(0.7 and 0.5 respectively). Similarly, the segment-level PY
hyperparameters αa, αb are set to the globally fitted values
(0.65 and 4.8).

The segmentation is computed as the class with the max-
imal posterior probability of assignment. Results are re-
ported with respect to the ground truth (manual segmenta-
tion) in terms of two metrics: the Rand index [32] and the
Pascal score. The Rand index measures the similarity be-
tween two data clustering schemes. Given two cluster as-
signments X and Y, it is defined as
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(Rand Index) (Pascal Score)
Figure 3: Performance across the 8 categories for our approach and the baselines. Best viewed in color.

RandIndex(X,Y ) =
# Agreements between X,Y

All possible pairs

The Pascal score, on the other hand, measures the num-
ber of correctly labelled segments. Note that the Rand index
does not require a particular assignment permutation, while
the Pascal score depends on the permutation. The prob-
lem of computing the optimal Pascal score (with the opti-
mal permutation) can be formulated as a bipartite matching
problem, as explained in the previous section (see Table 1).

We compare our supervised model (DHPY) with the un-
supervised HPY model, as well as Normalized Cuts (Ncut)
and the thresholded Oriented Watershed Transform - Ultra-
metric Contour Map (OWT-UCM) [2]. The unsupervised
HPY model is initialized with the same parameters as the
DHPY. The Ncut baseline is performed on the covariance
matrix used in our thresholded Gaussian processes, which
makes use of the discriminative gPb detector as well as an
Euclidean smoothness metric. For each image, we com-
pute Ncut assuming the number of clusters is the number of
segments in the ground truth annotation. The OWT-UCM
baseline is built on top of the state-of-the-art gPb contour
detector; given a threshold value, closed regions can be ob-
tained by computing the connected components in the im-
age. Since we do not know the optimal threshold a priori,
we run three OWT-UCM baselines, with the threshold being
0.25, 0.50 and 0.75.

The results across the 8 categories are shown in Fig. 3,
in terms of the Rand index and the Pascal score respec-
tively. Our supervised approach improves the performance
of the unsupervised model while reducing the variance.
Across all categories, our model achieves a Rand index of
0.7848± 0.0696 and a Pascal score of 0.8125± 0.0686. In
terms of the Rand Index averaged over all categories, our
method achieves an improvement of 0.1136 over the closest
competitor with a p-value of 0.0223, which is statistically
significant at the 5% level.

We also evaluate the Rand index performance as a func-
tion of the number of training examples. Fig. 2(c) depicts
the Rand index averaged among all categories, while Fig. 4
depicts the index for each individual category. The OWT-
UCM baseline is chosen to be the best one out of the three
thresholded versions. Our model converges to the asymp-
totic performance more quickly, while incurring a smaller
variance with fewer training data. Finally, we show seg-

mentation outputs from the different models in Fig. 5.

6. Conclusion
We have proposed a novel supervised Discriminative Hi-

erarchical Pitman-Yor (DHPY) model, and demonstrated
its effectiveness on a natural scene dataset with man-
ual human annotations. Our approach outperforms sev-
eral baselines, notably the unsupervised HPY model and
the OWT-UCM algorithm. Moreover, we have formu-
lated a new constrained optimization framework for non-
parametric Bayesian models which can directly and dis-
criminatively train the likelihood distribution, while incor-
porating the power law priors that are appropriate for gener-
ating the visual statistics in natural scenes. In the future we
plan to investigate other ways of introducing annotations. 1
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Figure 4: Rand Index as a function of the number of training examples for the different categories.
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(a) Raw Image

(b) Ground Truth

(c) HPY model

(d) DHPY model

(e) N-cut

(f) OWT-UCM(0.25)

(g) OWT-UCM(0.50)

(h) OWT-UCM(0.75)

Figure 5: Segmentation results for categories coast, forest, highway, insidecity, mountain, opencountry, street, tallbuilding.
The different colors represent different segments. The superpixel boundaries are also displayed for rows (b)-(e). Best viewed
in color.
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