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Abstract Discriminative methods for visual object category
recognition are typically non-probabilistic, predicting class
labels but not directly providing an estimate of uncertainty.
Gaussian Processes (GPs) provide a framework for deriving
regression techniques with explicit uncertainty models; we
show here how Gaussian Processes with covariance func-
tions defined based on a Pyramid Match Kernel (PMK) can
be used for probabilistic object category recognition. Our
probabilistic formulation provides a principled way to learn
hyperparameters, which we utilize to learn an optimal com-
bination of multiple covariance functions. It also offers con-
fidence estimates at test points, and naturally allows for an
active learning paradigm in which points are optimally se-
lected for interactive labeling. We show that with an appro-
priate combination of kernels a significant boost in classi-
fication performance is possible. Further, our experiments
indicate the utility of active learning with probabilistic pre-
dictive models, especially when the amount of training data
labels that may be sought for a category is ultimately very
small.
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1 Introduction

Object categorization is a fundamental problem in image
understanding. It remains a challenging learning task given
both the variability of images that objects from the same
class can produce, as well as the substantial expense of
providing high quality image annotations needed to train
accurate models. Discriminative methods for visual cat-
egory learning have yielded promising results in recent
years, including various approaches based on support vec-
tor machines or nearest neighbor classification (Grauman
and Darrell 2005; Zhang et al. 2006; Wallraven et al. 2003;
Nister and Stewenius 2006; Lazebnik et al. 2006; Varma
and Ray 2007; Bosch et al. 2007; Frome et al. 2007; Ku-
mar and Sminchisescu 2007). However, such methods typi-
cally are not explicitly probabilistic, which makes them in-
adequate when estimates of uncertainty are required. At the
same time, probabilistic generative methods that attempt to
directly model the joint distribution of object classes and
their features—though appealing for their ability to estimate
uncertainty during inference—can be impractical for image
recognition applications due to the complexity of represent-
ing the data’s underlying density.

In this work we provide a probabilistic discriminative ap-
proach to object categorization, with the goal of exercising
the advantages of both types of methods. We introduce a
new Gaussian Process (GP) regression method for object
category recognition using a local feature correspondence
kernel. Local feature-based object recognition has several
important advantages, including invariance to various trans-
lational, rotational, affine and photometric transformations,
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and robustness to partial occlusions. Our method is based
on a GP with a covariance function derived from a Pyra-
mid Match Kernel (Grauman and Darrell 2005), which of-
fers an efficient approximation to a partial-match distance
function and can therefore handle outliers and occlusions.
Our model offers some of the known benefits of probabilis-
tic techniques, while still maintaining the power of a dis-
criminative learner. In particular, we show how it enables
both active visual category learning, as well as learning from
multiple image feature sources with an optimal combination
of covariance functions.

Collecting training data for large-scale image category
models is a potentially expensive process. While certain cat-
egories may have a large number of training images avail-
able, many more will have relatively few. A number of inge-
nious schemes have been developed to obtain labeled data
from people performing other tasks (e.g., von Ahn et al.
2006; von Ahn and Dabbish 2004), or directly labeling ob-
jects in images (http://labelme.csail.mit.edu/). To make the
most of scarce human labeling resources it is imperative to
carefully select points for user labeling. The paradigm of
active learning has been introduced in the machine learn-
ing community to address this issue (Freund et al. 1997;
Tong and Koller 2000; McCallum and Nigam 1998; Muslea
et al. 2002; Zhu et al. 2003); with an active learning method,
generally new test points are selected so as to minimize the
model entropy.

GPs have received limited attention in the computer vi-
sion literature to date perhaps due to the fact that they are
conventionally limited to modest amounts of training data:
the learning complexity is O(n3), cubic in the number of
training examples. While recent advances in sparse GPs are
promising (e.g., Lawrence et al. 2002; Shen et al. 2006;
Snelson and Ghahramani 2006; Urtasun and Darrell 2008),
we focus here on the case of active learning with relatively
small numbers of labeled examples (10–100), which is fea-
sible with existing implementations. In this realm, we show
that active learning provides significantly more accurate es-
timates per labeled point than does a conventional random
selection of training points.

Specific choices made regarding image representations
and kernel parameters can greatly influence a classifier’s po-
tential. Even within the domain of local image features and
matching kernels, a variety of alternative interest point de-
tectors, descriptors, match criteria, and feature space quanti-
zation strategies are available. Rather than require a user to
decide a priori which particular items will define the GP’s
covariance function, we show how to automatically optimize
the combination of kernels for the recognition task using the
GP marginal likelihood function. As a result, one can com-
pute a set of potential kernels using a variety of local fea-
ture types, and then directly learn a weight for each such
that the final combination is highly discriminative. While

recent work has considered multiple kernel learning (Varma
and Ray 2007; Kumar and Sminchisescu 2007) and cross-
validation approaches (Bosch et al. 2007) to combine image
feature types within SVM classifiers, to our knowledge our
approach is the first to consider kernel combinations in a
probabilistic setting.

The three main contributions of this paper are (1) a prob-
abilistic discriminative category recognition scheme based
on a Gaussian Process prior with a covariance function de-
fined using the Pyramid Match Kernel, (2) the introduction
of an active learning paradigm for object category learning
which optimally selects unlabeled test points for interactive
labeling, and (3) a probabilistic approach to learn discrim-
inative kernel combinations for multiple local feature types
within a GP framework. We show that with active learning
small amounts of interactively labeled data can provide very
accurate category recognition performance, while with co-
variance functions that optimally combine multiple match-
ing kernels our method obtains state-of-the-art results with
benchmark datasets.

2 Previous Work

Object category recognition has been a topic of active in-
terest in the computer vision literature. Methods based on
local feature descriptors (cf. Lowe 2004; Mikolajczyk and
Schmid 2001) have been shown to offer invariance across a
range of geometric and photometric conditions. Early mod-
els captured appearance and shape variation in a generative
probabilistic framework (Fergus et al. 2003), but more re-
cent techniques have typically exploited methods based on
SVMs or nearest neighbors in a bag-of-visual-words fea-
ture space (Sivic and Zisserman 2003; Nister and Stewenius
2006; Zhang et al. 2006; Moosmann and Jurie 2007).

Several authors have explored correspondence-based ker-
nels (Zhang et al. 2006; Wallraven et al. 2003), where
the distance between a set of local feature descriptors—
potentially including appearance and shape/position—is
computed based on associating pairs of descriptors. How-
ever, the polynomial-time computational cost of correspond-
ence-based distance measures makes them unsuitable for
domains where there are large databases or large numbers
of features per image. In Grauman and Darrell (2005) the
authors introduced the Pyramid Match Kernel (PMK), an
efficient linear-time approximation to a partial match cor-
respondence, and in Lazebnik et al. (2006) it was demon-
strated that a spatial variant—which efficiently represents
the distinction between appearance and image location
features—outperformed many competing m-ethods.

Semi-supervised or unsupervised visual category learn-
ing methods are related to active learning, in that they also
leverage unlabeled examples to learn more accurately when

http://labelme.csail.mit.edu/
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limited labeled examples are available. Generative models
which model visual words as arising from a set of underlying
objects or “topics” based on recently introduced methods for
Latent Dirichlet Allocation have been developed (Sivic et al.
2005; Sudderth et al. 2005) but as yet have not been applied
to active learning nor evaluated on purely supervised tasks.
A semi-supervised method using normalized cuts to cluster
a graph defined by Pyramid Match distances between exam-
ples was presented in Grauman and Darrell (2006b), but this
method is not probabilistic nor does it provide for an active
learning formalism.

In the machine learning literature active learning has been
a topic of recent interest, and numerous schemes have been
proposed for choosing unlabeled points for tagging. For ex-
ample, in Freund et al. (1997) the authors propose using the
disagreement among the committee of classifiers as a cri-
terion for active learning, and show an application to im-
age classification (Abramson and Freund 2004). In Tong
and Koller (2000), unlabeled examples to query are selected
based on minimizing the version space within the SVM for-
mulation, while in Chang et al. (2005) an SVM-based active
learner is applied for image retrieval using color and texture
features.

Within the Gaussian Process framework, the method of
choice has been to look at the expected informativeness of an
unlabeled data point (Lawrence et al. 2002; MacKay 1992).
Specifically, the idea is to choose to query cases that are
expected to maximally influence the posterior distribution
over the set of possible classifiers. Additional studies have
sought to combine active learning with semi-supervised
learning (McCallum and Nigam 1998; Muslea et al. 2002;
Zhu et al. 2003). Our work is significantly different as we
focus on local feature approaches for the task of object cat-
egorization. We explore the GP models, which provide es-
timates for uncertainty in prediction and can be easily ex-
tended to active learning.

Recent work has shown the value of combining multi-
ple local image feature types into a single kernel matrix,
either by using cross-validation with a held-out set of la-
beled images to adjust the weight attached to each (Bosch
et al. 2007), or by optimizing the weights to align the com-
bined kernel with the ideal kernel matrix reflecting the la-
bels on the training data (Kumar and Sminchisescu 2007;
Lin et al. 2007; Varma and Ray 2007). Both tactics have
yielded impressive results in practice. Our proposed method
to optimize kernel weights fits directly within our GP learn-
ing framework, and is distinct in that rather than target the
labels of training examples, it maximizes the evidence of the
probabilistic model.

Gaussian Processes have been recently introduced to the
computer vision literature. While they have been used in Ur-
tasun et al. (2005, 2006) for human motion modeling, gen-
der classification (Kim et al. 2006) and in Williams (2006)

for stereo segmentation, we are unaware of any prior work
on visual object recognition in a Gaussian Process frame-
work.1

3 Approach Overview

Gaussian Processes provide an appealing probabilistic
framework where the uncertainty is modeled conditioned
on the observations. This circumvents the need to ex-
plicitly model the probability distribution of observations,
which are often high-dimensional. Some popular GP mod-
els include GP classification and regression (Rasmusen and
Williams 2006), non-linear dimensionality reduction us-
ing the Gaussian Process Latent Variable Model (GPLVM)
(Lawrence 2004), and Mixture of GPs (Tresp 2000). In the
context of this work, the Gaussian Process classification
and regression framework is especially appealing as it can
be considered a probabilistic counterpart to Support Vec-
tor Machines (SVM) and its variants, which have already
been thoroughly used with much success for object recog-
nition tasks. Beyond providing good accuracy, GP models
for classification and regression are probabilistic, and also
enjoy the benefits common to all kernel-based models.

The main idea of our approach is to construct proba-
bilistic discriminative classifiers for object recognition us-
ing Gaussian Process priors, with covariance functions de-
fined by the Pyramid Match Kernel (GP-PMK). In addition
to offering a novel approach to supervised visual category
learning, we show how this framework also allows both the
learning of optimal combinations of covariance functions,
as well as an active learning strategy—which is especially
preferable when minimal labeling effort is available. Fig-
ure 1 shows the proposed framework for active image cate-
gorization. Given a pool of images of which few are labeled,
the system aims to actively seek labels for unlabeled images
by considering information from both the labeled and unla-
beled sets of images. With the uncertainty estimates the GP
classifier provides, we are able to designate an active learn-
ing criterion to focus labeling efforts on the most ambiguous
unlabeled examples.

In the next section we review classification using GP pri-
ors and discuss the distributions and parameters we employ
for our model. Then in Sect. 5 we present our GP-PMK
model, which is directly suitable for supervised learning
with or without active learning. Then in Sect. 6 we describe
how to optimize the weights to combine multiple matching
kernels computed from different feature sets. Finally, we

1This paper expands on our previous conference publication (Kapoor et
al. 2007); here we provide further explanation of our Gaussian Process
model, extend it to allow combinations of multiple kernel functions,
and report and discuss a number of additional experiments.
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Fig. 1 The active learning framework. The goal of the system is to
query labels for images that are most useful in training

derive an active learning variant that can optimally select
points for interactive labeling in Sect. 7.

Note that throughout we assume that there is one primary
object of interest in an image. Handling multiple objects in
the same image is also an interesting and challenging prob-
lem, and will be the focus of future work.

4 Categorization with Gaussian Processes

Gaussian Process (GP) classification is related to kernel ma-
chines such as Support Vector Machines (SVMs) (Evgeniou
et al. 2000) and Regularized Least Square Classification
(RLSC) and has been well-explored in machine learning. In
contrast to these methods, GPs provide probabilistic predic-
tion estimates and thus are well-suited for active learning.
In this section we briefly review regression and classifica-
tion with Gaussian Process priors and describe our model
choices.

Given a set of labeled data points XL = {x1, . . . ,xn},
with class labels tL = {t1, . . . , tn}, we are interested in clas-
sifying the unlabeled data xu. Under the Bayesian para-
digm, we are interested in the distribution p(tu|X, tL). Here
X = {XL,xu}, and tu is the random variable denoting the
class label for the unlabeled point xu. For sake of simplicity
in discussion we limit ourselves to two-way classification,
hence, the labels are ti ∈ {−1,1}, but this can be extended
to multi-label classification; see Rasmusen and Williams
(2006) for a detailed discussion.

With GP models, a discrete label t for a data point x
can be considered to be generated via a continuous hid-
den random variable y. The soft-hidden label arises due to a
Gaussian Process, which in turn imposes a smoothness con-
straint on the possible solutions. A likelihood model p(t |y)

characterizes the relationship between the soft label y and

the observed annotation t . Thus, when we infer the label tu
for the unlabeled data point xu, we probabilistically combine
the smoothness constraint and the information obtained by
observing the annotations tL.

4.1 Smoothness Constraints via the GP Prior

There exist two different perspectives for regression and
classification with Gaussian Process: the process perspec-
tive and the weight perspective. We overview both in the
following in order to provide background on the basic con-
cepts underlying the GP model.

The process perspective: The smoothness constraint is im-
posed using a Gaussian Process prior that defines the proba-
bilistic relationship between the images X and the soft labels
Y. The distribution p(Y|X) gives higher probability to the
labelings that respect the similarity between the data points.
Intuitively, the assumption is that similar data points should
have the same class assignments/regression values; the sim-
ilarity between two points xi and xj is defined via a kernel
k(xi ,xj ). Probabilistic constraints are imposed on the col-
lection of soft labels Y = {y1, . . . , yn, yu}. In particular, the
soft labels are assumed to be jointly Gaussian and the co-
variance between two outputs yi and yj is typically speci-
fied using a kernel function2 applied to xi and xj . Formally,
p(Y|X) ∼ N (0,K) where K is a (n + 1)-by-(n + 1) kernel
matrix with Kij = k(xi ,xj ), and n + 1 reflects the n labeled
examples and one unlabeled example.

The weight perspective: What we have described above is
the process perspective for regression and classification with
the GP priors. An alternate but mathematically equivalent
interpretation is based on the weight perspective. In this per-
spective the hidden soft-label y arises due to application of a
function f (·) directly on the input data point (i.e. y = f (x)),
which takes the form of a linear combination of orthonormal
basis functions:

f (x) =
∑

k

wkν
1/2
k φk(x) = wT �(x), (1)

where φk are the eigenfunctions of the operator induced
by k in the Reproducing Kernel Hilbert Space (Evgeniou
et al. 2000), νk are the corresponding eigenvalues, wk are
the weights, and �(x) = [ν1/2

1 φ1(x), ν
1/2
2 φ2(x), . . .]T . Note

that the dimensionality of the basis can be infinite. As-
suming a spherical Gaussian prior over the weights, that is
w = [w1,w2, . . .]T ∼ N (0, I), it can be shown that the hid-
den soft labels Y (which result from evaluation of the func-
tion f (·) on the input data points X) are jointly Gaussian

2One can use a non-parametric covariance function, but the number of
parameters to estimate grows exponentially with the amount of training
data.
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Fig. 2 Graphical models in plate notation for classification via
Gaussian Processes. The rounds and squares represent continu-
ous and discrete random variables, respectively. A filled (unfilled)
round/square denotes that the random variable is fully observed (un-
observed). X = {x1, . . . ,xn,xu} is the set of all images and is ob-

served for both labeled and unlabeled data points. The correspond-
ing Y = {y1, . . . , yn, yu} is completely unobserved and the labels
{t1, . . . , tn} are observed only for the training images {xi , . . . ,xn}
and unobserved for the unlabeled image xu

with zero mean and with the covariance given by the kernel
matrix K.

These two different but equivalent perspectives for re-
gression and classification with the GP priors are illustrated
in Fig. 2. Both views lead to different implementations, but
are conceptually equivalent. The process perspective is eas-
ier to implement for the cases when K is non-parametric or
when it is difficult to determine �(x). Similarly, difficulty
arises in using the weights perspective when �(x) is high di-
mensional (possibly infinite dimensional). In such cases it is
easier to follow the process perspective as inference over the
labels can be done by computing the kernel matrix, which
circumvents the need to explicitly evaluate the eigenfunc-
tions. In our work we determine similarities between images
using primarily non-parametric techniques for which the ex-
plicit form of the eigenfunctions is unknown. Thus, in this
work, we follow the process perspective. For details, please
see Seeger (2004).

4.2 The Likelihood Model

The likelihood models the probabilistic relationship be-
tween the observed label t and the hidden label y. The ma-
jority of the likelihood models proposed for GP classifica-
tion use additional latent “squashing” variables that trans-
form unconstrained variables into labels. A wide range of
squashing functions have been developed in the literature
(Rasmusen and Williams 2006) and examples include the
logistic and the probit functions. To make predictions based
on the training set for a test set in these models (i.e., pro-
bit and logit) one has to integrate out the prediction over the

posterior. Since the likelihood is not Gaussian, neither the
posterior, the marginal likelihood, nor the predictions can
be computed analytically. Instead, one has to rely on numer-
ical methods, such as MCMC (Williams and Barber 1998),
or approximations of the posterior, e.g. Laplace and Expec-
tation Propagation (Minka 2001).

In contrast to GP classification, GP regression leads
to efficient analytic solutions for prediction. For Gaussian
Process regression using a Gaussian noise model, the rela-
tion between t and y is given by

p(t |y) = 1√
2πσ 2

e
− (t−y)2

2σ2 , (2)

where σ is the noise model variance. Since this likelihood
model is Gaussian, it leads to a closed form solution for in-
ference. Although originally developed for regression, the
Gaussian noise model has also proven effective for classi-
fication,3 and its performance typically matches the more
complex probit and logit likelihood models noted above.
Due to its simplicity and good performance, in our exper-
iments we use regression (i.e., the Gaussian noise model) to
label variables. Non-Gaussian noise models could also be
applied within the proposed framework, and exploring them
is a topic of interest for future work.

3This method is referred to as least-squares classification in the lit-
erature (see Sect. 6.5 of Rasmusen and Williams 2006) and often
demonstrates performance competitive with more expensive Gaussian
Process classification methods that require approximate inference.
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4.3 Inference

Given the labeled and unlabeled data points, our goal is then
to infer p(tu|X, tL). Specifically:

p(tu|X, tL) ∝
∫

Y
p(tu|Y)p(Y|X, tL). (3)

For a Gaussian noise model we can compute this integral
using closed form expressions. Note that the key quantity to
compute is the posterior p(Y|X, tL), which can be written
as:

p(Y|X, tL) ∝ p(Y|X)p(tL|Y) = p(Y|X)

n∏

i=1

p(ti |yi). (4)

This equation probabilistically combines the smoothness
constraints p(Y|X) imposed via the GP prior and the in-
formation provided in the labels (p(tL|Y)). The posterior as
shown in (4) is simply a product of Gaussians, and the pos-
terior over the soft label yu has a particularly simple form.
Specifically, p(yu|X, tL) ∼ N (ȳu, σ

2
u ), where:

ȳu = k(xu)
T (σ 2I + KLL)−1tL, (5)

�u = k(xu,xu) − k(xu)
T (σ 2I + KLL)−1k(xu). (6)

Here, k(xu) is the vector of kernel function evaluations with
n training points, and KLL = {k(xi ,xj )}, is the training co-
variance, with xi ,xj ∈ Xu. Further, due to the Gaussian
noise model that links tu to yu, the predictive distribution
over the unknown label tu is also a Gaussian: p(tu|X, tL) ∼
N (ȳu,�u + σ 2).

Note that the posterior mean for both tu and yu is the
same; thus, the unlabeled point xu can be classified accord-
ing to the sign of ȳu. Note that despite the fact that we
only consider sign of the posterior mean for classification,
the uncertainties modeled using the GP prove very useful in
performing two key tasks. First, GPs inherently provide a
principled way to do kernel combination as the probabilis-
tic framework allows us to determine how well a particu-
lar combination of kernels explains the data well. Secondly,
unlike the Regularized Least Square Classification (RLSC)
methods we also get the variance in prediction. As we will
show in Sect. 7, we can exploit these measures of uncer-
tainty to guide an active learning procedure.

4.4 Training with the Gaussian Process Models

The performance of Gaussian Process-based classification
depends upon the chosen kernel used to capture the similar-
ity between examples, as well as the kernel’s hyperparame-
ters, such as the length-scale, the noise variance, and other
parameters determining local feature-based image similar-
ity. Finding the right set of all these parameters can be a

challenge. Many discriminative models (including SVMs)
often use cross-validation, which is a robust measure but
can be prohibitively expensive and problematic when we
have few labeled data points. Learning in a Gaussian Process
framework is equivalent to choosing the kernel hyperpara-
meters of the covariance function. Ideally we would like to
marginalize over these hyperparameters. While approaches
based on Hybrid Monte Carlo have been explored to per-
form this marginalization (Williams and Barber 1998), such
techniques are relatively expensive.

Empirical Bayes is a more computationally efficient al-
ternative where the idea is to maximize the marginal like-
lihood or the evidence, which is nothing but the constant
p(tL|X) that normalizes the posterior. This methodology of
tuning the hyperparameter is often called evidence maxi-
mization, and has been one of the favorite tools for perform-
ing model selection. Evidence is a numerical quantity and
signifies how well a model fits the given data. By comparing
the evidence corresponding to the different models (or hy-
perparameters that determine the model), we can choose the
model and the hyperparameters suitable for the task.

The idea is to choose a set of hyperparameters � that
maximize the evidence: �̂ = arg max� log[p(tL|X,�)].
Note that the log evidence log(p(tL|X,�)) can be written
as a closed form equation for the Gaussian noise model (GP
regression):

logp(tL|X,�) = − 1

2
tTL(σ 2I + KLL)−1tL

− 1

2
log |σ 2I + KLL| − Const.

This objective can be maximized using non-linear optimiza-
tion techniques, such as gradient descent. In this work, we
use gradient-descent to maximize evidence. The optimiza-
tion procedure can perform multiple searches with differ-
ent initializations to deal with the fact that the evidence will
have multiple local optima.

This scheme of learning hyperparameters by maximizing
evidence lets us find the correct parameters without the need
of cross-validation. Further, this procedure can also be used
to learn an ideal linear combination of covariance functions,
which is a useful tool in practice to combine various local
feature object categorization schemes. We show this combi-
nation strategy in Sect. 6.

5 Pyramid Match Kernel Gaussian Processes
(GP-PMK)

To use GPs for object categorization, we need to define a
suitable covariance function. We would like to exploit lo-
cal feature methods for object and image representations.
However, GP priors require covariance functions which are
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positive semi-definite (a Mercer kernel) and traditional co-
variance functions (e.g., RBF) are not suitable for represen-
tations that are comprised of sets of features.

We wish to define a GP with a covariance function based
on a partial match distance function. The idea is to first rep-
resent an image as an unordered set of local features, and
then use a matching over these sets of features to compute
a smoothness prior between images. The optimal least-cost
partial matching takes two sets of features, possibly of vary-
ing sizes, and pairs each point in the smaller set to a unique
point in the larger one, such that the sum of the distances
between the matched points is minimized. The cubic cost
of the optimal matching makes it prohibitive for recognition
with a large number of local image features, yet rich image
descriptions comprised of densely sampled local features are
known to often yield better recognition accuracy (Nowak et
al. 2006).

Therefore, rather than adopt a full partial match kernel for
the GP prior, we use the Pyramid Match (Grauman and Dar-
rell 2005). The Pyramid Match is a linear-time kernel func-
tion over unordered feature sets that approximates the simi-
larity measured by the optimal partial matching, and it forms
a Mercer kernel. A multi-resolution partition (pyramid)
carves the feature space into increasingly larger regions. At
the finest resolution level in the pyramid, the partitions are
very small; at successive levels they continue to grow in size
until a single partition encompasses the entire feature space.
The insight of the Pyramid Match algorithm is to treat points
which share a bin in this pyramid as being matched, and
to use the histograms to read off the number of possible
matches without explicitly searching for correspondences.
Histogram intersection (the sum of the minimum number of
points in a given histogram bin) is used to count the number
of new matches that occur at each resolution level.

The input space S contains sets of feature vectors drawn
from feature space F : S = {F|F = {f1, . . . , fm}}, where each
feature fi ∈ F ⊆ �d , and m = |F|. For example, F might
be the space of SIFT (Lowe 2004) descriptors (d = 128), or
image coordinate positions (d = 2), etc.; a set F contains a
collection of these descriptors extracted from a single image
or object. An L-level histogram pyramid for input example
F ∈ S is defined as: 	(F) = [H0(F), . . . ,HL−1(F)], where
Hi(F) is a histogram vector formed over points in F using
multi-dimensional bins.

The Pyramid Match Kernel (PMK) value between two
input sets F1, F2 ∈ S is defined as the weighted sum of the
number of feature matches found at each level of their pyra-
mids (Grauman and Darrell 2005):

K
 (	(F1),	(F2))

=
L−1∑

i=0

wi

(
I (Hi(F1),Hi(F2)) − I(Hi−1(F1),Hi−1(F2))

)
,

where I denotes histogram intersection, and the difference
in intersections across levels serves to count the number of
new matches formed at level i that were not already counted
at any finer resolution level. Note that Hi(·) corresponds to
histogram at level i, where H−1(·) is always zero and bins
at level i are always larger than those at level i − 1. The
weights are set to be inversely proportional to the size of the
bins, in order to reflect the maximal distance two matched
points could be from one another. As long as wi ≥ wi+1, the
kernel is Mercer.

We thus define a Pyramid Match Gaussian Process model
(GP-PMK) using the prior

p(Y|X) ∼ N (0,K
). (7)

In contrast to previous GP priors, this prior is well-suited for
visual category recognition as it naturally handles represen-
tations based on sets of local image features.

A variety of Pyramid Match Kernels (and thus GP pri-
ors) are possible, given that we have flexibility in choos-
ing the interest operator used to sample local image regions,
the type of descriptor used to describe each region, and the
partitioning strategy used to form the pyramid histogram
bins. To extract local features, we can exploit a wealth of
interest operators designed to detect a sparse set of salient
regions (e.g., Lowe 2004; Mikolajczyk and Schmid 2004;
Kadir and Brady 2003), or simply sample densely at regu-
lar intervals and at multiple scales. To describe each region
or patch, we can choose from an array of descriptors de-
signed to capture local texture while maintaining some in-
variance to small shifts and rotations, such as SIFT (Lowe
2004), shape context (Belongie et al. 2001), or geometric
blur (Berg and Malik 2001).

For low-dimensional feature spaces, the partitions within
each histogram Hi may be placed at uniform intervals to
divide the feature space into equally sized grid cells, as in
Grauman and Darrell (2005) and Lazebnik et al. (2006). For
higher-dimensional feature spaces it is better to place the
partitions non-uniformly in a data-dependent manner, as de-
scribed in Grauman and Darrell (2006a). To encode spatial
position together with the region appearance, each feature fi
can be expanded to include both the image descriptor con-
catenated with the normalized image coordinate at which it
occurred; however, doing so requires standardizing the di-
mensions carefully. An efficient way to incorporate both fea-
ture channels is to use the spatial pyramid match (Lazebnik
et al. 2006), a variant of the PMK that first quantizes the ap-
pearance feature descriptors to form a bag-of-words repre-
sentation, and then sums over the PMK values for each word
in the space of image coordinates. Depending on the image
data, such choices are likely to influence the accuracy of the
GP-PMK model. In the next section, we describe a techni-
cally sound strategy to combine all of these different kernels
such that the resulting kernel is highly discriminatory.
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6 Combining Multiple Covariance Functions

Given multiple kernels K(1), . . . ,K(k) we seek a linear com-
bination of the base kernels such that the resulting kernel K
has good discriminatory power. Formally, we have

K =
k∑

i=1

αiK(i), (8)

where α = {α1, . . . , αk} are the weight parameters that we
wish to optimize. We can take an evidence maximization ap-
proach as described in Sect. 4.4 to solve for these weights.
However, note that the procedure of evidence maximization
is a type-2 maximum likelihood estimation technique and
akin to the principle of MAP estimation we can addition-
ally regularize the objective function. In particular instead
of finding the hyperparameters by maximum likelihood, we
assume a prior distribution over the hyperparameters, p(α),
and choose the maximum-a-posteriori (MAP) estimate. It
can be easily shown that various choices of priors lead to
different choices of regularization. For instance assuming a
Gaussian and a Laplacian prior on α leads to an L2 and
L1 regularized formulation respectively; the latter is well
known to enforce a degree of sparsity on the kernel weights.
Formally the objective we minimize is:

arg min
α

− logp(tL|X,α) + γ1‖α‖1 + γ2‖α‖2

subject to: αi ≥ 0 for i ∈ {0, . . . , k}.
Here, γ1 and γ2 are regularization constants for L1 and L2
norms respectively and often boost recognition performance
when the amount of labeled data is low. The non-negativity
constraints on α ensure that the resulting K is positive-
semidefinite and can be used in a GP formulation (or other
kernel-based methods).

The proposed objective is a non-linear program and can
be solved using any gradient-descent based procedure. In
our implementation we use a gradient descent procedure
where we limit based on the projected BFGS method us-
ing a simple line search. The gradients of the objective are
efficient to compute and can be written as:

δL(α)

δαi

= − 1

2
tTLA−1K(i)

LLA−1tL + 1

2
Tr(A−1K(i)

LL)

+ γ1 + 2γ2α,

where A = σ 2I + KLL and αi ≥ 0 for all i. In our imple-
mentation, the non-negativity constraints for αi are enforced
be considering their form to be an exponential αi = eβi

and then performing an unconstrained optimization to de-
termine optimal values for each βi . Once the parameters α

are found, then the resulting linear combination of kernels
(K) can be used for classification. By selecting the kernel

weights within the GP framework, we allow a user to pro-
vide several feature choices and PMK kernel variants that
seem plausible, with the system itself selecting the most dis-
criminative combination.

Note that learning the kernel combination as described in
this section is a particular parameterization of the GP kernel
being learned, and the method to optimize the particular ob-
jective is principally an instantiation of the general method
described in Sect. 4.4. Also, here we assume that Pyramid
Match kernels (or other similarity measures) are given, and
that aside from the values of α, there are no additional para-
meters to be optimized in the individual kernels. However,
should the individual kernels also have parameters to be set,
then it would be straightforward to extend the optimization
scheme to include those parameters as well.

6.1 Extension to Multi-Class Problems

Object categorization is typically a multiclass problem and
consequently requires a multiclass extension of the kernel
learning framework. Popular techniques include 1-vs-all or
1-vs-1 formulations, where outputs from multiple binary
classifiers trained on 1-vs-rest and pairwise classification
problems are combined respectively. Learning a kernel in-
troduces additional complexity as the optimization proce-
dure for kernel combination should consider all the labels
and result in a single set of global parameters that are infor-
mative about the entire classification task. Learning a global
set of parameters is in general non-trivial, and learning sep-
arate kernels for each binary subproblem has been proposed
(Varma and Ray 2007). Despite the fact that such classwise
parameterizations offer flexibility in modeling each individ-
ual class, these strategies are more prone to overfitting than
global ones when dealing with small number of examples.
As shown below, global optimization of the parameters con-
sistently outperforms classwise optimization in our experi-
ments.

Furthermore, classwise techniques require solving as
many classification tasks as the number of classes; with large
datasets such as Caltech-101 this means that learning has to
be repeated 101 times. While it is unclear how to overcome
these issues in non-probabilistic approaches such as Varma
and Ray (2007), GPs provide a principled and computation-
ally efficient scheme of finding globally optimal parameters.

Lets consider a 1-vs-all formulation of GP classifiers,
where multiple binary classifiers correspond to each indi-
vidual class. Similar to binary classifiers we optimize ker-
nels weights by considering the log evidence, however, for
the multiclass case we consider a joint log-likelihood over
all the classifiers:

L(α) = −
∑

i

logp(Y(i)|X,α).
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Here the sum is taken over all the class labels, and Y(i) are
the labels for ith 1-vs-all problem. This joint likelihood cor-
responds to a probabilistic model that assumes that given
the input images the binary outputs of 1-vs-all problems are
independent. Note that, this assumption is well justified as
given an image its class label is determined by the image
content only. Further, this model allows us to optimize for a
global set of kernel parameters that maximize the joint like-
lihood over all the class labels. Thus, instead of learning a
kernel for every individual class, we can learn an optimal
parameterization that is globally discriminative.

There are additional computational benefits of the above
scheme. Note that in the proposed GP framework, given a
test observation x∗, the mean prediction for a binary classi-
fier can be computed as:

ȳ∗ = k(x∗)T A−1tL , (9)

where k(x∗) is the kernel computed between the training and
test data and A = σ 2I + KLL. The most expensive opera-
tion in such computation is the matrix inversion which has
a time complexity of O(n3) for n training examples and is
independent of the training labels tL. Consequently, once
the inverse is computed, estimating predictions for 1-vs-all
models corresponds to a multiplication with the relevant la-
bel vectors.

This is a significant advantage since the cost of train-
ing all the classifiers in a 1-vs-all formulation is the same
as the cost of training a single classifier. This is especially
beneficial in cases with a large number of classes, and pro-
vides a significant advantage over other methods which sep-
arately need to train different classifiers per class. This ob-
servation readily extends to the kernel learning scenario with
multiple classes. As before, the primary operation is a ma-
trix inversion (computing A−1) that is independent of the
labels. Thus, learning kernels for multiple class problems
using the joint likelihood has similar cost as that of learn-
ing a kernel in a binary problem.4 There are various ways
to make this computation even more efficient. Specifically,
a lot of research has gone into sparsifying GP (Lawrence et
al. 2002; Shen et al. 2006; Snelson and Ghahramani 2006;
Urtasun and Darrell 2008) where the aim is to select a sub-
set of points that are informative or important with respect to
the classification task. Also note that in addition to reducing
manual labeling effort, an active learning formulation does
help us reduce the computational overhead in inference by
reducing the number of needed training points.

Competing approaches for kernel combination (Varma
and Ray 2007) are based on support vector machines. In
contrast to our approach, the method proposed by Varma and

4The computational cost is dominated by the O(n3) cost of inverting
A, with n the number of examples.

Ray (2007) is non-probabilistic and is based on second order
cone programming (SOCP), which has similar or worse time
complexity (Tsang and Kwok 2006). It might be possible to
further improve the performance of SVM-based kernel com-
bination by using cross validation. We can do a local search
for kernel combination parameters around an initial solution
found by the method of Varma and Ray (2007). The time re-
quired to run such an approach is bounded from below by the
time required to first optimize the SVM parameters. Further,
a grid search even within a limited range quickly becomes
infeasible as we increase the number of kernels. For exam-
ple, for eight kernels on the Caltech-101 dataset, grid search
over 21 possible values of each parameter requires training
of 101 · 218 ≈ 3.8 trillions SVMs.

7 Active Learning for Object Categorization

In this section we consider the scenario where our visual
category learner has access to a pool of unlabeled data
XU = {xn+1, . . . ,xn+m}. The task in active learning is to
seek the label for one of these examples and then update
the classification model by incorporating it into the existing
training set. The goal is to select the sample that would max-
imize the benefit in terms of the discriminatory capability of
the system.

With non-probabilistic classification schemes, a popular
heuristic for establishing the confidence of estimates and
identifying points for active learning is to simply use the
distance from the classification boundary (margin). This ap-
proach can also be used with GP classification models, by
inspecting the magnitude of the posterior mean |ȳu|: one
would then choose the next point x∗ as arg minxu∈XU

|ȳu|.
However, GP classification provides us with both the pos-

terior mean as well as the posterior variance for the unknown
label tu. An alternative criteria could be to look at the vari-
ances and select the point that has the maximum variance,
i.e. x∗ = arg maxxu∈XU

�u. However such an approach does
not consider the mean ȳu at all! Further, the expression for
�u does not consider labels from the annotated training data;
this scheme uses only a very limited amount of informa-
tion.

We therefore propose an approach which considers both
the posterior mean as well as the posterior variance. Specif-
ically, we select the next point according to:

x∗ = arg min
xu∈XU

|ȳu|√
�u + σ 2

, (10)

where σ 2 is the noise model variance. This formulation con-
siders uncertainty in the labeling xu as ±1. Note that the
predictive distribution for tu is a Gaussian; however, we
are interested in the binary label decided according to the
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Table 1 Active learning criteria

Method Criteria

Distance

from Boundary (SVM) x∗ = arg minxu∈XU
|ȳu|

Variance x∗ = arg maxxu∈XU
�u

Uncertainty (GP) x∗ = arg minxu∈XU

|ȳu|√
�u+σ 2

sign of tu. To this end we should consider the value p(tu ≥
0) = φ(

ȳu√
�u+σ 2

), where φ(·) denotes the cdf of a standard

normal distribution, to provide the hard label ±1. Further,
we are interested in selecting those samples where the un-
certainty is maximum. The points where the classification
model is most uncertain should have a value for p(tu ≥ 0)

that is close to 0.5—equivalently, a value of |ȳu|√
�u+σ 2

that

is very close to zero. Thus, the criterion in (10) chooses the
unlabeled point where the classification is the most uncer-
tain.

We summarize the methods for identifying points to be
labeled in Table 1, with our strategy given in the third row.
Our active learning approach looks at all the points before
choosing the points to actively label; thus it considers the
whole dataset instead of just looking at individual points.
Further, this scheme considers both the distance from the
boundary as well as the variance in selecting the points; this
is only possible due to the availability of the predictive dis-
tribution in GP regression. In results below we show that
in practice we can effectively choose useful examples to la-
bel, allowing our active GP approach to fare much better
with minimal labeled data than a “passive” random selec-
tion scheme.

8 Experiments and Results

In this section we report results from experiments to demon-
strate (1) the effectiveness of the GP-PMK classification
framework, (2) the ability of the proposed framework to
identify good kernel combinations, and (3) how active learn-
ing can guide the learning procedure to select critical exam-
ples to be labeled. We show how kernel combination and
active learning with Gaussian Process priors yield classifiers
which can learn object categories from relatively few exam-
ples.

Datasets and Implementation Details

We performed supervised and active learning experiments
on two different datasets that are considered standards for
the object categorization task: the Caltech-4 dataset and the
Caltech-101 dataset (which is a superset of Caltech-4). We

compute the similarity between all pairs of images in each
database using the PMK. We use LIBSVM (Chang and Lin
2001) for the SVM baseline tests. In our experiments we set
the noise model variance σ = 10−5 for the Gaussian Process
models and fix C = 10 000 for SVM models. These para-
meter values worked well; we experimented with other val-
ues but found that both SVM and GP classification schemes
were fairly insensitive to the choice of these parameters. Fur-
ther, we initialize all the weights as αi = 1 for the kernel
learning procedure. We found the GP-based kernel learning
to be extremely stable with respect to the initializations.

The object categorization task is a multi-class problem
(nclass = 101 and nclass = 4 for the Caltech-101 and the
Caltech-4, respectively). To handle multiple classes we use
the one-vs-all formulation, where we choose the label cor-
responding to the class with maximum value of the soft la-
bel y. For kernel combination under the one-vs-all classi-
fication scheme we assume a joint model by summing the
log evidence over all the binary classification problems. For
multi-class active learning in every round we select one ex-
ample from each of the one-vs-all classifiers, thus adding
nclass examples every time.

The Caltech-4 database contains 3188 images with four
object classes. There are 1155 rear views of cars, 800 images
of airplanes, 435 images of frontal faces, and 798 images of
motorcycles. The second database is the Caltech-101 data-
base of 101 object categories (Fei-Fei et al. 2006); there are
8677 images in this data set, with between 31 to 800 images
for each of the 101 categories. Our experiments for kernel
combination use 30 images per class (3030 images in total),
and are exactly the same as the ones used in Varma and Ray
(2007). We perform active learning experiments using the
complete Caltech-101 dataset.

We consider various shape and appearance features and
sampling strategies, which are useful to capture the intra-
class variation present in the Caltech-101 images. Specifi-
cally, we look at the following four combinations of match-
ing kernels and features:

• Dense PMK: the PMK with uniformly shaped pyramid
bins, using SIFT descriptors extracted densely from the
images at every 8th pixel in the image from a region of
16 pixels in diameter, with each SIFT descriptor concate-
nated with its normalized image position. We use PCA to
reduce the dimensionality of the SIFT descriptors to 10
before adding the position, yielding features having a to-
tal of 12 dimensions. See Grauman and Darrell (2005) for
details.

• Spatial PMK: The spatial variant of Dense-PMK. We
take the same raw SIFT features, but quantize them into
visual words, and then build one pyramid per word, each
with uniform bins in the space of image coordinates. See
Lazebnik et al. (2006) for details.



Int J Comput Vis

Fig. 3 Performance comparison of GP and SVM classification on
each of the four different kernels used in this work. The figures show
that using the GP framework with supervised learning achieves com-

parable performance to that of SVMs, but with the additional benefit
of retaining a probabilistic formulation

• GB: The Geometric Blur feature of Berg and Malik
(2001) is extracted at sampled edge points. For the kernel
values, the exact correspondences are computed based on
the average minimum distance between points in the two
input sets of features, as in Zhang et al. (2006).

• GBdist: Same as GB, except the feature representation
has an additional geometric distortion term.

The kernel matrices for this dataset using each of these
variants were provided directly by the authors. The first
two kernels are variations of the PMK with different fea-
ture spaces, while the last two kernels use an explicit (non-
approximate) correspondences between geometric blur fea-
tures.

In all our experiments in which comparisons are made
against other methods, we follow the standard testing proto-
col, where a given number of training images (say 15) are
taken from each class at random, and the rest of the data is
used for testing. The mean recognition rate per class is used
as a metric of performance. Note that this metric ensures that
the recognition accuracies are such that classes with large
numbers of examples are not favored. This process is re-
peated 10 times and the average correctness rate is reported.

Classification and Kernel Combination

First, we explore classification performance on individual
kernels using different classification strategies. Figure 3
graphically shows the performance of classification with
Gaussian Process as compared to an SVM classifier. From
the eight graphs we can observe that overall the performance
obtained using either the GP or the SVM is very similar.
However, we note some deviations in performance: for ex-
ample GP is significantly better on the Dense-PMK, whereas
SVM performs very well with GBdist. We also compare per-
formance of these methods with 1-Nearest Neighbor as a
baseline; Table 2 summarizes the accuracy obtained with 15
labeled points per class. Both GP and SVM perform signifi-
cantly better than the 1-Nearest Neighbor classifier. We find
these experiments encouraging, since they indicate that we

Table 2 Recognition accuracy on the Caltech-101 using 15 labeled
points per class

Method GP SVM 1-NN

1-vs-All 1-vs-All

Dense PMK 52.13 ± 0.69 48.77 ± 0.95 24.20 ± 0.48

Spatial PMK 51.90 ± 0.78 54.26 ± 0.65 41.10 ± 0.78

GB 64.15 ± 0.76 65.87 ± 0.92 45.58 ± 0.79

GBDist 58.81 ± 0.58 65.91 ± 0.66 50.23 ± 0.66

Combination 73.95 ± 1.13 -NA- -NA-

need not give up the accuracy of other well-used discrim-
inative methods (like the SVM) in order to gain the other
benefits of having the probabilistic GP model.

In general, the superior performance of a particular clas-
sification algorithm with a specific kernel might be due to
several reasons. For any classification strategy to work well,
the underlying data must support the assumptions made by
the model; whenever the data is favorable to the assumptions
of a method, then we can hope that the algorithm will per-
form well. The point we wish to make here is that GP classi-
fication can often provide comparable or slightly improved
classification performance when compared to SVMs; we do
not have to lose accuracy to gain the predictive uncertainty
offered by probabilistic recognition models.

Effect of Regularization: We also studied how regulariza-
tion of the log evidence affects classification performance.
Figure 4 demonstrates recognition performance of different
regularized and unregularized probabilistic schemes aver-
aged over 10 different splits. As shown in the figure regular-
ization results in a significant improvement in performance,
especially L2; the average gain is very high for small number
of examples (≈12% for 2 examples per class). With two ex-
amples per class, the average accuracy, 47%, is higher than
many prior methods that used a much larger number of label
examples.



Int J Comput Vis

Global versus Classwise Learning: Next, we explore the
performance difference when parameters are trained glob-
ally versus trained separately for each class. Figure 5 (left)
shows a scatter plot where each point represents test accu-
racy obtained on a single train-test split of Caltech-101 data
with 5 labeled examples per class. The figure illustrates per-
formance on 35 different train-test splits when combinations
of the four kernels are learned. Most of the points lie above
the diagonal, which suggests that training parameters glob-
ally is better than classwise training. To judge the signifi-
cance of the results we performed a paired-t test and found
the performance different to be significant at p = 10−3 level.
By jointly maximizing parameters for all classes the clas-
sifier learns representations that are maximally informative
with respect to all the classes simultaneously, as is evident
from superior performance across all three choice of ker-

Fig. 4 Performance comparison of different regularized and un-
regularized version of the probabilistic kernel combination scheme.
A strong regularization results in significantly higher gains specially
when the amount of labeled data is sparse

nel combinations. Classwise training has been the method
of choice as non-probabilistic alternatives such as SVMs
do not have straightforward formulations to optimize the
weights globally—however, as described above, GPs avoid
this problem by forming the joint likelihood of all the labels
given the training data.

We also compare the computational efficiency of our ap-
proach with the scheme of Varma and Ray (2007). Figure 5
(center) shows the time required to learn the kernel com-
bination with four kernels. The method of Varma and Ray
(2007) learns kernels separately for each class using the one-
vs-all formulation of binary SVMs and takes significantly
longer time than the probabilistic combination based on GP.
The GP-based approach learns the kernels simultaneously
for all the classes and has clear computational advantages
vs. training one-vs-all classifiers. In terms of accuracy GP-
based formulation significantly outperforms the SVM for-
mulation (see Fig. 5 (right)).

Finally, we compare GP-PMK classification with state-
of-the-art supervised visual category learning methods that
have been tested on the Caltech-101. Figure 6 shows the per-
formance of an SVM and the classification with GP priors
using the PMK along with other recent methods using the
same evaluation methodology. The PMK was also earlier
used in Grauman and Darrell (2005) with SVMs. Similar to
our findings in Fig. 3, we show in Fig. 6 that classification
with GP-PMK and an identical kernel (Dense-PMK) actu-
ally slightly outperforms the SVM, thus demonstrating the
value in the proposed approach.

We also plot the recognition results obtained with the
combination of kernels learned via evidence maximization
(magenta curve). At 15 points per class we achieve 73.95%
accuracy, which shows the power of combining different
correspondence kernels in the probabilistic framework. In
fact with just eight labeled examples per class the combined
kernel achieves an accuracy of 65.68%, beating recogni-
tion performance by most of the other methods trained with
an individual kernel with any size of the training set. Ta-

Fig. 5 (Left) Comparison of accuracy obtained when optimizing kernels globally versus class wise. Comparison of (center) computational effi-
ciency and (right) statistical efficiency for learning using GPs and Varma and Ray (2007) that uses class wise optimization with SVMs
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Fig. 6 Performance comparison of GP-PMK and GP-Multi-Kernel
classification with reported results from the literature. Using the same
PMK kernel and features, our GP-PMK approach outperforms earlier
SVM-PMK results (Grauman and Darrell 2005). Furthermore, with
an appropriate combination of various kernels (GP-Multi-Kernel), we

obtain recognition performance very competitive with the state-of-the-
art. In fact, we believe our approach is yielding the highest accuracy
to-date on this dataset when learning with few training examples (1 to
10 labeled examples per class)

ble 3 provides a direct comparison with results previously
reported for other approaches that include kernel combina-
tion. Also we plot the accuracy obtained by the method of
Varma and Ray (2007) (68.82%) on the Caltech-101 data
with the same four kernels, and from the results we can con-
clude that GPs provide an effective unifying framework for
classification as well as kernel combination.

We chose to work with this dataset due to the variety of
categories it contains, as well as the large number of ex-
isting results published using it. The accuracy of our GP
framework is a compelling result, with what appear to be the
best performance numbers obtained to-date. We would like
to point out that we have certainly benefited from progress
in recent years due to other work that has, for example,

determined good features that are applicable for this data.
Nonetheless, it is an encouraging result that our method can
automatically learn a good combination from a variety of
existing matching kernels, and greatly improve the state-of-
the-art with quite small labeled training sets.

We would like to point out that the recognition perfor-
mance can be further improved by using additional kernels,
as well as region of interest (ROI) segmentation masks and
hierarchical classification. Also, Varma and Ray (2007) in
their original paper present a higher recognition accuracy
of 87.82% using additional kernels, however, there were
doubts about reproducibility of a subset of kernels used in
that work. Consequently, we limit our detailed evaluation to
the four kernels that are known to be correct and were re-
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Fig. 7 Distribution of weights plotted with MATLAB’s boxplot com-
mand, showing the kernel combinations for various sizes of training
set. All the different kernels are adding discriminatory power to the
classification task. From these plots we see that the weights can be

learned effectively even with a small number of training examples, as
the relative weights are fairly consistent across the plots from top (5
training examples per class) to bottom (15 examples per class)

Table 3 Accuracy reported with kernel combination on the Caltech-
101

Method Accuracy

Ours (4 Kernels) 73.95 ± 1.13

Boiman et al. (2008) 72.80 ± 0.39

Varma and Ray (2007) (4 Kernels) 68.82 ± 1.00

Frome et al. (2007) 60.30 ± 0.70

Lin et al. (2007) 59.80 ± NA

Zhang et al. (2006) 59.08 ± 0.37

Kumar and Sminchisescu (2007) 57.83 ± NA

produced by other researchers independently. Our method
using the same set of six kernels as used in Varma and Ray
(2007) achieves an accuracy of 88.15%.

Also as described above, we compared the kernel com-
bination with GPs and SVMs and our results indicate that

GPs provide a powerful discriminative probabilistic frame-
work for the purpose of object categorization by learning
appropriate descriptors. We also note that the segmentation
implicit in the ROI kernels as shown in Chum and Zisser-
man (2007) is quite powerful and should yield higher over-
all performance than with whole-image kernels. GPs can be
extended easily to the hierarchical combination, which to-
gether with ROIs, should provide a significant performance
boost.

As a final experiment with supervised GP-PMK, we in-
vestigate the distribution of learned weights attributed to the
different matching kernels. Figure 7 displays the range of
weights over the 10 different runs of the algorithm using
MATLAB’s boxplot, which is a graphical representation of
the statistics of the log weights.5 Each row corresponds to

5We use log weights for clarity in plotting.
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a kernel, and the red line in each row denotes the median
over the 10 different runs. The end lines are at the lower and
upper quartile values, and the outliers are data with values
beyond the ends of the whiskers. We show boxplots for runs
with five, 10 and 15 training examples per class. From the
figure we see that this distribution is fairly similar for differ-
ent sizes of training sets. This highlights that we can hope
to learn the kernel weights even with very few data points.
Further, we also notice that the weight corresponding to the
spatial PMK is often fairly high. However, we cannot inter-
pret the weights directly as a measure of importance. This is
due to the fact that the scale of each kernel is different; thus,
the weight encompasses both the discriminatory power as
well as automatic scale adjustment.

Finally, we would like to point out that the mean ac-
curacy with a learned kernel combination using 15 train-
ing examples per class over 10 random train-test splits was
73.95% with a standard deviation of 1.13 (see Table 2).
The low standard deviation value highlights the stability of
the method’s classification accuracy with respect to the data
used to learn the weights. Moreover, in our experiments we
found that GP-based kernel combination (sum of weighted
kernels) was extremely stable with respect to the initializa-
tion. In fact, in all our experiments we perform the opti-
mization only once (as opposed to optimizing with mul-
tiple initializations). As expected, the classification accu-
racy steadily increases as we increase the number of labeled
points; however, the performance is very competitive even
with small number of examples per class (for example GP-
Multi-Kernel is better than most of the methods for 5 exam-
ples per class).

Active Learning for Object Categorization

In this section, we show the value of active learning in se-
lecting examples to annotate. For these experiments, we test
the classification performance on a validation set that in-
cludes 10 examples from each class. We first consider the
binary problem of detecting an object class. Starting with
one labeled example per class, the procedure chooses the
next image to query from the set of images not in the valida-
tion set. We compare the active version of the GP classifica-
tion with a version that selects the points to query randomly.
We again use the mean classification rate per class to com-
pare the methods. We repeat this procedure for 100 different
validation sets.

Figure 8 shows the gain in performance on all the 101
binary problems, averaged over the 100 runs, made by the
active learning scheme on the validation set after 5 exam-
ples are chosen. We can clearly see that for most of the cate-
gories there is a significant positive gain showing the benefit
of the active learning scheme. Further, Fig. 9 shows the per-
formance on various binary problems as we increase the size

of the training set. The figure depicts that the active learning
scheme quickly exploits the uncertainty in its estimates to
select appropriate examples to seek the annotation for. The
random policy on the other hand performs poorly. The fact
that the Caltech-101 dataset has unbalanced numbers of ex-
amples per category affects the random sampling policy; it
does not work well in these unbalanced scenarios because
the training set will usually be skewed towards one class,
resulting in poor accuracy. However, selecting points via ac-
tive learning focuses on points with maximum uncertainty,
irrespective of their label, making the procedure highly ef-
fective.

Next we describe active learning experiments with the
Caltech-4 dataset using multiple feature sampling and pyra-
mid partitioning strategies. The goal here was to investigate
the benefits of the proposed scheme across the spectrum of
kernels available for the task of object categorization. For
this experiment we again experimented with three different
flavors of the Pyramid Match Kernel. Besides Dense PMK,
we also used PMK computed using only sparse interest
points where salient points in the images are detected with
a Harris-Affine interest operator (Harris PMK). The third
PMK variant was vocabulary guided (Vocabulary Guided
PMK) where the features were binned non-uniformly in a
data-dependent manner, as in Grauman and Darrell (2006a).

Figure 10 compares different classification approaches
on the Caltech-4 database for different kinds of kernels. Es-
sentially, the plot shows mean classification accuracy per
class as we vary the total number of examples in the training
data. The images not in the training set are considered as the
test set to compute the classification performance. We plot
the performance of the SVM and the GP classification with
and without active learning. We start with one labeled point
per class. For the SVM and supervised GP without active
learning, we randomly select points as we increase the size
of the training set, whereas for the active learning with GP
classification and SVM we used all the criteria mentioned
in Table 1. This process was repeated 40 times. Figure 10
shows the mean performance together with error bars denot-
ing the standard error.

From Fig. 10 we observe that GP classification again per-
forms competitively with SVM, and using active learning
further improves the performance. Note that active learning
using uncertainty is superior to active learning using just
variance or just the classifier output (margin). The active
learning results that use only the variance are far inferior
to the other methods, mostly due to the fact that this variant
of the criterion does not consider the class label of the data
points already in the training set. A similar observation has
also been made by Krause et al. (2008). On the other hand,
the active learning criterion that uses uncertainty is effective.
In fact we can see that a mean accuracy per class close to
90% can be obtained with just 20 labeled examples, whereas
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Fig. 10 Active learning on the Caltech-4 database using different
kinds of Pyramid Match Kernels and feature types. In each case, our
active learning (uncertainty) approach provides significant gains over

traditional passive approaches that label points at random, while the
GP classification even shows some gains over the SVM

the non-active learners achieve around 85% accuracy for the
same amount of labeled data. This demonstrates that active
learning can provide a significant boost in accuracy across
different flavors of kernels and feature types used in object
categorization. Further, the scheme also makes it possible
for the learning algorithm to learn the object classes even
with very few labeled examples.

Table 4 shows the confusion matrix resulting after incor-
porating only 120 examples in the training set using the ac-
tive learning methodology with Dense PMK. We obtain an
overall accuracy of 98.48%, which demonstrates the effec-
tiveness of the framework. The completely supervised GP
classification and SVM achieved a mean classification ac-
curacy per class of 95.6% and 95.19%, respectively. This
shows that our active learning strategy allows us to learn
object categories much more effectively than traditional su-
pervised classification.

9 Discussion

The experiments in this paper indicate that classification
using GP priors performs competitively with SVM on the
object categorization task with Caltech-101 and Caltech-4
data. Of course, these experiments cannot serve as conclu-
sive proof that classification using a GP prior is inherently
superior than other classification techniques or vice-versa.
Yet for this object categorization task and data, the underly-
ing data density is favorable to the assumptions of the clas-
sification model we are using. The experiments in this paper
strongly suggest that there is a value in looking at GP clas-
sification models for object categorization.

Another important aspect of our framework lies in its
seamless extension to kernel combination and active learn-
ing. The probabilistic paradigm allows us to exploit the evi-
dence maximization framework to principally combine dif-
ferent correspondence kernels. Furthermore, the Bayesian

Table 4 Confusion matrix obtained for Caltech-4 database using ac-
tive learning with the Pyramid Match Kernel (Dense PMK). (120 la-
beled images, mean accuracy over all the classes = 98.48%)

Recognized Class

True Class Cars Faces Airplanes Motorbikes

Cars 1121 0 0 1

Faces 0 416 0 2

Airplanes 0 2 753 20

Motorbikes 10 0 10 733

formulation lets us incorporate measures such as uncer-
tainty, variance, and expected information gain that could
be highly valuable in guiding a supervised learning proce-
dure. One of the challenges in computer vision is the ability
to learn object categories with a low number of examples.
Humans are able to learn object categories and generalize
from a very small number of examples. However, current
machine vision systems are far from achieving performance
akin to humans. One of the principal differences among hu-
mans and existing object classification systems is that hu-
mans have the ability to actively seek supervision from the
environment and other sources of information. We believe
that active learning might enable us to move towards vision
systems that require few examples to learn successfully.

10 Conclusion and Future Work

We have presented a discriminative probabilistic framework
based on Gaussian Process priors and the local feature-
based correspondence kernels, and have shown its utility
for visual category recognition. Gaussian Process regres-
sion provides a principled framework to combine differ-
ent correspondence kernels, which results in performance
superior to individual kernels. Further, the modeling with
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Gaussian Process priors provides direct estimates of pre-
diction uncertainty using a smoothness prior that captures
a correspondence-based notion of similarity between sets
of local image features. We introduced an active learning
method for visual category recognition based on the GP-
PMK uncertainty estimates, and showed empirically that ac-
tive learning can be used to achieve very good recognition
results using far fewer training images than standard super-
vised learning approaches.

We plan to extend the framework to adopt non-Gaussian
noise models, and investigate other active learning formula-
tions such as value of information and/or criteria previously
developed for sparsifying GPs (Lawrence et al. 2002). By
incorporating decision-theoretic formulations we should be
able to learn object categories within a given budget. We
also plan to extend the model to handle multiple objects in
the same image, incorporate semi-supervised learning, and
explore sparse GP techniques for large training sets.
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