
End-to-end Learning of Multi-sensor 3D Tracking by Detection

Davi Frossard1 and Raquel Urtasun1

Abstract— In this paper we propose a novel approach to
tracking by detection that can exploit both cameras as well as
LIDAR data to produce very accurate 3D trajectories. Towards
this goal, we formulate the problem as a linear program that
can be solved exactly, and learn convolutional networks for
detection as well as matching in an end-to-end manner. We
evaluate our model in the challenging KITTI dataset and show
very competitive results.

I. INTRODUCTION

One of the fundamental tasks in perception systems for

autonomous driving is to be able to track traffic participants.

This task, commonly referred to as Multi-target tracking,

consists on identifying how many objects there are in each

frame, as well as link their trajectories over time. Despite

many decades of research, tracking is still an open problem.

Challenges include dealing with object truncation, high speed

targets, lighting conditions, sensor motion and complex

interactions between targets, which leads to occlusion and

path crossing.

Most modern computer vision approaches to multi-target

tracking are based on tracking by detection [1], where first

a set of possible objects are identified via object detectors.

These detections are then further associated over time in a

second step by solving a discrete problem. Both tracking and

detection are typically formulated in 2D, and a variety of

cues based on appearance and motion are exploited.

In robotics, tracking by filtering methods are more prevalent,

where the input is filtered in search of moving objects and their

state is predicted over time [2]. LIDAR based approaches

are the most common option for 3D tracking, since this

sensor provides an accurate spatial representation of the world

allowing for precise positioning of the objects of interest.

However, matching is more difficult as LIDAR does not

capture appearance well when compared to the richness of

images.

In this paper, we propose an approach that can take

advantage of both LIDAR and camera data. Towards this goal,

we formulate the problem as inference in a deep structured

model, where the potentials are computed using convolutional

neural nets. Notably, our matching cost of associating two

detections exploits both appearance and motion via a siamese

network that processes images and motion representations

via convolutional layers. Inference in our model can be

done exactly and efficiently by a set of feedforward passes

followed by solving a linear program. Importantly, our model

is formulated such that it can be trained end-to-end to solve

1 Uber Advanced Technologies Group & University of Toronto
{frossard, urtasun}@uber.com

both the detection and tracking problems. We refer the reader

to Figure 1 for an overview our approach.

II. RELATED WORK

Recent works in multiple object tracking are usually done

in two fronts: Filtering based and batch based methods.

Filtering based methods rely on the Markov assumption

to estimate the posterior distribution of the trajectories.

Bayesian or Monte Carlo filtering methods such as Gaussian

Processes [3], Particle Filters and Kalman Filters [2] are

commonly employed. One advantage of filtering approaches

is their efficiency, which allows for real-time applications.

However, they suffer from the propagation of early errors,

which are hard to mitigate. To tackle this shortcoming, batch

methods utilize object hypotheses from a detector (tracking

by detection) over entire sequences to estimate trajectories,

which allows for global optimization and usage of higher

level cues. Estimating trajectories becomes a data association

problem, i.e., deciding from the set of detections which should

be linked to form correct trajectories. The association can be

estimated with Markov Chain Monte Carlo (MCMC) [4], [5],

linear programming [6], [7] or with a flow graph [8].

Online methods have also been proposed in order to tackle

the performance issue with batch methods [1], [9]. Milan et

al. [10] use Recurrent Neural Networks (RNN) to encode the

state-space and solve the association problem.

Our work also expands on previous research on pixel

matching, which has tipically been used for stereo estimation

and includes methods such as random forest classifiers [11],

Markov random fields (MRF) [12] and, more classically,

slanted plane models [13]. In our research, we focus on a

deep learning approach to the matching problem by exploiting

convolutional siamese networks [14], [15]. Previous methods,

however, focused on matching pairs of small image patches.

In [16] deep learning is exploited for tracking. However, this

approach is only similar to our method at a very high level:

using deep learning in a tracking by detection framework.

Our appearance matching is based on a fully convolutional

network with no requirements for optical flow and learning is

done strictly via backpropagation. Furthermore, we reason in

3D and the spatial branch of our matching networks corrects

for things such as ego-motion and car resemblance. In contrast

[16] uses optical flow and is piecewise trained using Gradient

Boosting.

Tracking methods usually employ hand-crafted feature

extractors with distance functions such as Chi-Square or

Bhattacharyya to tackle the matching problem [8], [9], [17],

[18]. In contrast, we propose to learn both the feature

representations as well as the similarity with a siamese

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3080-8/18/$31.00 ©2018 IEEE 635

Fig. 1: In this work, we formulate tracking as a system containing multiple neural networks that are interwoven together

in a single architecture. Note that the system takes as external input a time series of RGB Frames (camera images) and

LIDAR pointclouds. From these inputs, the system produces discrete trajectories of the targets. In particular, we propose an

architecture that is end to end trainable while still maintaining explainability, we achieve this by formulating the system in a

structured manner.

network. Furthermore, our network takes advantage of both

appearance and 3D spatial cues during matching. This is

possible since we employ a 3D object detector which gives

us 3D bounding boxes.

Motion models have been widely used especially in filtering

based methods. [19] uses a Markov random field to model

motion interactions and [20] uses the distance between

histograms of oriented optical flow (HOOF). For the scope

of tracking vehicles, we have the advantage of not having to

deal with severe deformations (motion-wise, vehicles can be

seen as a single rigid body) or highly unpredictable behaviors

(cars often simply maintain its lane, keep going forward,

make controlled curves, etc), which suggests that spatial cues

should be useful.

Sensory fusion approaches have been widely used in

computer vision. LIDAR and camera are popular sensor sets

employed in detection and tracking [21], [22], [23]. Other

papers also exploit radar [24].

In concurrent work [25] also proposes an end-to-end

learned method for tracking by detection. Ours, however,

exploits a structured hinge loss to backpropagate through

a linear program, which simplifies the problem and yields

better experimental results.

III. DEEP STRUCTURED TRACKING

In this work, we propose a novel approach to tracking by

detection, which exploits the power of structure prediction as

well as deep neural networks. Towards this goal, we formulate

the problem as inference in a deep structured model (DSM),

where the factors are computed using a set of feedforward

neural nets that exploit both camera and LIDAR data to

compute both detection and matching scores. Inference in the

model can be done exactly by a set of feedforward processes

followed by solving a linear program. Learning is done end-to-

end via minimization of a structured hinge loss, optimizing

simultaneously the detector and tracker. As shown in our

experiments, this is very beneficial compared to piece-wise

training.

A. Model Formulation

Given a set of candidate detections x = [x1, x2, ..., xk]
estimated over a sequence of frames of arbitrary length, our

goal is to estimate which detections are true positive as well

as link them over time to form trajectories. Note that this is

a difficult problem since the number of targets is unknown

and can vary over time (e.g., objects can appear any time

and disappear when they are no longer visible).

We parameterize the problem with four types of binary

variables. For each candidate detection xj a binary variable

ydetj encodes if the detection is a true positive. Further, let

ylinkj,k be a binary variable representing if the j-th and k-

th detections belong to the same object. Finally, for each

detection xj two additional binary variables ynewj and yendj

encode whether it is the beginning or the end of a trajectory,

respectively. This is necessary in order to represent the

fact that certain detections are more likely to result in

end of trajectory, for example if they are close to the

end of LIDAR range or if they are heavily occluded. For

notational convenience we collapse all variables into a vector

y = (ydet,ylink,ynew,yend), which comprises all candidate

detections, matches, entries and exits.

We then formulate the multi-target tracking problem as an

integer linear program

maximize
y

θW(x)y

subject to Ay = 0, y ∈ {0, 1}|y|

where θW(x) is a vector comprising the cost of each random

variable assignment, and Ay = 0 is a set of constraints

encoding valid trajectories, as not all assignments are possible.

We now describe the constraints and the cost function in more

details.

636

t t+ 1

x1

x2
x3

θdetW (x1)

θdetW (x2)

θdetW (x3)

θlinkW (x1, x3)

θlinkW (x2, x3)

Matching

Network

Matching

Network

Scoring

Network

Scoring

Network

Scoring

Network

Fig. 2: Illustration of the forward passes over a set of

detections from two frames.

B. Conservation of Flow Constraints

We employ a set of linear constraints (two per detection)

encoding conservation of flow in order to generate non-

overlapping trajectories. This includes the fact that a detection

cannot be linked to a detection belonging to the same frame.

Furthermore, in order for a detection to be active, it has to

either be linked to another detection in the previous frame

or the trajectory should start at that point. Additionally, a

detection can only end if the detection is active and not

linked to another detection in the next frame. Thus, for each

detection, a constraint is defined in the form of

ynewj +
∑

k∈N−(j)

ylinkj,k = yendj +
∑

k∈N+(j)

ylinkj,k = ydetj ∀j

(1)

where N−(j) denotes the candidate detections that could be

matches for the j-th detection xj in the immediately preceding

frame, and N+(j) in the immediately following frame. Note

that one can collapse all these constraints in matrix form to

yield Ay = 0.

C. Deep Scoring and Matching

We refer the reader to Figure 2 for an illustration of the

neural networks we designed for both scoring and matching.

For each detection xj , a forward pass of a Detection Network

is computed to produce θdetW (xj), the cost of using or

discarding xj according to the assignment to ydetj . For each

pair of detections xj and xi from subsequent frames, a

forward pass of the Match Network is computed to produce

θlinkW (xi, xj), the cost of linking or not these two detections

according to the assignment to ylinki,j . Finally, each detection

might start a new trajectory or end an existing one, the costs

for this are computed via θnewW (x) and θendW (x), respectively,

and are associated with the assignments to ynew and yend.

We now discuss in more details the neural networks we

employed.

1) Detection θdetW (x): We exploit object proposals in order

to reduce the search space over all possible detections. In

particular, we employ the MV3D detector [22] to produce

oriented 3D object proposals from LIDAR and RGB data (i.e.,

regions in 3D where there is a high probability that a vehicle

is present). To make sure that the tracker produces accurate

trajectories, we need a classifier that decides whether or not

an object proposal is a true positive (i.e., actually represents

a vehicle). To that end, we employ a convolutional neural

network based on VGG16 [26] to predict whether or not there

is a vehicle in the detection bounding box. Towards this goal,

the 3D bounding boxes from MV3D are projected onto the

camera and the resulting patches are fed to the aforementioned

convolutional neural network to produce detection scores.

2) Link θlinkW (x): One of the fundamental tasks in tracking

is deciding whether or not two detections in subsequent frames

represent the same object. In this work, we use deep neural

networks that exploit both appearance and spatial information

to represent how to match. Towards this goal, we design an

architecture where one branch processes the appearance of

each detection with a convolutional neural network, while two

others consist of feedforward networks dealing with spatial

information in 3D and 2D respectively. The activations of all

branches are then fed to a fully connected layer to produce

the matching score.

To extract appearance features, we employ a siamese

network based on VGG16 [26]. Note that in a siamese

setup, the two branches (each processing a detection) share

the same set of weights. This makes the architecture more

efficient in terms of memory and allows learning with fewer

examples. In particular, we resized each detection to be of

dimension 224 × 224. To produce a concise representation

of the activations without using fully connected layers, each

of the max-pool outputs is passed through a product layer

followed by a weighted sum, which produces a single scalar

for each max-pool layer, yielding an activation vector of

size 5. We use skip-pooling as matching should exploit both

low-level features (e.g., color) as well as semantically richer

features from higher layers.

To incorporate spatial information into the model, we

employ fully connected architectures that model both 2D

and 3D motion. In particular, we exploit 3D information in

the form of a 180× 200 occupancy grid in bird’s eye view

and 2D information from the occupancy region in the frontal

view camera, scaled down from the original resolution of

1242× 375 to 124× 37. In bird’s eye perspective, each 3D

detection is projected onto a ground plane, leaving only a

rotated rectangle that reflects its occupancy in the world. Note

that since the observer is a mobile platform (an autonomous

vehicle, in this case), the coordinate system between two

subsequent frames would be shifted because the observer

moved in the time elapsed. Since its speed in each axis is

known from the IMU data, one can calculate the displacement

of the observer between each observation and translate the

coordinates accordingly. This way, both grids are on the exact

same coordinate system . This approach is important to make

the system invariant to the speed of the ego-car. The frontal

637

Algorithm 1: Inference in the DSM for Tracking

Input : Input RGB+Lidar frames (x);

Learned weights w;

1 for each Temporal window (a, z) ∈ |x| do

2 detections ← Detector(x[a : z],wdet);

3 for each Pair of linkable detections xi, xj ∈
detections do

4 link_score[i,j] ← MatchingNet(xi, xj ,wlink);

5 end

6 LP ← BuildLP(detections, link_score, wnew, wend);

7 trajectories ← Optimize(LP);

8 end

view perspective encodes the rectangular area in the camera

occupied by the target. It is the equivalent of projecting the

3D bounding box onto camera coordinates.

We use fully connected layers to capture the spatial patterns,

since vehicles behave in different ways depending on where

they are with respect to the ego-car. For instance, a car in

front of the observer (in the same lane) is likely to move

forward, while cars on the left lane are likely to come towards

the ego-car. This information would be lost in a convolutional

architecture since it would be spatially invariant.

3) New θnewW (x) / End θendW (x): These costs are simply

learned scalars intended to shift the optimization towards

producing longer trajectories.

D. Inference

As described before, the multi-target tracking problem can

be formulated as a constrained integer programming problem.

While Integer programming is NP-Hard, the constraint matrix

exhibits the total unimodularity property [6], which allows

the problem to be relaxed to a Linear Program while still

guaranteeing optimal integer solutions. Thus, we perform

inference by solving

maximize
y

θW(x)y

subject to Ay = 0, y ∈ [0, 1]|y|
(2)

Note that other alternative formulations exist for the linear

program in the form of a min cost flow problem, which can

be solved via Bellmann-Ford [27] and Successive Shortest

Paths (SSP) [28]. These methods are guaranteed to give the

same solution as the linear program. In this work, we simply

solve the constrained linear program using an off the shelve

solver [29].

Prior to solving the linear program, the costs have to

be computed. This implies computing a feedforward pass

from the detection network for each detection to compute

θdetW (x), as well as a feedforward pass for every pair of

linkable detections to compute θlinkW (x). Note that θnewW (x)
and θendW (x) require no computations since they are simply

learned scalars.

Once the costs are computed, the linear program can then

be solved, yielding the global optimal solution for all frames.

Algorithm 2: End-to-End Learning

Input : Input RGB+LIDAR frames (x);

Ground truth trajectories ŷ;

1 w← initialize();

2 for each Temporal window (a, z) ∈ |x| do

3 detections ← Detector(x[a : z],wdet);

4 for each Pair of linkable detections xi, xj ∈
detections do

5 link_score[i,j] ← MatchingNet(xi, xj ,wlink);

6 end

7 LP ← BuildLossLP(detections, link_score, ŷ, wnew,

wend); (Equation 3)

8 y← Optimize(LP);

9 grads ← ComputeGradients(y, ŷ);

10 w← UpdateStep(w, grads);

11 end

We refer the reader to algorithm 1 for pseudocode of our

approach.

E. End-to-End Learning

One of the main contribution of this work is an algorithm

that allows us to train tracking by detection end-to-end. This

is far from trivial, as it implies backpropagating through a

linear program. We capitalize on the fact that inference can

be done exactly and utilize a structured hinge loss as our loss

function

L(x,y,W) =
∑

x∈X

[

max
y

(

∆(y, ŷ)+θW(x)(y− ŷ

)

]

(3)

with ∆(y, ŷ) being the task loss representing the fact that

not all mistakes are equally bad. In particular, we use the

Hamming distance between the inferred variable values (y)

and the ground truth assignments (ŷ).

We utilize subgradient descent to train our model. Taking

the subgradients of Equation 3 with respect to θW(x) yields

∂L(x,y,W)

∂θW(x)
=

{

0 S ≤ 0

y∗ − ŷ otherwise
(4)

where S denotes the result of the summation over the batch

X in Equation 3. Furthermore, y∗ denotes the solution of

the loss augmented inference, which in this case becomes

maximize
y

θW(x)y +∆(y, ŷ)

subject to Ay = 0, y ∈ [0, 1]|y|
(5)

As the loss decomposes this is again a LP that can be solved

exactly.

We refer the reader to algorithm 2 for a pseudocode of our

end-to-end training procedure.

IV. EXPERIMENTAL EVALUATION

In this section, we present the performance and training

details of our model. We maintain the same train/validation

split as MV3D [22] for consistent validation results since we

use this method as our detector.

638

Method MOTA MOTP MT ML IDS FRAG FP

End to end 70.66% 83.08% 72.17% 4.85% 54 239 1579

Piecewise 69.02% 82.90% 74.75% 3.20% 97 289 1836

TABLE I: Comparison of tracking results between end to end and piecewise learning approaches.

Method MOTA MOTP MT ML IDS FRAG

CEM [30] 51.94 % 77.11 % 20.00 % 31.54 % 125 396
RMOT [31] 52.42 % 75.18 % 21.69 % 31.85 % 50 376
TBD [32] 55.07 % 78.35 % 20.46 % 32.62 % 31 529
mbodSSP [1] 56.03 % 77.52 % 23.23 % 27.23 % 0 699
SCEA [33] 57.03 % 78.84 % 26.92 % 26.62 % 17 461
SSP [1] 57.85 % 77.64 % 29.38 % 24.31 % 7 704
ODAMOT [34] 59.23 % 75.45 % 27.08 % 15.54 % 389 1274
NOMT-HM [35] 61.17 % 78.65 % 33.85 % 28.00 % 28 241
LP-SSVM [36] 61.77 % 76.93 % 35.54 % 21.69 % 16 422
RMOT* [31] 65.83 % 75.42 % 40.15 % 9.69 % 209 727
NOMT [35] 66.60 % 78.17 % 41.08 % 25.23 % 13 150

DCO-X* [37] 68.11 % 78.85 % 37.54 % 14.15 % 318 959
mbodSSP* [1] 72.69 % 78.75 % 48.77 % 8.77 % 114 858
SSP* [1] 72.72 % 78.55 % 53.85 % 8.00 % 185 932
NOMT-HM* [35] 75.20 % 80.02 % 50.00 % 13.54 % 105 351
SCEA* [33] 75.58 % 79.39 % 53.08 % 11.54 % 104 448
MDP [38] 76.59 % 82.10 % 52.15 % 13.38 % 130 387
LP-SSVM* [36] 77.63 % 77.80 % 56.31 % 8.46 % 62 539
NOMT* [35] 78.15 % 79.46 % 57.23 % 13.23 % 31 207
MCMOT-CPD [39] 78.90 % 82.13 % 52.31 % 11.69 % 228 536

DSM (ours) 76.15 % 83.42 % 60.00 % 8.31 % 296 868

TABLE II: KITTI test set results.

A. Dataset

We use the challenging KITTI Benchmark [40] for

evaluation. This dataset consists of 40 sequences (20 for

training/validation, 20 for test) with vehicles annotated in 3D.

For the training set, there is a total of 8026 images and 30601

vehicles with various degrees of truncation and occlusion, the

effects of which are also discussed in this section.

Since each annotated 3D trajectory contains an unique

ID, it is possible to infer where trajectories begin, end and

how detections are linked to form them. This allows us to

determine the ground truth assignments of the binary random

variables.

B. Metrics

To evaluate our matching performance we use the network

accuracy when matching detections between consecutive

frames. For tracking, we use the common MT/ML [41]

metrics and CLEAR MOT [42] (from which we also derive

ID-Switches, Fragmentations and False Positives). We refer

the reader to the references for an in-depth explanation of the

metrics. For completeness, we also add a brief explanation.

The MOT metric accounts for tracker accuracy (MOTA)

and precision (MOTP). Accuracy measures errors in the tra-

jectory configuration: misses, false positives and mismatches.

It gives a measure of how well the tracker is able to detect

objects and keep consistent trajectories. Precision measures

the total error in estimated position between object-hypotheses

pairs. It evaluates the tracker’s ability to estimate precise

object positions.

ID-Switches (IDS) account for the number of times

a trajectory switches its ground-truth ID. Meanwhile, a

fragmentation (FRAG) happens when part of a trajectory

is not covered (usually due to missing detections). Lastly, a

false-positive (FP) is a detection that does not correspond

to any ground-truth bounding box. Note that in the KITTI

benchmark all these metrics are computed in 2D, which does

not fully evaluate our method since no evaluation is done

with respect to the 3D positioning of the trajectories.

MT/ML evaluate how well the tracker is able to follow

an object. A trajectory is considered mostly tracked (MT) if

more than 80% of its ground-truth length is covered by an

estimated trajectory. It is considered mostly lost (ML) when

it is covered for less than 20% of its length. These metrics

account for the percentage of trajectories that fall in each

category.

C. Training Parameters

We use Adam optimizer [43] with a learning rate of

10−5, β1 of 0.9 and β2 of 0.999. The CNNs are initialized

with the pre-trained VGG16 weights on ImageNet and the

fully connected layers (which includes the weights of the

binary random variables y) are initialized by sampling from a

truncated normal distribution (a normal distribution in which

values sampled more than 2 standard deviations from the

mean are dropped and re-picked) with 0 mean and 10−3

standard deviation.

D. Experiments

Comparison to Piecewise Training: First, we evaluate the

importance of training end-to-end. To that end, we compare

two instantiations of our model. The first one is trained end-to-

end while the second one is trained in a piecewise manner. As

shown in Table I end-to-end training outperforms piecewise

training in the metrics that we optimize for, i.e., precision

639

(a) Occlusion. (b) Precision.

(c) Distance. (d) Bounding box size.

Fig. 3: Plot of detections and relative error histograms with respect to appearance conditions.

(a) Occlusion (b) Truncation (c) Lighting (d) Distance

Fig. 4: Failure modes of the matching.

and accuracy, while showing a decrease in coverage. This is

explained by the fact that the network will perform better for

the task it is trained for. Furthermore, there is an inherent

trade-off between coverage and accuracy. The way our cost is

defined pulls the model towards producing shorter but accurate

trajectories (maximize MOTA and minimize ID-switches). We

note that this is better in the context of autonomous driving, as

merging different tracks on the same vehicle can produce very

inaccurate velocity estimates, resulting in possible collisions.

Comparison to State of the Art: In Table II we compare our

model to publicly available methods in the KITTI Tracking

Benchmark. The performance of out approach is competitive

with the state of the art, outperforming all other methods

in some of the metrics (best for MOTP and MT, second

best for ML). Furthermore, it is worth noting that tracking

performance is highly correlated with detection performance

in all tracking by detection approaches.

We also reiterate that our method performs tracking in 3D

(which is not the case in the other methods) and KITTI only

evaluates the metrics in 2D, which does not fully represent the

performance of the approach. We refer the reader to Figure 5

for an example of the trajectories produced by our tracker.

Matching Performance: To validate the efficacy of our

matching network, we compare it against common afinity

metrics used in the literature. In particular, we evaluate

methods that operate in image space by computing the

distance between the distribution of colors in two detections

according to the Bhattacharyya, Chi-Square and Correlation

matrix. We also evaluate spatial metrics that compute the

overlap, position distance, size similarity and orientation

similarity between two detections. The comparison results

are shown in Table III. Note that the binary thresholds for

the affinity metrics are defined via cross validation using for

consistency the same train/validation split as the matching

network. The results show that our proposed approach

significantly outperforms all affinity metrics presented.

Error Analysis: To support our claim, we plot the error rate

of the matching network as a function of a series of operating

conditions in Figure 3, all of them with the y-axis scaled

640

Fig. 5: Visualization of a set of trajectories produced by the tracker over 15 frames. Trajectories are color coded, such that

having the same color means it’s the same object.

logarithmically. For each bin in the histogram, we plot the

percentage of detections which fall in that category and how

many of them are mismatched.

In Figure 3a, it is observable how occlusions make the

task of matching increasingly harder up until 50%, when

it then settles. It is also worth noting that objects are often

occluded to some extent in the dataset, considering how close

to uniform the distribution is.

The effects of the detector’s precision are evaluated in

Figure 3b, where the performance is plotted against the

detection overlap percentage, defined as the intersection over

union between the detection and its ground-truth pair. Notice

that the relative error rate remains close to constant in this

range, which suggests that the matching network is robust to

the tightness of the bounding box.

Finally, the performance with respect to bounding box

dimension and object distance is analyzed. Figure 3c shows

the error rate against the object distance and suggests that

far away vehicles are harder to match since less information

is captured by the camera. The size histogram of Figure 3d

corroborates this, considering that the size of the bounding

Method Error

Cosine Similarity 29.66%
Color Correlation 16.31%
Bhattacharyya 11.93%
Chi Square 8.02%
Bounding Box Size 7.31%
Bounding Box Position 6.13%
Bounding Box Overlap 5.30%

Deep Matching (ours) 3.27%

TABLE III: Comparison to other matching methods.

box in 2D is directly correlated to its distance in 3D.

In Figure 4 failure modes of the matching network are

shown, in which there are cases where matching fails due to

a car being partially occluded 4a, truncated 4b, poorly lit 4c

or too far away 4d.

V. CONCLUSIONS

We have proposed a novel approach to tracking by

detection, which exploits the power of structure prediction

as well as deep neural networks. Towards this goal, we

formulate the problem as inference in a deep structured

641

model (DSM), where the factors are computed using a set

of feedforward neural nets that exploit both camera and

LIDAR data to compute both detection and matching scores.

Inference in the model can be done exactly by a set of

feedforward processes followed by solving a linear program.

Learning is done end-to-end via minimization of a structured

hinge loss, optimizing simultaneously the detector and tracker.

Experimental evaluation on the challenging KITTI dataset

show that our approach is very competitive outperforming

the state of the art in the MOTP and MT metrics In the

future, we plan to extend our approach to handle long-term

occlusions and missing detections.

REFERENCES

[1] P. Lenz, A. Geiger, and R. Urtasun, “FollowMe: Efficient online min-
cost flow tracking with bounded memory and computation,” IEEE

Conference on Computer Vision and Pattern Recognition, pp. 4364–
4372, 2015.

[2] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” 2005.

[3] R. Urtasun, D. J. Fleet, and P. Fua, “3d people tracking with gaussian
process dynamical models,” IEEE Conference on Computer Vision and

Pattern Recognition, vol. 1, pp. 238–245, 2006.

[4] R. T. Collins and P. Carr, “Hybrid stochastic/deterministic optimization
for tracking sports players and pedestrians,” European Conference on

Computer Vision, pp. 298–313, 2014.

[5] W. Choi, C. Pantofaru, and S. Savarese, “A general framework for
tracking multiple people from a moving camera,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 35, no. 7, pp.
1577–1591, 2013.

[6] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1806–1819,
2011.

[7] H. B. Shitrit, J. Berclaz, F. Fleuret, and P. Fua, “Multi-commodity
network flow for tracking multiple people.” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 36, no. 8, pp. 1614–
1627, 2014.

[8] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-
object tracking using network flows,” IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1–8, 2008.

[9] B. Yang and R. Nevatia, “An online learned CRF model for multi-
target tracking,” IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2034–2041, 2012.

[10] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler,
“Online multi-target tracking using recurrent neural networks,”
arXiv:1604.03635, 2016.

[11] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for
confidence measures in stereo vision,” IEEE Conference on Computer

Vision and Pattern Recognition, pp. 305–312, 2013.

[12] A. Spyropoulos, N. Komodakis, and P. Mordohai, “Learning to detect
ground control points for improving the accuracy of stereo matching,”
IEEE Conference on Computer Vision and Pattern Recognition, pp.
1621–1628, 2014.

[13] S. Birchfield and C. Tomasi, “Multiway cut for stereo and motion with
slanted surfaces.” IEEE International Conference on Computer Vision,
pp. 489–495, 1999.

[14] J. Zbontar and Y. LeCun, “Computing the stereo matching cost with a
convolutional neural network,” IEEE Conference on Computer Vision

and Pattern Recognition, pp. 1592–1599, 2015.

[15] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for
stereo matching,” IEEE Conference on Computer Vision and Pattern

Recognition, pp. 5695–5703, 2016.

[16] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by
tracking: Siamese cnn for robust target association,” IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pp. 33–40,
2016.

[17] B. Benfold and I. Reid, “Stable multi-target tracking in real-time
surveillance video,” IEEE Conference on Computer Vision and Pattern

Recognition, pp. 3457–3464, 2011.

[18] C. hao Kuo, C. Huang, and R. Nevatia, “Multi-target tracking by on-
line learned discriminative appearance models,” IEEE Conference on

Computer Vision and Pattern Recognition, pp. 685–692, 2010.
[19] Z. Khan, T. Balch, and F. Dellaert, “Efficient particle filter-based

tracking of multiple interacting targets using an MRF-based motion
model,” IEEE Conference on Intelligent Robots and Systems, pp. 254–
259, 2003.

[20] D. Riahi and G. Bilodeau, “Multiple object tracking based on
sparse generative appearance modeling,” IEEE Conference on Image

Processing, pp. 4017–4021, 2015.
[21] H. Weigel, P. Lindner, and G. Wanielik, “Vehicle tracking with lane

assignment by camera and lidar sensor fusion,” in IEEE Intelligent

Vehicles Symposium, June 2009, pp. 513–520.
[22] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object

detection network for autonomous driving,” arXiv:1611.07759, 2016.
[23] F. Zhang, D. Clarke, and A. Knoll, “Vehicle detection based on lidar

and camera fusion,” in IEEE Conference on Intelligent Transportation

Systems, Oct 2014, pp. 1620–1625.
[24] R. O. Chavez-Garcia and O. Aycard, “Multiple sensor fusion and clas-

sification for moving object detection and tracking,” IEEE Transactions

on Intelligent Transportation Systems, vol. 17, no. 2, pp. 525–534, Feb
2016.

[25] S. Schulter, P. Vernaza, W. Choi, and M. Chandraker, “Deep network
flow for multi-object tracking,” IEEE Conference on Computer Vision

and Pattern Recognition, pp. 2730–2739, 2017.
[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” arXiv:1409.1556, 2014.
[27] D. P. Bertsekas, R. G. Gallager, and P. Humblet, “Data networks,”

vol. 2, 1992.
[28] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network flows: theory,

algorithms, and applications,” 1993.
[29] “Google Optimization Tools,” 2017. [Online]. Available: https:

//developers.google.com/optimization/
[30] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization

for multitarget tracking,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 36, no. 1, pp. 58–72, 2014.
[31] J. H. Yoon, M.-H. Yang, J. Lim, and K.-J. Yoon, “Bayesian multi-object

tracking using motion context from multiple objects,” IEEE Winter

Conference on Applications of Computer Vision, pp. 33–40, 2015.
[32] A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3d traffic

scene understanding from movable platforms,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 1012–
1025, 2014.

[33] J. Hong Yoon, C.-R. Lee, M.-H. Yang, and K.-J. Yoon, “Online
multi-object tracking via structural constraint event aggregation,” IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1392–
1400, 2016.

[34] A. Gaidon and E. Vig, “Online domain adaptation for multi-object
tracking,” arXiv:1508.00776, 2015.

[35] W. Choi, “Near-online multi-target tracking with aggregated local flow
descriptor,” IEEE International Conference on Computer Vision, pp.
3029–3037, 2015.

[36] S. Wang and C. C. Fowlkes, “Learning optimal parameters for multi-
target tracking.” British Machine Vision Conference, pp. 4–1, 2015.

[37] A. Milan, K. Schindler, and S. Roth, “Detection-and trajectory-level
exclusion in multiple object tracking,” IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3682–3689, 2013.
[38] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-

object tracking by decision making,” IEEE International Conference

on Computer Vision, pp. 4705–4713, 2015.
[39] B. Lee, E. Erdenee, S. Jin, M. Y. Nam, Y. G. Jung, and P. K. Rhee,

“Multi-class multi-object tracking using changing point detection,”
European Conference on Computer Vision, pp. 68–83, 2016.

[40] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” IEEE Conference on

Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.
[41] Y. Li, C. Huang, and R. Nevatia, “Learning to associate: Hybridboosted

multi-target tracker for crowded scene,” IEEE Conference on Computer

Vision and Pattern Recognition, pp. 2953–2960, 2009.
[42] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking

performance: the clear mot metrics,” EURASIP Journal on Image and

Video Processing, vol. 2008, no. 1, pp. 1–10, 2008.
[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980, 2014.

642

