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Overfitting 
• The	training	data	contains	information	about	the	regularities	
in	the	mapping	from	input	to	output.	But	it	also	contains	noise	
– The	target	values	may	be	unreliable.	
– There	is	sampling	error.	There	will	be	accidental	
regularities	just	because	of	the	particular	training	cases	
that	were	chosen	

• When	we	fit	the	model,	it	cannot	tell	which	regularities	are	
real	and	which	are	caused	by	sampling	error.		
– So	it	fits	both	kinds	of	regularity.	
– If	the	model	is	very	flexible	it	can	model	the	sampling	error	
really	well.	This	is	a	disaster.

2



Overfitting

Picture credit: Chris Bishop. Pattern Recognition and Machine Learning. Ch.1.1.



Preventing	overfitting

• Use	a	model	that	has	the	right	capacity:	
– enough	to	model	the	true	regularities	
– not	enough	to	also	model	the	spurious	
regularities	(assuming	they	are	weaker)	

• Standard	ways	to	limit	the	capacity	of	a	neural	net:	
– Limit	the	number	of	hidden	units.	
– Limit	the	size	of	the	weights.	
– Stop	the	learning	before	it	has	time	to	overfit.
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Limiting	the	size	of	the	weights

Weight-decay	involves	adding	
an	extra	term	to	the	cost	
function	that	penalizes	the	
squared	weights.	

– Keeps	weights	small	
unless	they	have	big	error	
derivatives.
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The	effect	of	weight-decay

• It	prevents	the	network	from	using	weights	that	it	does	not	
need	
– This	can	often	improve	generalization	a	lot.		
– It	helps	to	stop	it	from	fitting	the	sampling	error.		
– It	makes	a	smoother	model	in	which	the	output	changes	
more	slowly	as	the	input	changes.	

• But,	if	the	network	has	two	very	similar	inputs	it	prefers	to	
put	half	the	weight	on	each	rather	than	all	the	weight	on	
one	à other	form	of	weight	decay?

w/2 w/2 w 0
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Deciding	how	much	to	restrict	the	capacity

• How	do	we	decide	which	limit	to	use	and	how	
strong	to	make	the	limit?	
– If	we	use	the	test	data	we	get	an	unfair	
prediction	of	the	error	rate	we	would	get	on	new	
test	data.	

– Suppose	we	compared	a	set	of	models	that	gave	
random	results,	the	best	one	on	a	particular	
dataset	would	do	better	than	chance.		But	it	
won’t	do	better	than	chance	on	another	test	set.		

• So	use	a	separate	validation	set	to	do	model	
selection.
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Using	a	validation	set

• Divide	the	total	dataset	into	three	subsets:	
– Training	data	is	used	for	learning	the	parameters	
of	the	model.	

– Validation	data	is	not	used	of	learning	but	is	used	
for	deciding	what	type	of	model	and	what	
amount	of	regularization	works	best	

– Test	data	is	used	to	get	a	final,	unbiased	estimate	
of	how	well	the	network	works.	We	expect	this	
estimate	to	be	worse	than	on	the	validation	data	

• We	could	then	re-divide	the	total	dataset	to	get	
another	unbiased	estimate	of	the	true	error	rate.
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Preventing	overfitting	by	early	stopping

• If	we	have	lots	of	data	and	a	big	model,	its	very	
expensive	to	keep	re-training	it	with	different	
amounts	of	weight	decay	

• It	is	much	cheaper	to	start	with	very	small	weights	
and	let	them	grow	until	the	performance	on	the	
validation	set	starts	getting	worse	

• The	capacity	of	the	model	is	limited	because	the	
weights	have	not	had	time	to	grow	big.
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Why	early	stopping	works

• When	the	weights	are	very	
small,	every	hidden	unit	is	in	its	
linear	range.	
– So	a	net	with	a	large	layer	of	
hidden	units	is	linear.	

– It	has	no	more	capacity	than	
a	linear	net	in	which	the	
inputs	are	directly	connected	
to	the	outputs!	

• As	the	weights	grow,	the	hidden	
units	start	using	their	non-linear	
ranges	so	the	capacity	grows.

outputs

inputs
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Le	Net

• Yann	LeCun	and	others	developed	a	really	good	
recognizer	for	handwritten	digits	by	using	
backpropagation	in	a	feedforward	net	with:	
– Many	hidden	layers	
– Many	pools	of	replicated	units	in	each	layer.	
– Averaging	the	outputs	of	nearby	replicated	units.	
– A	wide	net	that	can	cope	with	several	characters	
at	once	even	if	they	overlap.	

• Demo	of	LENET
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https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q
https://www.youtube.com/watch?v=FwFduRA_L6Q


Recognizing	Digits
Hand-written	digit	recognition	network	

– 7291	training	examples,	2007	test	examples	
– Both	contain	ambiguous	and	misclassified	examples	
– Input	pre-processed	(segmented,		normalized)	

• 16x16	gray	level	[-1,1],	10	outputs
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LeNet:	Summary
Main	ideas: 

• Local	à global	processing 
• Retain	coarse	posn	info 

Main	technique:	weight	sharing	–	
units	arranged	in	feature	maps 

Connections:	1256	units,	64,660	
cxns,	9760	free	parameters 

Results:		0.14%	(train),	5.0%	(test) 

vs.	3-layer	net	w/	40	hidden	units: 
	 1.6%	(train),	8.1%	(test)
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The	82	errors	made	by	LeNet5

Notice that 
most of the 
errors are 
cases that 
people find 
quite easy. 
The human 
error rate is 
probably 20 
to 30 errors
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A	brute	force	approach

• LeNet	uses	knowledge	about	the	invariances	to	design:	
– 	the	network	architecture		
– or	the	weight	constraints		
– or	the	types	of	feature	

• But	its	much	simpler	to	incorporate	knowledge	of	invariances	
by	just	creating	extra	training	data:	
– for	each	training	image,	produce	new	training	data	by	
applying	all	of	the	transformations	we	want	to	be	
insensitive	to	

– Then	train	a	large,	dumb	net	on	a	fast	computer.	
– This	works	surprisingly	well
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Making	backpropagation	work	for	recognizing	digits

• Using	the	standard	viewing	transformations,	and	local	
deformation	fields	to	get	lots	of	data.	

• Use	many,	globally	connected	hidden	layers	and	learn	
for	a	very	long	time	
– This	requires	a	GPU	board	or	a	large	cluster	  

• Use	the	appropriate	error	measure	for	multi-class	
categorization	
– Cross-entropy,	with	softmax	activation	

• This	approach	can	get	35	errors	on	MNIST!
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Fabricating	training	data

Good	generalization	requires	lots	of	training	data,	
including	examples	from	all	relevant	input	regions	

Improve	solution	if	good	data	can	be	constructed		
Example:	ALVINN
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ALVINN:	simulating	training	examples

On-the-fly	training:	current	video	camera	image	as	input,	
current	steering	direction	as	target	

But:	over-train	on	same	inputs;	no	experience	going	off-
road	

Method:	generate	new	examples	by	shifting	images

Replace	10	low-error	&	5	
random	training	
examples	with	15	new 

Key:	relation	between	input	
and	output	known! 
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Neural	Net	Demos

Scene recognition - Places MIT

Digit recognition

Neural Nets Playground

Neural Style Transfer

http://places.csail.mit.edu/demo.html
http://scs.ryerson.ca/~aharley/vis/conv/
http://playground.tensorflow.org
https://www.instapainting.com/ai-painter

